
Informatik I: Einführung in die Programmierung
18. Funktionale Programmierung / Dekoratoren

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann
28.01.2026

Dekoratoren

Schachte-
lung und
Scope

Closures

1 Dekoratoren

28.01.2026 P. Thiemann – Info I 3 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Was ist ein Dekorator?

Ein Dekorator ist eine Funktion, die eine andere Funktion erweitert, ohne diese
selbst zu ändern.
Die Syntax von Dekoratoren (Funktion decorator angewendet auf fun):
@decorator
def fun():

...
Also ist decorator eine Funktion höherer Ordnung:
Ein Dekorator nimmt eine Funktion als Parameter und liefert als Ergebnis wieder
eine Funktion.
Dekoratoren, die uns schon früher begegnet sind: dataclass, property, etc.

28.01.2026 P. Thiemann – Info I 4 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Dekoratoren

Falls der Dekorator wrapper definiert wurde, dann hat
@wrapper
def confused_cat(*args):

pass # do some stuff

die gleiche Bedeutung wie
def confused_cat(*args):

pass # do some stuff
confused_cat = wrapper(confused_cat)

28.01.2026 P. Thiemann – Info I 5 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Beispiele für Dekoratoren: property, staticmethod (1)
decorators.py

@dataclass
class C:

__name : str

def getname(self) -> str:
return self.__name

def setname(self, x: str) -> None:
self.__name = 2 * x
name = property(getname)

def hello() -> None:
print("Hello world")

hello = staticmethod(hello)

lässt sich mittels der @-Syntax schreiben . . .
28.01.2026 P. Thiemann – Info I 6 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Dekoratoren: property, staticmethod (2)

@dataclass
class C:

__name : str

@property
def name(self) -> str:

return self.__name

@name.setter
def name(self, x: str) -> None:
self.__name = 2 * x

@staticmethod
def hello() -> None:

print("Hello world")

28.01.2026 P. Thiemann – Info I 7 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Motivation

Betrachte die Funktion
def mult (x:float, y:float) -> float:

return x * y

Zur Fehlersuche möchten wir folgendes Feature:

Aufgabe
Gib bei jedem Aufruf den Namen der Funktion mit ihren Argumenten aus.

28.01.2026 P. Thiemann – Info I 8 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Definition eines Dekorators (1)

Naiver Ansatz: Ändere die Funktionsdefinition!
verbose = True
def mult(x:float, y:float) -> float:

if verbose:
print("--- a nice header ---------")
print("--> call mult with args: %s, %s" % x, y)

res = x * y
if verbose:

print("--- a nice footer ---------")
return res

Schlecht: durch die Änderung der Funktionsdefinition können neue Fehler entstehen!
Besser: eine modulare Lösung, bei der die Funktionsdefinition unverändert bleiben kann.

28.01.2026 P. Thiemann – Info I 9 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Definition eines Dekorators (2)
Wiederverwendbare modulare Lösung mit Dekorator

def with_trace(f):
def wrapper(*args, **kwargs):

print("--- a nice header ---------")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))
res = f(*args, **kwargs)
print("--- a nice footer ---------")
return res

print("--> wrapper now defined")
return wrapper

@with_trace
def mult(x:float, y:float) -> float:

return x * y

28.01.2026 P. Thiemann – Info I 10 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Definition eines Dekorators (3)

Aufgabe 2
Wie lange dauert die Ausführung eines Funktionsaufrufs?

import time

def timeit(f):
def wrapper(*args, **kwargs):

print("--> Start timer")
t0 = time.time()
res = f(*args, **kwargs)
delta = time.time() - t0
print("--> End timer: %s sec." % delta)
return res

return wrapper

28.01.2026 P. Thiemann – Info I 11 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Antwort

@timeit
def mult(x:int, y:int) -> int:

return x * y

print(mult(6, 7))

Ausgabe:

--> Start timer ---------
--> End timer: 1.9073486328125e-06 sec.
42

28.01.2026 P. Thiemann – Info I 12 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Definition eines Dekorators (4)
Dekoratoren hintereinander schalten

decorators.py
@with_trace
@timeit
def sub(x:float, y:float) -> float:

return x - y

print(sub(3, 5))

liefert z.B.:
decorators.py
--- a nice header ---------
--> call wrapper with args: 3,5
--> Start timer
--> End timer: 9.5367431640625e-07 sec.
--- a nice footer ---------
-2

28.01.2026 P. Thiemann – Info I 13 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Dekoratoren: docstring und __name__ (1)

Beim Dekorieren gehen interne Attribute wie Name und docstring verloren.
Ein guter Dekorator muss das wieder richtigstellen:
def with_trace(f):

def wrapper(*args, **kwargs):
print("--- a nice header ---------")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))
res = f(*args, **kwargs)
print("--- a nice footer ---------")
return res

wrapper.__name__ = f.__name__
wrapper.__doc__ = f.__doc__
return wrapper

28.01.2026 P. Thiemann – Info I 14 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Dekoratoren: docstring und __name__ (2)

Dieses Problem kann durch den Dekorator functools.wraps gelöst werden:
import functools
def with_trace(f):

@functools.wraps(f)
def wrapper(*args, **kwargs):

print("--- a nice header ---------")
print("--> call %s with args: %s" %

(f.__name__, ",".join(map(str, args))))
res = f(*args, **kwargs)
print("--- a nice footer ---------")
return res

return wrapper

28.01.2026 P. Thiemann – Info I 15 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Dekoratoren mit Parametern (1)

Aufgabe: beschränke alle Stringergebnisse auf 5 Zeichen
def trunc(f):

def wrapper(*args, **kwargs):
res = f(*args, **kwargs)
return res[:5]

return wrapper

@trunc
def data():

return 'foobar'

Ein aktueller Aufruf:
print(data())

liefert fooba
28.01.2026 P. Thiemann – Info I 16 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Dekoratoren mit Parametern (2)

Warum 5 Zeichen? Manchmal sollen es 3 sein, manchmal 6!
def limit(length:int):

def decorator(f):
def wrapper(*args, **kwargs):

res = f(*args, **kwargs)
return res[:length]

return wrapper
return decorator

@limit(3)
def data_a():

return 'limit to 3'

@limit(6)
def data_b():

return 'limit to 6'

28.01.2026 P. Thiemann – Info I 17 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Parametrische Dekoratoren (3)

Der Aufruf von limit(3) erzeugt einen Dekorator, der auf data_a
angewandt wird; limit(6) wenden wir auf data_b an:
print(data_a())
liefert: lim
print(data_b())
liefert: limit
Aber was passiert genau bei der geschachtelten Definition von Funktionen?

28.01.2026 P. Thiemann – Info I 18 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

2 Funktionsschachtelung, Namensraum und Umgebung

28.01.2026 P. Thiemann – Info I 20 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Geschachtelte Funktionsdefinitionen

Im letzten Abschnitt sind uns geschachtelte Funktionsdefinitionen begegnet.
Dabei stellt sich die Frage, auf welche Bindung sich die Verwendung einer
Variablen bezieht.
Dafür müssen wir die Begriffe Namensraum (Scope) und Umgebung
verstehen.
Und wir müssen uns mit der Lebensdauer einer Variablen auseinandersetzen.

28.01.2026 P. Thiemann – Info I 21 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Namensraum

Der Namensraum (Scope) ist ein statisches Konzept. Er zeigt an, in welchen
Teilen eines Programms ein definierter Name sichtbar und verwendbar ist.
Ein Name komt “in scope” durch

Definition einer Variable, Funktion oder Klasse
Import eines Moduls

und ist verfügbar bis zum Ende des Blocks, in dem er definiert wurde.
Z.B. der lokale Namensraum einer Funktionsdefinition enthält Parameter und
lokale Definitionen (Variable, Funktionen, Klassen, . . .). Er endet am Ende
des Funktionsrumpfes.
Namensräume bilden eine Hierarchie entsprechend der Schachtelung von
Funktions- und Klassendefinitionen.

28.01.2026 P. Thiemann – Info I 22 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Umgebungen

Eine Umgebung ist ein dynamisches Konzept (d.h. zur Laufzeit).
Sie ist eine Abbildung von Namen auf Werte.

Built-in-Umgebung (__builtins__) mit allen vordefinierten Variablen
Umgebung von Modulen, die importiert werden
globale Umgebung (des Moduls __main__)
lokale Umgebung innerhalb eines Funktionsaufrufs (vgl. Kellerrahmen)
diese können geschachtelt sein.

Jeder Aufruf einer Funktion erzeugt eine neue lokale Umgebung, die
normalerweise am Ende des Aufrufs wieder gelöscht wird.
Die Umgebungen bilden eine Hierarchie, wobei die innerste, lokale
Umgebung normalerweise alle äußeren überdeckt!
Jede Umgebung instanziert einen Namensraum.

28.01.2026 P. Thiemann – Info I 23 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Sichtbarkeit

Eine Variable heißt sichtbar in dem Teil eines Programms, in dem die Variable
ohne die Punkt-Notation referenziert werden kann.
Wird ein Variablenname zum Lesen referenziert, so durchläuft Python die
Hierarchie der Namensräume und versucht der Reihe nach:

ihn im lokalen Namensraum aufzulösen;
ihn in den nicht-lokalen Namensräumen (die den lokalen Namensraum
umschließen) aufzulösen;
ihn im globalen Namensraum aufzulösen;
ihn im Builtin-Namensraum aufzulösen.

Dabei heißt “auflösen” das Auffinden des Werts der Variable in der
zugeordneten Umgebung.

28.01.2026 P. Thiemann – Info I 24 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Zuweisungen

Gibt es eine Zuweisung var = ... im aktuellen Scope, so wird von einem
lokalen Namen ausgegangen. Referenzen auf var dürfen erst nach
Ausführung der Zuweisung erfolgen.
Ausnahmen werden durch zwei Anweisungen gesteuert:

global var
bewirkt, dass var im globalen Namensraum gesucht wird. Zuweisungen an var
wirken auf die globale Umgebung.
nonlocal var
bewirkt, dass var in einem nicht-lokalen Namensraum gesucht wird, d.h. in den
umgebenden Funktionsdefinitionen. Auch Zuweisungen wirken dort.

Kann ein Name nicht aufgelöst werden, dann gibt es eine Fehlermeldung.

28.01.2026 P. Thiemann – Info I 25 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Ein Beispiel für Namensräume (1)

def scope_test():
def do_local():

spam = "local spam"
def do_nonlocal():

nonlocal spam
spam = "nonlocal spam"

def do_global():
global spam
spam = "global spam"

spam = "test spam"
do_local()
print("After local assignment:", spam)
do_nonlocal()
print("After nonlocal assignment:", spam)
do_global()
print("After global assignment:", spam)

28.01.2026 P. Thiemann – Info I 26 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Ein Beispiel für Namensräume (2)

Python-Interpreter
>>> scope_test()
After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
>>> print("In global scope:", spam)
In global scope: global spam

28.01.2026 P. Thiemann – Info I 27 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

3 Closures

28.01.2026 P. Thiemann – Info I 29 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Closures in Python

Eine Closure ist ein anderer Name für ein Funktionsobjekt. Wenn eine
Funktion lokal definiert wird, enthält die Closure die Werte der freien
Variablen (nicht-lokale Referenzen).
Definition: Eine Variable tritt frei in einem Funktionsrumpf auf, wenn sie zwar
vorkommt, aber weder in der Parameterliste noch in einer lokalen Zuweisung
gesetzt wird.

28.01.2026 P. Thiemann – Info I 30 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Closures in Python (1)

def add_x(x:float) -> Callable[[float], float]:
def adder(num:float) ->float:

return x + num
the function object for adder is a closure
x is a free variable of adder
return adder

add_5 = add_x(5); print(add_5)

Ausgabe: <function add_x.<locals>.adder at 0x10d584b80>
print(add_5(10))
Ausgabe: 15

28.01.2026 P. Thiemann – Info I 31 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Closures in Python (2)

Dasselbe mit einer lambda Abstraktion:
def add_x(x:float) -> Callable[[float], float]:

return lambda num: x + num
returns a closure
num is a bound variable,
x is a free variable of the lambda

add_6 = add_x(6); print(add_6)

Ausgabe: <function add_x.<locals>.<lambda> at 0x10d5847c0>
print(add_6(10))
Ausgabe: 16

28.01.2026 P. Thiemann – Info I 32 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Closures und Lebensdauer

Wird eine Funktion mit freien Variablen, wie x in lambda num: x + num als
Ergebnis zurückgegeben, dann verlängert sich die Lebensdauer der
Umgebung des Aufrufs von add_x und damit von x.
Wenn die zurückgegebene Funktion add_6 aufgerufen wird, dann wird diese
Umgebung—und damit der Wert von x zum Zeitpunkt der Konstruktion der
Closure—wieder installiert.

28.01.2026 P. Thiemann – Info I 33 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Closures in Python (3)

Achtung bei der Interaktion von Closures mit Zuweisungen:
def clo() -> Callable[[], int]:

x = 0
f = lambda : x
x = x + 1
return f

fx = clo()
print(fx())

Ausgabe: 1
Nachfolgende Zuweisungen ändern den Wert in der Closure. . .

28.01.2026 P. Thiemann – Info I 34 / 35

Dekoratoren

Schachte-
lung und
Scope

Closures

Zusammenfassung Closures

Jede Funktion mit freien Variablen wird durch eine Closure repräsentiert.
Innerhalb einer Closure kann mit Hilfe der Anweisungen nonlocal oder
global auf freie Variable schreibend zugegriffen werden.
Wird eine Closure als Ergebnis zurückgegeben, so verlängert sich die
Lebensdauer der Umgebung(en), in der die Closure erzeugt wurde (die der
umschliessenden Funktionsaufrufe)! Sie bleiben so lange erhalten wie die
Closure zugreifbar ist!

28.01.2026 P. Thiemann – Info I 35 / 35

	Dekoratoren
	Funktionsschachtelung, Namensraum und Umgebung
	Closures

