Informatik I: Einfiihrung in die Programmierung
18. Funktionale Programmierung / Dekoratoren

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann

28.01.2026

o
[+
=2
1]
i
[+ 3
™

z
=

Dekoratoren

Dekoratoren

28.01.2026 P. Thiemann — Info | 2/35

Was ist ein Dekorator?

o
+4
D
m
w
[+ 4
[

UNI

Ein Dekorator ist eine Funktion, die eine andere Funktion erweitert, ohne diese Dekoratoren
selbst zu andern.
Die Syntax von Dekoratoren (Funktion decorator angewendet auf fun):

@decorator
def fun(Q):

Also ist decorator eine Funktion héherer Ordnung:
Ein Dekorator nimmt eine Funktion als Parameter und liefert als Ergebnis wieder
eine Funktion.

28.01.2026 P. Thiemann — Info | 4/35

Was ist ein Dekorator?

i

o
+4
D
m
w
[+ 4
[

UNI

Ein Dekorator ist eine Funktion, die eine andere Funktion erweitert, ohne diese Dekoratoren
selbst zu andern.
Die Syntax von Dekoratoren (Funktion decorator angewendet auf fun):

@decorator
def fun(Q):

Also ist decorator eine Funktion héherer Ordnung:

Ein Dekorator nimmt eine Funktion als Parameter und liefert als Ergebnis wieder
eine Funktion.

Dekoratoren, die uns schon friiher begegnet sind: dataclass, property, etc.

28.01.2026 P. Thiemann — Info | 4/35

Dekoratoren

o
+4
D
m
w
[+ 4
[

UNI

Dekoratoren

Falls der Dekorator wrapper definiert wurde, dann hat

Owrapper
def confused_cat (*args):
pass # do some stuff

die gleiche Bedeutung wie

def confused_cat (*args):
pass # do some stuff
confused_cat = wrapper (confused_cat)

28.01.2026 P. Thiemann — Info | 5/35

Beispiele fiir Dekoratoren: property, staticmethod (1)

decorators.py

@dataclass
class C:
__hame : str

def getname(self) -> str:
return self.__name

def setname(self, z: str) -> None:
self.__mame = 2 * ¢
name = property(getname)

def hello() -> Nonme:
print ("Hello world")
hello = staticmethod(hello)
lasst sich mittels der @-Syntax schreiben ...

28.01.2026 P. Thiemann — Info |

o
+4
D
m
w
[+ 4
[

UNI

Dekoratoren

6/35

Dekoratoren: property, staticmethod (2)

@dataclass
class C:
__name : str Dekoratoren

UNI
FREIBURG

O@property
def name(self) -> str:
return self.__name

@name.setter
def name(self, z: str) -> None:
self.__mame = 2 * x

@staticmethod
def hello() -> None:
print("Hello world")

28.01.2026 P. Thiemann — Info | 7/35

Motivation

o
+4
D
m
w
[+ 4
[

UNI

Dekoratoren

Betrachte die Funktion

def mult (x:float, y:float) -> float:
return x * y

28.01.2026 P. Thiemann — Info | 8/35

Motivation

o
+4
D
m
w
[+ 4
[

UNI

Dekoratoren

Betrachte die Funktion

def mult (x:float, y:float) -> float:
return x * y

Zur Fehlersuche méchten wir folgendes Feature:

Aufgabe
Gib bei jedem Aufruf den Namen der Funktion mit ihren Argumenten aus.

28.01.2026 P. Thiemann — Info | 8/35

Definition eines Dekorators (1)

UNI
FREIBURG

Naiver Ansatz: Andere die Funktionsdefinition!

verbose = True Dekoratoren
def mult(x:float, y:float) -> float:
if verbose:
print("--- a nice header ———----—- ")
print("--> call mult with args: %s, %s" % x, y)
res = X ¥y
if verbose:
print("--- a nice footer -—------- ")
return res

28.01.2026 P. Thiemann — Info | 9/35

Definition eines Dekorators (1)

UNI
FREIBURG

Naiver Ansatz: Andere die Funktionsdefinition!

verbose = True Dekoratoren
def mult(x:float, y:float) -> float:
if verbose:
print("--- a nice header ———----—- ")
print("--> call mult with args: %s, %s" % x, y)
res = X ¥y
if verbose:
print("--- a nice footer -—------- ")
return res

Schlecht: durch die Anderung der Funktionsdefinition kénnen neue Fehler entstehen!
Besser: eine modulare Lésung, bei der die Funktionsdefinition unverandert bleiben kann.

28.01.2026 P. Thiemann — Info | 9/35

Definition eines Dekorators (2)
Wiederverwendbare modulare Lésung mit Dekorator

o
+4
D
m
w
[+ 4
[

UNI

def with_trace(f):

def wrapper (*args, *xkwargs):
print("--- a nice header --------- ")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))

res = f(xargs, **kwargs)
print("--- a nice footer --------- ")
return res

print ("--> wrapper now defined")

return wrapper

Dekoratoren

@with_trace
def mult(x:float, y:float) -> float:
return x * y

28.01.2026 P. Thiemann — Info | 10/35

Definition eines Dekorators (3)

Aufgabe 2

Wie lange dauert die Ausfiihrung eines Funktionsaufrufs? Dekoratoren

o
+4
D
m
w
[+ 4
[

UNI

28.01.2026 P. Thiemann — Info | 11/35

Definition eines Dekorators (3)

Aufgabe 2

Wie lange dauert die Ausfiihrung eines Funktionsaufrufs?

o
+4
D
m
w
[+ 4
[

74
UNI

Dekoratoren

import time

def timeit(f):

def wrapper (*args, *xkwargs):
print ("--> Start timer")
t0 = time.time()
res = f(*xargs, **kwargs)
delta = time.time() - tO
print("--> End timer: Y%s sec." 7 delta)
return res

return wrapper

28.01.2026 P. Thiemann — Info | 11/35

Antwort

o
+4
D
m
w
[+ 4
[

UNI

Otimeit
def mult(x:int, y:int) -> int:
return x * y

print (mult(6, 7))

Dekoratoren

Ausgabe:

--> Start timer --————-—--

--> End timer: 1.9073486328125e-06 sec.

42

28.01.2026 P. Thiemann — Info |

12/35

Definition eines Dekorators (4)

Dekoratoren hintereinander schalten

ik

decorators.py

UNI
FREIBURG

Qwith_trace

Otimeit

def sub(x:float, y:float) -> float:
return x - y

Dekoratoren

print(sub(3, 5))

liefert z.B.:

decorators.py

--- a nice header - ————--—--

--> call wrapper with args: 3,5

-=> Start timer

-—> End timer: 9.5367431640625e-07 sec.
--- a nice footer -—————-—-

28.01.2026 P. Thiemann — Info | 13/35

Dekoratoren: docstring und __name__ (1)

o
+4
D
m
w
[+ 4
[

UNI

Beim Dekorieren gehen interne Attribute wie Name und docstring verloren.

Dekoratoren

28.01.2026 P. Thiemann — Info | 14/35

Dekoratoren: docstring und __name__ (1)

Beim Dekorieren gehen interne Attribute wie Name und docstring verloren.

Ein guter Dekorator muss das wieder richtigstellen:

def with_trace(f):

def wrapper(*args, **kwargs):
print("--- a nice header --------- ")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))

res = f(xargs, **kwargs)
print("--- a nice footer --------- ")
return res

wrapper.__name__ = f.__name__

wrapper.__doc__ = f.__doc__

return wrapper

28.01.2026 P. Thiemann — Info |

14/35

UNI

o
+4
D
m
w
[+ 4
[

Dekoratoren

Dekoratoren: docstring und __name__ (2)

Dieses Problem kann durch den Dekorator functools.wraps geltst werden:

import functools
def with_trace(f):
Ofunctools.wraps(f)
def wrapper(*args, **kwargs):
print("--- a nice header --------- ")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))
res = f(xargs, **kwargs)
print("--- a nice footer -----—-—--- ")

return res
return wrapper

28.01.2026 P. Thiemann — Info |

15/35

UNI

o
+4
D
m
w
[+ 4
[

Dekoratoren

Dekoratoren mit Parametern (1)

Aufgabe: beschranke alle Stringergebnisse auf 5 Zeichen
def trunc(f):
def wrapper (*args, **kwargs):
res = f(xargs, **kwargs)
return res[:5]
return wrapper

UNI
FREIBURG

Dekoratoren

Q@trunc
def data():
return 'foobar'

28.01.2026 P. Thiemann — Info | 16/35

Dekoratoren mit Parametern (1)

Aufgabe: beschrénke alle Stringergebnisse auf 5 Zeichen

def trunc(f):
def wrapper (*args, **kwargs):
res = f(xargs, **kwargs)
return res[:5]
return wrapper

Q@trunc
def data():
return 'foobar'

Ein aktueller Aufruf:

print(data())

liefert fooba

28.01.2026 P. Thiemann — Info |

16/35

UNI

FREIBURG

Dekoratoren

Dekoratoren mit Parametern (2)

Warum 5 Zeichen? Manchmal sollen es 3 sein, manchmal 6!

def limit(length:int):
def decorator(f): Dekoratoren
def wrapper (*args, *xkwargs):
res = f(*args, **kwargs)
return res[:length]
return wrapper
return decorator

UNI
FREIBURG

@limit(3)
def data_a():
return 'limit to 3'

@limit (6)
def data_b():
return 'limit to 6'

28.01.2026 P. Thiemann — Info | 17/35

Parametrische Dekoratoren (3)

o
+4
D
m
w
[+ 4
[

UNI

Dekoratoren
Der Aufruf von 1imit (3) erzeugt einen Dekorator, der auf data_a
angewandt wird; 1imit (6) wenden wir auf data_b an:
print(data_a())
liefert: 1im
print(data_b())
liefert: 1imit
Aber was passiert genau bei der geschachtelten Definition von Funktionen?

28.01.2026 P. Thiemann — Info | 18/35

Funktionsschachtelung,
Namensraum und Umgebung

28.01.2026 P. Thiemann — Info |

19/35

Geschachtelte Funktionsdefinitionen

o
+4
D
m
w
[+ 4
[

UNI

Schachte-

Im letzten Abschnitt sind uns geschachtelte Funktionsdefinitionen begegnet. lng und

28.01.2026 P. Thiemann — Info | 21/35

Geschachtelte Funktionsdefinitionen

o
+4
D
m
w
[+ 4
[

UNI

Schachte-

Im letzten Abschnitt sind uns geschachtelte Funktionsdefinitionen begegnet. lng und

Dabei stellt sich die Frage, auf welche Bindung sich die Verwendung einer
Variablen bezieht.

28.01.2026 P. Thiemann — Info | 21/35

Geschachtelte Funktionsdefinitionen

o
+4
D
m
w
[+ 4
[

UNI

Schachte-
Im letzten Abschnitt sind uns geschachtelte Funktionsdefinitionen begegnet. lung und

Scope
Dabei stellt sich die Frage, auf welche Bindung sich die Verwendung einer
Variablen bezieht.
Dafiir missen wir die Begriffe Namensraum (Scope) und Umgebung
verstehen.

28.01.2026 P. Thiemann — Info | 21/35

Geschachtelte Funktionsdefinitionen

o
+4
D
m
w
[+ 4
[

UNI

Schachte-
lung und

Im letzten Abschnitt sind uns geschachtelte Funktionsdefinitionen begegnet. lng u
Dabei stellt sich die Frage, auf welche Bindung sich die Verwendung einer

Variablen bezieht.

Dafiir missen wir die Begriffe Namensraum (Scope) und Umgebung

verstehen.
Und wir mUssen uns mit der Lebensdauer einer Variablen auseinandersetzen.

28.01.2026 P. Thiemann — Info | 21/35

Namensraum

o
+4
D
m
w
[+ 4
[

UNI

Der Namensraum (Scope) ist ein statisches Konzept. Er zeigt an, in welchen
Teilen eines Programms ein definierter Name sichtbar und verwendbar ist. —
Ein Name komt “in scope” durch lung und

Scope
Definition einer Variable, Funktion oder Klasse
Import eines Moduls

und ist verflgbar bis zum Ende des Blocks, in dem er definiert wurde.

Z.B. der lokale Namensraum einer Funktionsdefinition enthalt Parameter und
lokale Definitionen (Variable, Funktionen, Klassen, ...). Er endet am Ende
des Funktionsrumpfes.

Namensrdume bilden eine Hierarchie entsprechend der Schachtelung von
Funktions- und Klassendefinitionen.

28.01.2026 P. Thiemann — Info | 22/35

Umgebungen

UNI
FREIBURG

Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit).

Schachte-
lung und
Scope

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen

UNI
FREIBURG

Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit).

Sie ist eine Abbildung von Namen auf Werte.
Schachte-

lung und
Scope

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen

UNI
FREIBURG

Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit).
Sie ist eine Abbildung von Namen auf Werte.
Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-

lung und
Scope

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen 9
2
d_0_
. 2
Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit). 5%
Sie ist eine Abbildung von Namen auf Werte.

Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-
Umgebung von Modulen, die importiert werden o

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen 9
2
d_0_
. 2
Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit). 5%
Sie ist eine Abbildung von Namen auf Werte.

Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-
Umgebung von Modulen, die importiert werden o

globale Umgebung (des Moduls __main__)

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen

Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit).
Sie ist eine Abbildung von Namen auf Werte.

28.01.2026

Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen
Umgebung von Modulen, die importiert werden

globale Umgebung (des Moduls __main__)

lokale Umgebung innerhalb eines Funktionsaufrufs (vgl. Kellerrahmen)
diese kénnen geschachtelt sein.

P. Thiemann — Info |

23/35

UNI

o
+4
D
m
w
[+ 4
[

Schachte-
lung und
Scope

Umgebungen

12
i @
. R . Zm-
Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit). Y
Sie ist eine Abbildung von Namen auf Werte.
Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-
Umgebung von Modulen, die importiert werden ang e

Scope
globale Umgebung (des Moduls __main__)

lokale Umgebung innerhalb eines Funktionsaufrufs (vgl. Kellerrahmen)
diese kénnen geschachtelt sein.

Jeder Aufruf einer Funktion erzeugt eine neue lokale Umgebung, die
normalerweise am Ende des Aufrufs wieder geldéscht wird.

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen 9
2
0
. 2
Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit). 5%
Sie ist eine Abbildung von Namen auf Werte.

Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-
Umgebung von Modulen, die importiert werden ang e

Scope

globale Umgebung (des Moduls __main__)

lokale Umgebung innerhalb eines Funktionsaufrufs (vgl. Kellerrahmen)
diese kénnen geschachtelt sein.

Jeder Aufruf einer Funktion erzeugt eine neue lokale Umgebung, die
normalerweise am Ende des Aufrufs wieder geldéscht wird.

Die Umgebungen bilden eine Hierarchie, wobei die innerste, lokale
Umgebung normalerweise alle &u3eren Gberdeckt!

28.01.2026 P. Thiemann — Info | 23/35

Umgebungen 9
2
0
. 2
Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit). 5%
Sie ist eine Abbildung von Namen auf Werte.
Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-
Umgebung von Modulen, die importiert werden ang e

Scope
globale Umgebung (des Moduls __main__)

lokale Umgebung innerhalb eines Funktionsaufrufs (vgl. Kellerrahmen)
diese kénnen geschachtelt sein.

Jeder Aufruf einer Funktion erzeugt eine neue lokale Umgebung, die
normalerweise am Ende des Aufrufs wieder geldéscht wird.

Die Umgebungen bilden eine Hierarchie, wobei die innerste, lokale
Umgebung normalerweise alle &u3eren Gberdeckt!

Jede Umgebung instanziert einen Namensraum.

28.01.2026 P. Thiemann — Info | 23/35

Sichtbarkeit

o
+4
D
m
w
[+ 4
[

UNI

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und
Scope

28.01.2026 P. Thiemann — Info | 24/35

Sichtbarkeit

o
+4
D
m
w
[+ 4
[

UNI

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und

Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope
Hierarchie der Namensraume und versucht der Reihe nach:

28.01.2026 P. Thiemann — Info | 24/35

Sichtbarkeit

o
+4
D
m
w
[+ 4
[

UNI

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und

Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope
Hierarchie der Namensraume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulésen;

28.01.2026 P. Thiemann — Info | 24/35

Sichtbarkeit

:

UNI
FREIBURG

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und

Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope
Hierarchie der Namensraume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulésen;
ihn in den nicht-lokalen Namensrdumen (die den lokalen Namensraum

umschlie3en) aufzuldsen;

28.01.2026 P. Thiemann — Info | 24/35

Sichtbarkeit

o
+4
D
m
w
[+ 4
[

UNI

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable

ohne die Punkt-Notation referenziert werden kann. Schachte-
. I d
Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope.

Hierarchie der Namensrdume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulésen;

ihn in den nicht-lokalen Namensrdumen (die den lokalen Namensraum
umschlie3en) aufzuldsen;

ihn im globalen Namensraum aufzulésen;

28.01.2026 P. Thiemann — Info | 24/35

Sichtbarkeit

%3
1
w
e
(V'

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und

Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope
Hierarchie der Namensrdume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulésen;

ihn in den nicht-lokalen Namensrdumen (die den lokalen Namensraum

umschlie3en) aufzuldsen;

ihn im globalen Namensraum aufzulésen;

ihn im Builtin-Namensraum aufzuldésen.

28.01.2026 P. Thiemann — Info | 24/35

Sichtbarkeit

o
+4
D
m
w
[+ 4
[

UNI

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und

Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope
Hierarchie der Namensrdume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulésen;

ihn in den nicht-lokalen Namensrdumen (die den lokalen Namensraum

umschlie3en) aufzuldsen;

ihn im globalen Namensraum aufzulésen;

ihn im Builtin-Namensraum aufzuldésen.

Dabei heif3t “auflésen” das Auffinden des Werts der Variable in der
zugeordneten Umgebung.

28.01.2026 P. Thiemann — Info | 24/35

Zuweisungen 9
D
~8_
zl.u
=1
Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var diirfen erst nach Schachte-
Ausfiihrung der Zuweisung erfolgen. o

28.01.2026 P. Thiemann — Info | 25/35

Zuweisungen 9
D
~8_
zl.u
=1
Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var diirfen erst nach Schachte-
Ausfiihrung der Zuweisung erfolgen. o

Ausnahmen werden durch zwei Anweisungen gesteuert:

28.01.2026 P. Thiemann — Info | 25/35

Zuweisungen 9
i_B_
(B8
Se
Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var diirfen erst nach Schachte-
Ausflihrung der Zuweisung erfolgen. o
Ausnahmen werden durch zwei Anweisungen gesteuert:
global var

bewirkt, dass var im globalen Namensraum gesucht wird. Zuweisungen an var
wirken auf die globale Umgebung.

28.01.2026 P. Thiemann — Info | 25/35

Zuweisungen 9
= S|
2_0_
zl.u
=1
Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var diirfen erst nach Schachte-
Ausfiihrung der Zuweisung erfolgen. o

Ausnahmen werden durch zwei Anweisungen gesteuert:

28.01.2026

global var

bewirkt, dass var im globalen Namensraum gesucht wird. Zuweisungen an var
wirken auf die globale Umgebung.

nonlocal var

bewirkt, dass var in einem nicht-lokalen Namensraum gesucht wird, d.h. in den
umgebenden Funktionsdefinitionen. Auch Zuweisungen wirken dort.

P. Thiemann — Info | 25/35

Zuweisungen 9
D
-0
zl.u
=1
Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var diirfen erst nach Schachte-
Ausflihrung der Zuweisung erfolgen. o
Ausnahmen werden durch zwei Anweisungen gesteuert:
global var

bewirkt, dass var im globalen Namensraum gesucht wird. Zuweisungen an var
wirken auf die globale Umgebung.

nonlocal var

bewirkt, dass var in einem nicht-lokalen Namensraum gesucht wird, d.h. in den
umgebenden Funktionsdefinitionen. Auch Zuweisungen wirken dort.

Kann ein Name nicht aufgelést werden, dann gibt es eine Fehlermeldung.

28.01.2026 P. Thiemann — Info | 25/35

Ein Beispiel fiir Namensriaume (1)

def scope_test():
def do_local():
spam = "local spam"
def do_nonlocal():
nonlocal spam
spam = '"nonlocal spam"
def do_global():
global spam
spam = "global spam"
spam = "test spam"
do_local()
print ("After local assignment:", spam)
do_nonlocal()
print ("After nonlocal assignment:", spam)
do_global()
print("After global assignment:", spam)

28.01.2026 P. Thiemann — Info |

UNI
FREIBURG

Schachte-
lung und
Scope

26/35

Ein Beispiel fiir Namensriaume (2) 9
=2
:_0_
zl.u
=1
Schachte-
Python-Interpreter urgund

>>> scope_test()

28.01.2026 P. Thiemann — Info | 27/35

Ein Beispiel fiir Namensriaume (2)

o
+4
D
m
w
[+ 4
[

UNI

Schachte-
lung und
Scope

Python-Interpreter

>>> scope_test()
After local assignment: test spam

28.01.2026 P. Thiemann — Info | 27/35

Ein Beispiel fiir Namensriaume (2)

UNI
FREIBURG

Schachte-
lung und
Scope

Python-Interpreter

>>> scope_test()
After local assignment: test spam
After nonlocal assignment: nonlocal spam

28.01.2026 P. Thiemann — Info | 27/35

Ein Beispiel fiir Namensriaume (2)

UNI
FREIBURG

Schachte-
lung und
Scope

Python-Interpreter

>>> scope_test()

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam

28.01.2026 P. Thiemann — Info | 27/35

Ein Beispiel fiir Namensriaume (2)

UNI
FREIBURG

Schachte-
lung und
Scope

Python-Interpreter

>>> scope_test()

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
>>> print("In global scope:", spam)

28.01.2026 P. Thiemann — Info | 27/35

Ein Beispiel fiir Namensriaume (2)

UNI
FREIBURG

Schachte-
lung und
Scope

Python-Interpreter

>>> scope_test()

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
>>> print("In global scope:", spam)

In global scope: global spam

28.01.2026 P. Thiemann — Info | 27/35

i

T

UNI
FREIBURG

Closures

Closures

28.01.2026 P. Thiemann — Info | 28/35

Closures in Python

o
+4
D
m
w
[+ 4
[

Eine Closure ist ein anderer Name fir ein Funktionsobjekt. Wenn eine

Funktion lokal definiert wird, enthalt die Closure die Werte der freien Closures
Variablen (nicht-lokale Referenzen).

Definition: Eine Variable tritt frei in einem Funktionsrumpf auf, wenn sie zwar

vorkommt, aber weder in der Parameterliste noch in einer lokalen Zuweisung

gesetzt wird.

28.01.2026 P. Thiemann — Info | 30/35

Closures in Python (1)

def add_x(x:float) -> Callable[[float], float]:
def adder(num:float) ->float:
return x + num
the function object for adder is a closure
x is a free variable of adder
return adder

add_5 = add_x(5); print(add_5)

UNI

Ausgabe: <function add_x.<locals>.adder at 0x10£f0c20c0>

print(add_5(10))
Ausgabe: 15

28.01.2026 P. Thiemann — Info |

o
+4
D
m
w
[+ 4
[

Closures

Closures in Python (2)

o
+4
D
m
w
[+ 4
[

UNI

Dasselbe mit einer 1ambda Abstraktion:

Closures

28.01.2026 P. Thiemann — Info | 32/35

Closures in Python (2)

o
+4
D
m
w
[+ 4
[

UNI

Dasselbe mit einer 1ambda Abstraktion:
def add_x(x:float) -> Callable[[float], float]:
return lambda num: x + num
returns a closure
num 1s a bound variable,
x is a free variable of the lambda

Closures

add_6 = add_x(6); print(add_6)

Ausgabe: <function add_x.<locals>.<lambda> at 0x10f122480>
print(add_6(10))
Ausgabe: 16

28.01.2026 P. Thiemann — Info | 32/35

Closures und Lebensdauer

o
+4
D
m
w
[+ 4
[

Wird eine Funktion mit freien Variablen, wie x in 1lambda num: x + num als
Ergebnis zurtickgegeben, dann verlangert sich die Lebensdauer der
Umgebung des Aufrufs von add_x und damit von x.

Wenn die zuriickgegebene Funktion add_6 aufgerufen wird, dann wird diese
Umgebung—und damit der Wert von x zum Zeitpunkt der Konstruktion der
Closure—wieder installiert.

Closures

28.01.2026 P. Thiemann — Info | 33/35

Closures in Python (3)

o
+4
D
m
w
[+ 4
[

UNI

Achtung bei der Interaktion von Closures mit Zuweisungen:

Closures

28.01.2026 P. Thiemann — Info | 34/35

Closures in Python (3)

o
+4
D
m
w
[+ 4
[

UNI

Achtung bei der Interaktion von Closures mit Zuweisungen:

def clo() -> Callable[[], int]:
x =0
f = 1ambda X Closures
x =x + 1
return f
fx = clo()
print (£x(0))
Ausgabe:

28.01.2026 P. Thiemann — Info | 34/35

Closures in Python (3)

o
+4
D
m
w
[+ 4
[

UNI

Achtung bei der Interaktion von Closures mit Zuweisungen:

def clo() -> Callable[[], int]:
x =0
f = lambda X Closures
x =x + 1
return f
fx = clo()
print (£x(0))
Ausgabe: 1

Nachfolgende Zuweisungen andern den Wert in der Closure...

28.01.2026 P. Thiemann — Info | 34/35

Zusammenfassung Closures

o
+4
D
m
w
[+ 4
[

Jede Funktion mit freien Variablen wird durch eine Closure reprasentiert.

Innerhalb einer Closure kann mit Hilfe der Anweisungen nonlocal oder
global auf freie Variable schreibend zugegriffen werden.

Closures

Wird eine Closure als Ergebnis zuriickgegeben, so verlangert sich die
Lebensdauer der Umgebung(en), in der die Closure erzeugt wurde (die der
umschliessenden Funktionsaufrufe)! Sie bleiben so lange erhalten wie die
Closure zugreifbar ist!

28.01.2026 P. Thiemann — Info | 35/35

	Dekoratoren
	Funktionsschachtelung, Namensraum und Umgebung
	Closures

