Informatik I: Einfiihrung in die Programmierung
18. Funktionale Programmierung / Dekoratoren

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann
28.01.2026

FREIBURG

1 Dekoratoren

28.01.2026

P. Thiemann — Info |

Dekoratoren

Schachte-
lung und
Scope

Closures

3/35

Was ist ein Dekorator?

FREIBURG

Ein Dekorator ist eine Funktion, die eine andere Funktion erweitert, ohne diese Dekoratoren
selbst zu andern.
Die Syntax von Dekoratoren (Funktion decorator angewendet auf fun):

@decorator
def fun(Q):

Also ist decorator eine Funktion héherer Ordnung:
Ein Dekorator nimmt eine Funktion als Parameter und liefert als Ergebnis wieder
eine Funktion.

Dekoratoren, die uns schon friiher begegnet sind: dataclass, property, etc.

28.01.2026 P. Thiemann — Info | 4/35

Dekoratoren

Falls der Dekorator wrapper definiert wurde, dann hat

Qwrapper
def confused_cat (*args):
pass # do some stuff

die gleiche Bedeutung wie

def confused_cat (*args):
pass # do some stuff
confused_cat = wrapper (confused_cat)

28.01.2026 P. Thiemann — Info |

5/35

Dekoratoren

Beispiele fiir Dekoratoren: property, staticmethod (1)

decorators.py

@dataclass
class C:
__hame : str

def getname(self) -> str:
return self.__name

def setname(self, z: str) -> None:
self.__mame = 2 * ¢
name = property(getname)

def hello() -> Nonme:
print ("Hello world")
hello = staticmethod(hello)
lasst sich mittels der @-Syntax schreiben ...

28.01.2026 P. Thiemann — Info |

6/35

FREIBURG

Dekoratoren

Dekoratoren: property, staticmethod (2)

@dataclass
class C:

__name : str Dekoratoren
Schachte-
lung und

Q@property Scope

def name(self) -> str: o
Closures

return self.__name

Oname.setter
def name(self, z: str) -> None:
self.__mame = 2 * x

@staticmethod
def hello() -> None:
print("Hello world")

28.01.2026 P. Thiemann — Info | 7/35

Motivation

Betrachte die Funktion

UNI
FREIBURG

Dekoratoren

return x * y

def mult (x:float, y:float) -> float:

Zur Fehlersuche méchten wir folgendes Feature:

Aufgabe

Gib bei jedem Aufruf den Namen der Funktion mit ihren Argumenten aus.

28.01.2026

P. Thiemann — Info |

8/35

Definition eines Dekorators (1)

FREIBURG

Naiver Ansatz: Andere die Funktionsdefinition! :Z’
verbose = True Dekoratoren
def mult(x:float, y:float) -> float:

if verbose:
print("--- a nice header ———----—- ")
print("--> call mult with args: %s, %s" % x, y)
res = X ¥y
if verbose:
print("--- a nice footer -—------- ")
return res

Schlecht: durch die Anderung der Funktionsdefinition kénnen neue Fehler entstehen!

Besser: eine modulare Lésung, bei der die Funktionsdefinition unverandert bleiben kann.

9/35

28.01.2026 P. Thiemann — Info |

Definition eines Dekorators (2)
Wiederverwendbare modulare Lésung mit Dekorator

def with_trace(f):

def wrapper (*args, *xkwargs):
print("--- a nice header --------- ")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))

res = f(*xargs, **kwargs)
print("--- a nice footer --------- ")
return res

print ("--> wrapper now defined")

return wrapper

@with_trace
def mult(x:float, y:float) -> float:
return x * y

28.01.2026 P. Thiemann — Info |

10/35

Dekoratoren

Schachte-
lung und
Scope

Closures

Definition eines Dekorators (3)

Aufgabe 2
Wie lange dauert die Ausfiihrung eines Funktionsaufrufs?

UNI
FREIBURG

Dekoratoren

import time

def timeit(f):

def wrapper (*args, *xkwargs):
print("--> Start timer")
t0 = time.time()
res = f(xargs, **kwargs)
delta = time.time() - tO
print("--> End timer: Y%s sec." 7 delta)
return res

return wrapper

28.01.2026 P. Thiemann — Info | 11/35

Antwort

Otimeit
def mult(x:int, y:int) -> int:
return x * y

Dekoratoren

print (mult(6, 7))

Ausgabe:

--> Start timer - —-——————-
--> End timer: 1.9073486328125e-06 sec.
42

28.01.2026 P. Thiemann — Info | 12/35

Definition eines Dekorators (4)
Dekoratoren hintereinander schalten

decorators.py

Q@with_trace

Otimeit

def sub(x:float, y:float) -> float:
return x - y

Dekoratoren

print(sub(3, 5))

liefert z.B.:

decorators.py

--- a nice header - —————----

--> call wrapper with args: 3,5

--> Start timer

--> End timer: 9.5367431640625e-07 sec.
--- a nice footer -—-——————-

28.01.2026 P. Thiemann — Info | 13/35

Dekoratoren: docstring und __name__ (1)

Beim Dekorieren gehen interne Attribute wie Name und docstring verloren.
Ein guter Dekorator muss das wieder richtigstellen:

def with_trace(f):

def wrapper (*args, *xkwargs):
print("--- a nice header --------- ")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))

res = f(xargs, **kwargs)
print("--- a nice footer --------- ")
return res
wrapper.__name__ = f.__name__
wrapper.__doc__ = f.__doc__
return wrapper

28.01.2026

P. Thiemann — Info |

14/35

Dekoratoren

Dekoratoren: docstring und __name__ (2)

Dieses Problem kann durch den Dekorator functools.wraps geltst werden:

import functools
def with_trace(f):
Ofunctools.wraps(f)
def wrapper(*args, **kwargs):
print("--- a nice header --------- ")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))
res = f(xargs, **kwargs)
print("--- a nice footer -----—-—--- ")

return res
return wrapper

28.01.2026 P. Thiemann — Info |

15/35

UNI

FREIBURG

Dekoratoren

Dekoratoren mit Parametern (1)

UNI
FREIBURG

Aufgabe: beschranke alle Stringergebnisse auf 5 Zeichen
def trunc(f):
def wrapper (*args, **kwargs):
res = f(xargs, **kwargs)
return res[:5]
return wrapper

Dekoratoren

@trunc
def data():
return 'foobar'

Ein aktueller Aufruf:
print(data())

liefert fooba

28.01.2026 P. Thiemann — Info | 16/35

Dekoratoren mit Parametern (2)

Warum 5 Zeichen? Manchmal sollen es 3 sein, manchmal 6!

def limit(length:int):
def decorator(f): Dekoratoren
def wrapper (*args, *xkwargs):
res = f(*args, **kwargs)
return res[:length]
return wrapper
return decorator

@limit(3)
def data_a():
return 'limit to 3'

@limit(6)
def data_b():
return 'limit to 6'

28.01.2026 P. Thiemann — Info | 17/35

Parametrische Dekoratoren (3)

UNI
FREIBURG

Dekoratoren
Der Aufruf von 1imit (3) erzeugt einen Dekorator, der auf data_a
angewandt wird; 1imit (6) wenden wir auf data_b an:
print(data_a())
liefert: 1im
print(data_b())
liefert: 1imit
Aber was passiert genau bei der geschachtelten Definition von Funktionen?

28.01.2026 P. Thiemann — Info | 18/35

2 Funktionsschachtelung, Namensraum und Umgebung

UNI
FREIBURG

Dekoratoren

Schachte-
lung und
Scope

Closures

28.01.2026 P. Thiemann — Info | 20/35

Geschachtelte Funktionsdefinitionen

FREIBURG

Schachte-
Im letzten Abschnitt sind uns geschachtelte Funktionsdefinitionen begegnet. lung und

Dabei stellt sich die Frage, auf welche Bindung sich die Verwendung einer o
Variablen bezieht.

Dafiir missen wir die Begriffe Namensraum (Scope) und Umgebung

verstehen.

Und wir missen uns mit der Lebensdauer einer Variablen auseinandersetzen.

28.01.2026 P. Thiemann — Info | 21/35

Namensraum

UNI
FREIBURG

Der Namensraum (Scope) ist ein statisches Konzept. Er zeigt an, in welchen
Teilen eines Programms ein definierter Name sichtbar und verwendbar ist. —
Ein Name komt “in scope” durch angune

Definition einer Variable, Funktion oder Klasse
Import eines Moduls

und ist verflgbar bis zum Ende des Blocks, in dem er definiert wurde.

Z.B. der lokale Namensraum einer Funktionsdefinition enthalt Parameter und
lokale Definitionen (Variable, Funktionen, Klassen, ...). Er endet am Ende
des Funktionsrumpfes.

Namensrdume bilden eine Hierarchie entsprechend der Schachtelung von
Funktions- und Klassendefinitionen.

28.01.2026 P. Thiemann — Info | 22/35

Umgebungen 9
2
i _
. - . - . 24
Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit). =Y
Sie ist eine Abbildung von Namen auf Werte.

Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen Schachte-
Umgebung von Modulen, die importiert werden o

globale Umgebung (des Moduls __main__)
lokale Umgebung innerhalb eines Funktionsaufrufs (vgl. Kellerrahmen)
diese kénnen geschachtelt sein.

Jeder Aufruf einer Funktion erzeugt eine neue lokale Umgebung, die
normalerweise am Ende des Aufrufs wieder geldéscht wird.

Die Umgebungen bilden eine Hierarchie, wobei die innerste, lokale
Umgebung normalerweise alle &u3eren Gberdeckt!

Jede Umgebung instanziert einen Namensraum.

28.01.2026 P. Thiemann — Info | 23/35

Sichtbarkeit

FREIBURG

Eine Variable heif3t sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann. Schachte-

lung und

Wird ein Variablenname zum Lesen referenziert, so durchlauft Python die Scope
Hierarchie der Namensrdume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulésen;

ihn in den nicht-lokalen Namensrdumen (die den lokalen Namensraum

umschlie3en) aufzuldsen;

ihn im globalen Namensraum aufzulésen;

ihn im Builtin-Namensraum aufzuldésen.

Dabei heif3t “auflésen” das Auffinden des Werts der Variable in der
zugeordneten Umgebung.

28.01.2026 P. Thiemann — Info | 24/35

i o
Zuweisungen 9
o
8
zI.IJ
S
Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var diirfen erst nach Schachte-
Ausflihrung der Zuweisung erfolgen. o
Ausnahmen werden durch zwei Anweisungen gesteuert:
global var

bewirkt, dass var im globalen Namensraum gesucht wird. Zuweisungen an var
wirken auf die globale Umgebung.

nonlocal var

bewirkt, dass var in einem nicht-lokalen Namensraum gesucht wird, d.h. in den
umgebenden Funktionsdefinitionen. Auch Zuweisungen wirken dort.

Kann ein Name nicht aufgelést werden, dann gibt es eine Fehlermeldung.

28.01.2026 P. Thiemann — Info | 25/35

Ein Beispiel fiir Namensriaume (1)

def scope_test():

def do_local():

spam = "local spam"
def do_nonlocal():

nonlocal spam

spam = '"nonlocal spam"
def do_global():

global spam

spam = "global spam"
spam = "test spam"
do_local()

print ("After local assignment:", spam)

do_nonlocal()

print ("After nonlocal assignment:", spam)

do_global()

print("After global assignment:", spam)

28.01.2026

P. Thiemann — Info |

UNI
FREIBURG

Schachte-
lung und
Scope

26/35

Ein Beispiel fiir Namensridume (2)

UNI
FREIBURG

Schachte-

Python-Interpreter urgund

>>> scope_test()

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
>>> print("In global scope:", spam)

In global scope: global spam

28.01.2026 P. Thiemann — Info | 27/35

3 Closures

FREIBURG

Dekoratoren

Schachte-
lung und
Scope

Closures

28.01.2026 P. Thiemann — Info | 29/35

Closures in Python

UNI
FREIBURG

Eine Closure ist ein anderer Name fir ein Funktionsobjekt. Wenn eine

Funktion lokal definiert wird, enthalt die Closure die Werte der freien Closures
Variablen (nicht-lokale Referenzen).

Definition: Eine Variable tritt frei in einem Funktionsrumpf auf, wenn sie zwar

vorkommt, aber weder in der Parameterliste noch in einer lokalen Zuweisung

gesetzt wird.

28.01.2026 P. Thiemann — Info | 30/35

Closures in Python (1)

UNI
FREIBURG

def add_x(x:float) -> Callable[[float], float]:
def adder(num:float) ->float:
return x + num
the function object for adder is a closure
x 15 a free vartable of adder
return adder

Closures

add_5 = add_x(5); print(add_5)

Ausgabe: <function add_x.<locals>.adder at 0x10d584b80>
print(add_5(10))
Ausgabe: 15

28.01.2026 P. Thiemann — Info | 31/35

Closures in Python (2)

Dasselbe mit einer 1ambda Abstraktion:

def add_x(x:float) -> Callable[[float], float]:

return lambda num: x + num

returns a closure

num 1s a bound variable,

x is a free variable of the lambda

add_6 = add_x(6); print(add_6)

Ausgabe: <function add_x.<locals>.<lambda> at 0x10d5847c0>

print(add_6(10))
Ausgabe: 16

28.01.2026

P. Thiemann — Info |

32/35

Closures

Closures und Lebensdauer

UNI
FREIBURG

Wird eine Funktion mit freien Variablen, wie x in lambda num: x + num als
Ergebnis zurtickgegeben, dann verlangert sich die Lebensdauer der
Umgebung des Aufrufs von add_x und damit von x.

Closures

Wenn die zuriickgegebene Funktion add_6 aufgerufen wird, dann wird diese
Umgebung—und damit der Wert von x zum Zeitpunkt der Konstruktion der
Closure—wieder installiert.

28.01.2026 P. Thiemann — Info | 33/35

Closures in Python (3)

UNI
FREIBURG

Achtung bei der Interaktion von Closures mit Zuweisungen:

def clo() —> Callable[[], int]:
x =0
f lambda : x
x =x + 1

Closures

return f

fx = clo()
print (£x(0))

Ausgabe: 1
Nachfolgende Zuweisungen andern den Wert in der Closure...

28.01.2026 P. Thiemann — Info | 34/35

Zusammenfassung Closures

FREIBURG

Jede Funktion mit freien Variablen wird durch eine Closure reprasentiert.

Innerhalb einer Closure kann mit Hilfe der Anweisungen nonlocal oder
global auf freie Variable schreibend zugegriffen werden.

Wird eine Closure als Ergebnis zuriickgegeben, so verlangert sich die
Lebensdauer der Umgebung(en), in der die Closure erzeugt wurde (die der
umschliessenden Funktionsaufrufe)! Sie bleiben so lange erhalten wie die
Closure zugreifbar ist!

Closures

28.01.2026 P. Thiemann — Info | 35/35

	Dekoratoren
	Funktionsschachtelung, Namensraum und Umgebung
	Closures

