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Es gibt verschiedene Programmierparadigmen oder Programmierstile.
Imperative Programmierung beschreibt, wie etwas erreicht werden soll.
Deklarative Programmierung beschreibt, was erreicht werden soll.
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Imperative Programmierung SE
Zum Programm gehort ein Zustand (aktuelle Werte der Variablen, oo
Laufzeitkeller, etc), der sich wahrend der Ausfihrung andert. rung

Denkansatz beim Programmieren: Modifikation des Zustands.
Programm besteht aus Anweisungen (Zuweisung, ...).
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Imperative Programmierung Du
Zum Programm gehdrt ein Zustand (aktuelle Werte der Variablen, oo
Laufzeitkeller, etc), der sich wahrend der Ausfihrung andert. rung

Denkansatz beim Programmieren: Modifikation des Zustands.
Programm besteht aus Anweisungen (Zuweisung, ...).

Organisation von imperativen Programmen

Prozedural: Die Aufgabe wird in kleinere Teile — Prozeduren — zerlegt, die auf
den Daten arbeiten. (Sprachen: Pascal, C, ...)

Objekt-orientiert: Die Aufgabe wird in Klassen zerlegt, die lokal Daten und die
Methoden darauf enthalten. (Sprachen: Smalltalk, Eiffel, Java, ...)
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Deklarative Programmierparadigmen
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. - Funktionale
Deklarative Programmierung Progame
Keine explizite Bearbeitung eines Berechnungszustands.

Logische Programmierung (LP) beschreibt die Aufgabe durch logische
Formeln: Prolog, constraint programming, ASP.

Funktionale Programmierung (FP) beschreibt die Aufgabe durch
mathematische Funktionen: Haskell, OCaml, Racket, Clojure, Lisp

Abfragesprachen wie SQL oder XQuery sind ebenfalls deklarativ und bauen
auf der Relationenalgebra bzw. der XML-Algebra auf.
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Eigenschaften funktionaler Programmierung

Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. fJL’S'amm'e'
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. fJL’S'amm'e'

Keine Anweisungen, sondern nur Ausdricke.
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. rpurr?gramm'e'

Keine Anweisungen, sondern nur Ausdricke.
Auch Funktionen sind als Ausdriicke definierbar.
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. rpurr?gramm'e'

Keine Anweisungen, sondern nur Ausdricke.
Auch Funktionen sind als Ausdrucke definierbar.
In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. rpurr?gramm'e'

Keine Anweisungen, sondern nur Ausdricke.
Auch Funktionen sind als Ausdrucke definierbar.

In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.
Eine Variable erhalt zu Beginn ihren Wert, der sich nicht mehr &ndert.
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. rpurr?gramm'e'

Keine Anweisungen, sondern nur Ausdricke.
Auch Funktionen sind als Ausdrucke definierbar.
In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.

Eine Variable erhalt zu Beginn ihren Wert, der sich nicht mehr &ndert.
Alle Datenstrukturen sind unveranderlich.
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. rpurr?gramm'e'

Keine Anweisungen, sondern nur Ausdricke.

Auch Funktionen sind als Ausdriicke definierbar.

In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.

21.01.2026

Eine Variable erhalt zu Beginn ihren Wert, der sich nicht mehr &ndert.

Alle Datenstrukturen sind unveranderlich.

Referentielle Transparenz: Eine Funktion liefert bei gleichen Argumenten immer
das gleiche Ergebnis.
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Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente 5%
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. 2’§§'amm'e'

Keine Anweisungen, sondern nur Ausdricke.
Auch Funktionen sind als Ausdrucke definierbar.
In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.
Eine Variable erhalt zu Beginn ihren Wert, der sich nicht mehr &ndert.
Alle Datenstrukturen sind unveranderlich.
Referentielle Transparenz: Eine Funktion liefert bei gleichen Argumenten immer
das gleiche Ergebnis.
Die meisten funktionalen Sprachen besitzen ein starkes statisches
Typsystem, sodass zur Laufzeit kein TypeError auftreten kann.
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Attribute von Typsystemen
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Stark vs. schwach
In einem starken Typsystem besitzt jeder Wert einen unveranderlichen Typ. Programmie-

Funktionale

rung

In einem schwachen Typsystem kann ein Wert je nach Kontext
unterschiedliche Typen annehmen.

Statisch vs. dynamisch
In einem statischen Typsystem wird vor Ausfiihrung eines Programms eine
TypuUberprtfung durchgefihrt. Das Programm kommt nur zur Ausfiihrung,
wenn diese Prifung erfolgreich ist.
In einem dynamischen Typsystem erfolgt die Typliberprifung zur Laufzeit,
vor Ausfiihrung jeder Operation.
Flexibler als statische Typuberpriifung, aber meist weniger effizient!
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FP in Python

Funktionale Programmierung in
Python
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FP in Python
Funktionen werden durch Objekte reprasentiert.
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FP in Python
Funktionen werden durch Objekte reprasentiert.

Funktionen héherer Ordnung werden voll unterstitzt.
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FP in Python
Funktionen werden durch Objekte reprasentiert.

Funktionen héherer Ordnung werden voll unterstitzt.
Python besitzt ein starkes dynamisches Typsystem.
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Referentielle Transparenz kann in Python verletzt werden.

Abhilfe: lokale Variablen nur einmal zuweisen, keine globalen Variablen
nutzen, keine Mutables &ndern.

Die meisten Beispiele sind “mostly functional” in diesem Sinn.
Vereinfacht Uberlegungen zum aktuellen Zustand der Berechnung.

FP in Python
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Referentielle Transparenz kann in Python verletzt werden.

Abhilfe: lokale Variablen nur einmal zuweisen, keine globalen Variablen
nutzen, keine Mutables &ndern.

Die meisten Beispiele sind “mostly functional” in diesem Sinn.

Vereinfacht Uberlegungen zum aktuellen Zustand der Berechnung.
Rekursion.

Python limitiert die Rekursionstiefe, wahrend funktionale Sprachen beliebige
Rekursion erlauben und Endrekursion automatisch in Schleifen umwandeln.

FP in Python
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Referentielle Transparenz kann in Python verletzt werden.

Abhilfe: lokale Variablen nur einmal zuweisen, keine globalen Variablen
nutzen, keine Mutables &ndern.

Die meisten Beispiele sind “mostly functional” in diesem Sinn.
Vereinfacht Uberlegungen zum aktuellen Zustand der Berechnung.

FP in Python

Rekursion.
Python limitiert die Rekursionstiefe, wahrend funktionale Sprachen beliebige
Rekursion erlauben und Endrekursion automatisch in Schleifen umwandeln.

Ausdricke.
Python erlaubt bei 1lambda-Funktionen nur einen Ausdruck statt eines Blocks
von Anweisungen.
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Eine Funktion ist ein Python-Objekt. Su
>>> def simple() -> None:
print('invoked')
e Funktionen
>>> simple # keine Klammern -> Funktionsobjekt definieren
<function simple at 0x109ececal> verwenden
>>> simple() # mit Klammern -> Funktionsaufruf
invoked
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Eine Funktion ist ein Python-Objekt. Su
>>> def simple() -> None:
print('invoked')
e Funktionen
>>> simple # keine Klammern -> Funktionsobjekt definieren
<function simple at 0x109eceb60> verwenden
>>> simple() # mit Klammern -> Funktionsaufruf
invoked

Es kann zugewiesen werden, als Argument Ubergeben werden und als
Funktionsresultat zuriickgegeben werden.
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Eine Funktion ist ein Python-Objekt. Su
>>> def simple() -> None:
print ('invoked')
e Funktionen
>>> simple  # keine Klammern -> Funktionsobjekt definieren
<function simple at 0x109eceac0> verwenden
>>> simple() # mit Klammern -> Funktionsaufruf
invoked

Es kann zugewiesen werden, als Argument Ubergeben werden und als
Funktionsresultat zuriickgegeben werden.

Und es ist aufrufbar vom Typ Callable...
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Funktionsverwendung

>>> from typing import Callable
>>> spam = simple; print(spam)
<function simple at 0x109eceac0>

fun(); fun()

>>> call_twice(spam) # keine Klammern hinter spam
invoked
invoked
>>> def gen_fun() -> Callable[[], Nonel:
return spam

>>> gen_fun()

<function simple at 0x109eceac0>
>>> gen_fun() ()

invoked

>>> def call_twice(fun : Callable[[],Nonel) -> Nonme:
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Lambda-Notation
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Funktionen mit Lambda-Notation definieren
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Der 1ambda-Operator definiert eine namenlose Funktion, deren Rumpf durch
einen Ausdruck gegeben ist.

>>> lambda x, y: x * y # multipliziere 2 Zahlen
<function <lambda> at 0x109eceb60>

>>> (lambda x, y: x * y)(3, 8) Lambda-
2 Notation
>>> mul = lambda x, y: X * y
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Der Typ Callable
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Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:

>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Lambda-
Notation
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Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:

>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Der allgemeine Typ einer Funktion ist Callable [ArgTypes, RetTypel] mit Lambda-

Notation
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Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:

>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Der allgemeine Typ einer Funktion ist Callable [ArgTypes, RetTypel] mit Lambd
ArgTypes ist die Liste der Typen der Parameter,
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Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:

>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Der allgemeine Typ einer Funktion ist Callable [ArgTypes, RetTypel] mit Lambda-

Notation
ArgTypes ist die Liste der Typen der Parameter,
RetType ist der Typ des Riuckgabewerts.
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Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:

>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Der allgemeine Typ einer Funktion ist Callable [ArgTypes, RetTypel] mit Lambda-

Notation
ArgTypes ist die Liste der Typen der Parameter,
RetType ist der Typ des Riuckgabewerts.

Wird auch fir Funktionsparameter verwendet, die selbst Funktionen sind.
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Verwendung von Lambda-Funktionen (1)

>>> def mul2(x: int, y: int) -> int:
return x * y

>>> mul(4, 5) == mul2(4, 5)
True
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mul? ist dquivalent zu mul!
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>>> def mul2(x: int, y: int) -> int:

return x * y
>>> mul(4, 5) == mul2(4, 5)
True
mul? ist dquivalent zu mul! Lambda-

Notation

Lambda-Funktionen werden hauptséchlich als Argumente fiir Funktionen
(héherer Ordnung) benutzt.
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>>> def mul2(x: int, y: int) -> int:
return x * y

>>> mul(4, 5) == mul2(4, 5)
True

mul? ist dquivalent zu mul! Lambda-
Notation

Lambda-Funktionen werden hauptséchlich als Argumente fiir Funktionen
(héherer Ordnung) benutzt.

Solche Funktionen werden oft nur einmal verwendet und sind kurz, sodass
sich die Vergabe eines Namens nicht lohnt.
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Verwendung von Lambda-Funktionen (2): Funktionsfabriken
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Funktionen kénnen Funktionen zurtickgeben. Auch das Ergebnis einer
Funktion kann durch einen Lambda-Ausdruck definiert werden.

Lambda-
Notation
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Verwendung von Lambda-Funktionen (2): Funktionsfabriken
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Funktionen kénnen Funktionen zurtickgeben. Auch das Ergebnis einer
Funktion kann durch einen Lambda-Ausdruck definiert werden.

Beispiel: Eine Funktion, die einen Addierer erzeugt, der immer eine
vorgegebene Konstante addiert:
>>> def gen_adder(c : int) -> Callable[[int], int]:

return lambda x: x + C Lambda-
Notation

>>> add6: Callable[[int], int] = gen_adder(5)
>>> add5(15)
20
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Nutzliche Funktionen hdherer
Ordnung:

map, filter und reduce
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map: Anwendung einer Funktion auf Iteratierbares
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map hat zwei Argumente: eine Funktion und ein iterierbares Objeki.

map, filter
und reduce
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map: Anwendung einer Funktion auf Iteratierbares
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map hat zwei Argumente: eine Funktion und ein iterierbares Objeki.
map wendet die Funktion auf jedes Element der Eingabe an und liefert die
Funktionswerte als lterator ab.

>>> list(map(lambda x: x**2, range(10)))
(o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

map, filter
und reduce
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map: Anwendung einer Funktion auf Iteratierbares

map hat zwei Argumente: eine Funktion und ein iterierbares Objeki.

map wendet die Funktion auf jedes Element der Eingabe an und liefert die
Funktionswerte als lterator ab.

>>> list(map(lambda x: x**2, range(10)))
(o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Eine getypte Definition fir map:

def map[A, B](f : Callable[[A], B]
, xs : Iterable[A]) -> Iterator[B]:
for x in xs:
yield £ (x)

21.01.2026 P. Thiemann — Info | 25/52
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map, filter
und reduce



Anwendungsbeispiel fiir map

Wir wollen eine Liste c_list von Temperaturen von Celsius nach Fahrenheit
konvertieren. Nach dem Muster zur Verarbeitung von Sequenzen:

def ctof(temp : float) -> float:
return ((9 / 5) * temp + 32)
def list_ctof(cl : list[float]) -> list[float]:

result = []
for ¢ in cl: .
result += [Ctof (C) ] und reduce

return result
c_list = [16, 3, -2, -1, 2, 4]
f list = list_ctof(c_list)
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Anwendungsbeispiel fiir map (2)
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Mit map wesentlich knapper:

f_list = list(map(ctof, c_list))

Oder mit einer lambda Funktion:
f_list = list(map(lambda c: 1.8 * ¢ + 32, c_list))

map, filter
und reduce
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map mit mehreren Eingaben
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Die eingebaute map-Funktion kann auch mit einer k-stelligen Funktion und k
weiteren iterierbaren Eingaben aufgerufen werden (k > 0).

map, filter
und reduce
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map mit mehreren Eingaben
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Die eingebaute map-Funktion kann auch mit einer k-stelligen Funktion und k
weiteren iterierbaren Eingaben aufgerufen werden (k > 0).

Fir jeden Funktionsaufruf wird ein Argument von jeder der k Eingaben
angefordert. Stop, falls eine der Eingaben keinen Wert mehr liefert.

map, filter
und reduce
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Die eingebaute map-Funktion kann auch mit einer k-stelligen Funktion und k &
weiteren iterierbaren Eingaben aufgerufen werden (k > 0).
Fir jeden Funktionsaufruf wird ein Argument von jeder der k Eingaben
angefordert. Stop, falls eine der Eingaben keinen Wert mehr liefert.
Ein Beispiel (vgl. convolute0)
def convolute 0(
xs : list[float], ys : list[float]
) -> float: map, filter
return sum(map(lambda x, y: x*y, e reduce
Xs,

reversed(ys)))
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Der wirkliche Typ von map
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Der Typ der eingebauten map Funktion kann mit den bisherigen
Typannotationen nicht hingeschrieben werden.
Wir brauchen eine unbekannten Anzahl von Typvariablen, die sich nach der
Zahl der Argumente richtet.
def map[*As, B](f : Callable[[*As], B], #*xs : Iterable[*As]

) -> Iterator[B]:

map, filter
und reduce

Dabei ist *As eine Tupeltypvariable, die fir ein Tupel von Typen steht. Sie
kann nur zusammen mit Tupelunpacking (wie im Beispiel) verwendet werden.
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Zip aus map
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Ein einfaches zip mit map programmiert:

>>> list(map(lambda x, y: (x, y),
e range(5), range(0, 50, 10)))
[(0, O), (1, 10), (2, 20), (3, 30), (4, 40)]

map, filter
und reduce
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Ein einfaches zip mit map programmiert:

>>> list(map(lambda x, y: (x, y),
e range(5), range(0, 50, 10)))
[(0, O), (1, 10), (2, 20), (3, 30), (4, 40)]

Das originale zip funktioniert auch mit > 2 Argumenten...

map, filter
und reduce
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Zip aus map
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Ein einfaches zip mit map programmiert:

>>> list(map(lambda x, y: (x, y),
e range(5), range(0, 50, 10)))
[(0, O), (1, 10), (2, 20), (3, 30), (4, 40)]

Das originale zip funktioniert auch mit > 2 Argumenten...
Volle Funktionalitat von zip selbst gemacht: pap, £ilter

def myzip[*As] (xargs : Iterable[*As]) -> Iterator[tuple[*As]]: e reduce
return map(lambda *args: args, *args)
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There IS 110 magic.

There Is oniy kinowledge.
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Wiederholung: Variable Parameterlisten
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Eine Funktion kann eine variable Zahl von Argumenten akzeptieren.
Schreibweise dafir
def func(al, a2, a3, *args):
for a in args:
pass # process arguments 4, 5,
goo(al, *args)
func muss mit mindestens drei Argumenten aufgerufen werden.

Weitere Argumente werden als Tupel zusammengefasst der Variablen args wap, £i1ver
zugewiesen. und reduce

Der *-Operator kann auch in einer Liste von Ausdriicken auf ein iterierbares
Argument angewendet werden.

Er fugt die Elemente aus dem lterator der Liste hinzu.
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filter: Filtert unpassende Objekte aus
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filter erwartet als Argumente eine Funktion mit einem Parameter und ein
iterierbares Objeki.

map, filter
und reduce
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filter: Filtert unpassende Objekte aus
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UNI

filter erwartet als Argumente eine Funktion mit einem Parameter und ein
iterierbares Objeki.

Es liefert einen Iterator zurlck, der die Objekte aufzahlt, bei denen die
Funktion nicht False (oder dquivalente Werte) zurlck gibt.

>>> 1list(filter(lambda x: x > 0, [0, 3, -7, 9, 21))
[3, 9, 2]

map, filter
und reduce
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filter: Filtert unpassende Objekte aus

i)
=

UNI
FREIBURG

filter erwartet als Argumente eine Funktion mit einem Parameter und ein
iterierbares Objeki.

Es liefert einen Iterator zurlck, der die Objekte aufzahlt, bei denen die
Funktion nicht False (oder dquivalente Werte) zurlck gibt.

>>> 1list(filter(lambda x: x > 0, [0, 3, -7, 9, 21))
[3, 9, 2]

Eine Definition dazu map, £ilter

def filter[A]l(p : Callable[[A], booll, xs: Iterable[A]) -> Iterator[A]: und reduce
for x in xs:
if p(x):
yield x
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partial: Partielle Anwendung von Funktionen
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from functools import partial

partial (£, *args, **kwargs) nimmt eine Funktion f, Argumente fir f
und Keywordargumente fur f

Ergebnis: Funktion, die die verbleibenden Argumente und Keywordargumente
far f nimmt und dann f mit sdmtlichen Argumenten aufruft.

int besitzt einen Keywordparameter base=, mit dem die Basis der
Zahlendarstellung festgelegt wird. map, filter

und reduce
int ("10011", base=2) liefert 19
Definiere int2 = partial (int, base=2)
assert int2 ("10011") == 19
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reduce: Reduktion eines iterierbaren Objekts auf ein Element
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>>> from functools import reduce

reduce wendet eine Funktion & mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.

map, filter
und reduce
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reduce: Reduktion eines iterierbaren Objekts auf ein Element
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>>> from functools import reduce

reduce wendet eine Funktion & mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.

Der Startwert fungiert als akkumulierender Parameter:

map, filter
und reduce
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reduce: Reduktion eines iterierbaren Objekts auf ein Element
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>>> from functools import reduce

reduce wendet eine Funktion & mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.

Der Startwert fungiert als akkumulierender Parameter:

Bei jedem Iterationsschritt wird der Akkumulator ersetzt durch
(alter Akkumulator & néchster lterationswert).

map, filter
und reduce
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reduce: Reduktion eines iterierbaren Objekts auf ein Element
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74
UNI

>>> from functools import reduce

reduce wendet eine Funktion & mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.
Der Startwert fungiert als akkumulierender Parameter:

Bei jedem Iterationsschritt wird der Akkumulator ersetzt durch

(alter Akkumulator & néchster lterationswert).

Der finale Wert des Akkumulators ist das Ergebnis.

map, filter
und reduce
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reduce: Reduktion eines iterierbaren Objekts auf ein Element

>>> from functools import reduce

)
o
1
[T}
o
[~

UNI

reduce wendet eine Funktion & mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.

Der Startwert fungiert als akkumulierender Parameter:
Bei jedem Iterationsschritt wird der Akkumulator ersetzt durch
(alter Akkumulator & néchster lterationswert).
Der finale Wert des Akkumulators ist das Ergebnis.

Falls kein Startwert angegeben wird, verwende das erste Element der lteration.

>>> from typing import Iterable

map, filter
>>> reduce(lambda x, y: x * y, range(l, 5)) und reduce
24

>>> def product(it: Iterable[float]) -> float:
return reduce (lambda x,y: x*y, it, 1)
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Anwendung von reduce (1)
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>>> def to_dict(d: dict[int,int], key:int) -> dict[int,int]:
d[key] = key**2
return d

>>> reduce (to_dict, range(5), {})
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

map, filter
und reduce
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Anwendung von reduce (2)
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Was genau wird da schrittweise reduziert?

map, filter
und reduce
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Anwendung von reduce (2)

UNI
FREIBURG

Was genau wird da schrittweise reduziert?

map, filter

{0:0,1:1,2:4,3:9 und reduce

{0:0,1:1,2:4,3:9, 4: 16}
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Einschub: Der echte Reduktionsoperator ist parallel!

o
+4
D
m
w
[+ 4
[

UNI

Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel!
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Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
Das echte reduce(®,[Xg, - - -,Xm_1]) rechnet parallel und zwar so:

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel!

Pythons reduce ist ein sogenannter Fold Operator.

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Das echte reduce(®,[Xg, - - -,Xm_1]) rechnet parallel und zwar so:
Arbeitet auf einem Array mit m = 2" Elementen.
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https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Einschub: Der echte Reduktionsoperator ist parallel!

Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
Das echte reduce(®,[Xg, - - -,Xm_1]) rechnet parallel und zwar so:

Arbeitet auf einem Array mit m = 2" Elementen.
Parameter ist assoziative Funktion .
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https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Einschub: Der echte Reduktionsoperator ist parallel!

Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
Das echte reduce(®,[Xg, - - -,Xm_1]) rechnet parallel und zwar so:

Arbeitet auf einem Array mit m = 2" Elementen.
Parameter ist assoziative Funktion .
Berechnet r = ((xo ®x1) ®X2) -+ - B Xm_1-
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https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Einschub: Der echte Reduktionsoperator ist parallel!
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Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
Das echte reduce(®,[Xg, - - -,Xm_1]) rechnet parallel und zwar so:

Arbeitet auf einem Array mit m = 2" Elementen.
Parameter ist assoziative Funktion .
Berechnet r = ((xo ®x1) ®X2) -+ - B Xm_1-
map, filter

Anstatt r mit ¢-Operationen in m — 1 Schritten zu berechnen ... und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2)
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Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m — 1 Operationen @).

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2) 9
_a_
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Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m — 1 Operationen @).
Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2) 9
_a_
zl.u
=1

Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m — 1 Operationen @).
Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-

D.h. m/2 Operationen parallel in einem Schritt!

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2)
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Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m — 1 Operationen @).
Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-
D.h. m/2 Operationen parallel in einem Schritt!

Dann: X0, X4 s Xm—4 < (Xo B X2),(Xa ©Xp), ..., Xm—4 D Xm—2).

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2)
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Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m—1 Operationen &).

Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-
D.h. m/2 Operationen parallel in einem Schritt!

Dann: X0,X4y - Xm—4 < (Xo D X2),(X4 BXe),- .., (Xm_a DB Xm_2).
Jetzt m/4 Operationen parallel in einem Schritt!

map, filter
und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2)
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Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m—1 Operationen &).

Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-
D.h. m/2 Operationen parallel in einem Schritt!

Dann: X0,X4y - Xm—4 < (Xo D X2),(X4 BXe),- .., (Xm_a DB Xm_2).
Jetzt m/4 Operationen parallel in einem Schritt!

Dann weiter so bis zum Ergebnis Xo < (Xo ® Xm/2)-

map, filter
und reduce

21.01.2026 P. Thiemann — Info | 39/52



Einschub: Der echte Reduktionsoperator ist parallel (2)
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Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m—1 Operationen &).

Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-
D.h. m/2 Operationen parallel in einem Schritt!

Dann: X0,X4y - Xm—4 < (Xo D X2),(X4 BXe),- .., (Xm_a DB Xm_2).
Jetzt m/4 Operationen parallel in einem Schritt!

Dann weiter so bis zum Ergebnis Xo < (Xo ® Xm/2)-

map, filter

. in n =log, m Schritten und reduce
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Einschub: Der echte Reduktionsoperator ist parallel (2) 5 9
| 2
5"
=1
Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m — 1 Operationen @).
Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-

D.h. m/2 Operationen parallel in einem Schritt!
Dann: X0,X4y - Xm—4 < (Xo D X2),(X4 BXe),- .., (Xm_a DB Xm_2).
Jetzt m/4 Operationen parallel in einem Schritt!
Dann weiter so bis zum Ergebnis Xo < (Xo ® Xm/2)-
map, filter

. in n =log, m Schritten und reduce

Falls m keine Zweierpotenz, werden fehlende Argumente durch die (Rechts-)
Einheit von & ersetzt.
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Komprehensionen

Komprehen-
sionen
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Listen-Komprehension

Komprehensionen kénnen Listen deklarativ und kompakt beschreiben.

UNI
FREIBURG

Komprehen-
sionen
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Listen-Komprehension

UNI
FREIBURG

Komprehensionen kénnen Listen deklarativ und kompakt beschreiben.
Inspiriert von der mathematischen Mengenschreibweise:
{xeU| ¢(x)} (alle x aus U, die die Bedingung ¢ erfillen).
Beispiel:
>>> [str(x) for x in range(10) if x % 2 == 0]
[vol s |2v s |4| s ’6' s '8’]

Komprehen-
sionen
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Listen-Komprehension

Komprehensionen kénnen Listen deklarativ und kompakt beschreiben.

FREIBURG

Inspiriert von der mathematischen Mengenschreibweise:
{xeU| ¢(x)} (alle x aus U, die die Bedingung ¢ erfillen).
Beispiel:

>>> [str(x) for x in range(10) if x % 2 == 0]
[vol, |2v’ |4|’ ’6', '8’]

Bedeutung: Erstelle eine Liste aus allen str(x), wobei x Uber das iterierbare
Objekt range (10) lauft und nur die geraden Zahlen berlcksichtigt werden.

Komprehen-
sionen
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Listen-Komprehension

Komprehensionen kénnen Listen deklarativ und kompakt beschreiben.

FREIBURG

Inspiriert von der mathematischen Mengenschreibweise:
{xeU| ¢(x)} (alle x aus U, die die Bedingung ¢ erfillen).
Beispiel:

>>> [str(x) for x in range(10) if x % 2 == 0]
[vol, |2v’ |4|’ ’6', '8’]

Bedeutung: Erstelle eine Liste aus allen str(x), wobei x Uber das iterierbare
Objekt range (10) lauft und nur die geraden Zahlen berlcksichtigt werden.
Kurzschreibweise fiir Kombination aus map und filter.

Komprehen-
sionen

>>> list(map(lambda y: str(y), filter(lambda x: x%2 == 0, range(10))))
[|o|, |2|, |4|, |6|, |8|]
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Allgemeine Syntax von Listen-Komprehensionen

| RE S
UNI
FREIBURG

[ exzpr for tupi in seqq if cond;
for tup, in seqy if condy

for tup, in seq, if cond, ]

Jedes rup; ist ein Tupel (vgl. Tupel-Unpacking).
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Allgemeine Syntax von Listen-Komprehensionen

| RE S
UNI
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[ exzpr for tupi in seqq if cond;
for tup, in seqy if condy

for tup, in seq, if cond, ]

Jedes rup; ist ein Tupel (vgl. Tupel-Unpacking).
Jedes seq; ist ein iterierbares Objekt.
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Allgemeine Syntax von Listen-Komprehensionen

UNI
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[ exzpr for tupi in seqq if cond;
for tup, in seqy if condy

for tup, in seq, if cond, ]

Jedes rup; ist ein Tupel (vgl. Tupel-Unpacking).
Jedes seq; ist ein iterierbares Objekt.
Die if-Klauseln mit den booleschen Ausdrlicken cond1, ... sind optional.
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Allgemeine Syntax von Listen-Komprehensionen

UNI
FREIBURG

[ exzpr for tupi in seqq if cond;
for tup, in seqy if condy

for tup, in seq, if cond, ]

Jedes rup; ist ein Tupel (vgl. Tupel-Unpacking).

Jedes seq; ist ein iterierbares Objekt.

Die if-Klauseln mit den booleschen Ausdrlicken cond1, ... sind optional.
Ist expr ein Tupel, muss es in Klammern stehen!

21.01.2026 P. Thiemann — Info |
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Zusammenhang Komprehensionen vs map und filter . 2
i @
=
[+ 4
(' 9
Betrachte
[[ expr for tup in seq if cond ] J

mit fup = x4,%x2,...,x,fUrn >0

Komprehen-
sionen
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Zusammenhang Komprehensionen vs map und filter

Betrachte
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[[ ezpr for tup in seq if cond ]

mit fup = x4,%x2,...,x,fUrn >0
Entspricht

[list (map (lambda tup: ezpr, filter (lambda tup: cond, seq)))
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Zusammenhang Komprehensionen vs map und filter

Betrachte

CEEEE O

[[ ezpr for tup in seq if cond ]

mit fup = x4,%x2,...,x,fUrn >0
Entspricht

[1ist (map (lambda tup: ezpr, filter (lambda tup: cond, seq)))

Falls if cond fehlt, kann das Filter weggelassen werden:

[list (map (lambda tup: expr, seq))

21.01.2026 P. Thiemann — Info |
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Geschachtelte Listen-Komprehensionen (1)
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Konstruiere die Matrix [[0,1,2,3],[0,1,2,3]1,[0,1,2,3]11:
>>> matrix: list[list[int]] = []

>>> for y in range(3):
matrix += [list(range(4))]
>>> matrix
[[O, 1, 2’ 3], [O, 1, 2’ 3], [O’ l, 2’ 3]]

Komprehen-
sionen
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Geschachtelte Listen-Komprehensionen (1)
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Konstruiere die Matrix [[0,1,2,3],[0,1,2,3]1,[0,1,2,3]1]:
>>> matrix: list([list[int]] = []
>>> for y in range(3):

matrix += [list(range(4))]

>>> matrix
[[O, 1, 2’ 3]9 [O, 1, 2’ 3], [O’ l, 2’ 3]]

Lésung mit Listen-Komprehensionen:

>>> [list (range (4)) for y in range(3)] Komprehen-
[[O, 1, 2’ 3], [O, 1, 2’ 3], [O’ l, 2’ 3]]
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Geschachtelte Listen-Komprehensionen (2)

o
+4
D
m
w
[+ 4
[

UNI

Konstruiere [[1,2,3],[4,5,6],[7,8,9]]:
>>> matrix: list[list[int]] = []
>>> for rownum in range(3):
row = []
for x in range(rownum*3, rownum*3 + 3):
row += [x+1]
matrix += [row]

Komprehen-
sionen
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Geschachtelte Listen-Komprehensionen (2)

Konstruiere [[1,2,3],[4,5,6],[7,8,9]]:
>>> matrix: list[list[int]] = []
>>> for rownum in range(3):
row = []
for x in range(rownum*3, rownum*3 + 3):
row += [x+1]
matrix += [row]

Lésung mit Listen-Komprehensionen:

>>> [list (range (3xy+1, 3*y+4)) for y in range(3)]
(1, 2, 31, [4, 5, 6], [7, 8, 9]]

21.01.2026 P. Thiemann — Info |
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Listen-Komprehensionen: Kartesisches Produkt

o
+4
D
m
w
[+ 4
[

UNI

Erzeuge das kartesische Produkt aus [0, 1, 2] und ['a', 'b', 'c']:
>>> prod: list[tuplel[int, str]] = []
>>> for x in range(3):
for y in ['a', 'b', 'c']:
prod += [(x, y)]

Komprehen-
sionen
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Listen-Komprehensionen: Kartesisches Produkt
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Erzeuge das kartesische Produkt aus [0, 1, 2] und ['a', 'b', 'c']:
>>> prod: list[tuplel[int, str]] = []
>>> for x in range(3):
for y in ['a', 'b', 'c']:
prod += [(x, y)]

Lésung mit Listen-Komprehensionen:
>>> [(x, y) for x in range(3) for y in ['a','b','c']]
[(O, 'a'), (O’ ’bl)’ (O: IC'): (1, 'a’)’ (1’ lbl)’ (1, Ic'): (2’ 'a(dm))r,eher(—Q

sionen
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Kartesisches Produkt mit map und filter
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Erster Versuch

>>> map (lambda y: map (lambda x: (x,y), range(3)), "abc")
<map object at 0x109f2e260>

Komprehen-
sionen
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Kartesisches Produkt mit map und filter

Erster Versuch
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>>> map (lambda y: map (lambda x: (x,y), range(3)), "abc")
<map object at 0x109f2e890>

... etwas spéter

(eco, 'a", 1, 'a"), (2, 'avl, [0, '), (1, 'b'), (2,

|br ], [(O, 'C
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Kartesisches Produkt mit map und filter
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Erster Versuch

>>> map (lambda y: map (lambda x: (x,y), range(3)), "abc")
<map object at 0x109f2e290>

... etwas spéter
(o, 'a"y, &, 'a", (2, 'avl, [O, '), (1, 'p), (2, 'p')], [(O)" 'c

eine Liste von Listen, weil das map von map einen Iterator von Iteratoren liefert.
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Kartesisches Produkt mit map, filter und flatten

o
+4
D
m
w
[+ 4
[

UNI

Lésung: flatten entfernt eine Ebene von lteration
def flatten[X](iix : Iterable[Iterable[X]]) -> Iterator[X]:
"""flattens a nested iterable to a single iterator”"""
for ix in iix:
for x in ix:
yield x
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Lésung: flatten entfernt eine Ebene von lteration
def flatten[X](iix : Iterable[Iterable[X]]) -> Iterator[X]:
"""flattens a nested iterable to a single iterator”"""
for ix in iix:
for x in ix:
yield x
Damit
print(list(flatten(map (lambda y: map (lambda x: (x,y)
, range(3))
, "abc")))) Gonen
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Kartesisches Produkt mit map, filter und flatten

o
+4
D
m
w
[+ 4
[

UNI

Lésung: flatten entfernt eine Ebene von lteration

def flatten[X](iix : Iterable[Iterable[X]]) -> Iterator[X]:
"""flattens a nested iterable to a single iterator”"""
for ix in iix:
for x in ix:
yield x
Damit
print(list(flatten(map (lambda y: map (lambda x: (x,y)
, range(3))
, "abc ”) ) ) ) Komprehen-

Ergebnis: [(0, ’a), (1,@’), (2,°’a), (0,’b), (1, D), (2, D), (0, ¢, (1,°C’), (2, °C’)]
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Allgemein: Elimination von Listen-Komprehensionen

Wiederhole die Elimination des innersten for

o
+4
D
m
w
[+ 4
[

UNI

[expr for tup in seq if cond for...] =
flatten(map(lambda fup : [expr for...|,filter(lambda tup : cond,seq)))
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Allgemein: Elimination von Listen-Komprehensionen 9
2
Wiederhole die Elimination des innersten for 2u™
[expr for tup in seq if cond for...] = DL
flatten(map(lambda tup : [expr for...],filter(lambda tup : cond,seq)))
Beispiel schematisch
[[(x, y) for x in range(3) for y in "abc"] J
Elimination von “for x” ergibt
[flatten (map (lambda x: [(x, y) for y in "abc"], range(3))) ]
Elimination von “for y” ergibt Komprenen:

[flatten (map (lambda x: flatten (map (lambda y: [(x, y)], "abc")), range(Sﬂ))
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Generator-Komprehension

o
+4
D
m
w
[+ 4
[

74
UNI

Eine Generator-Komprehension baut keine Liste auf, sondern liefert einen
Iterator, der die spezifizierten Objekte nacheinander generiert.

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 51/52



Generator-Komprehension

o
+4
D
m
w
[+ 4
[

UNI

Eine Generator-Komprehension baut keine Liste auf, sondern liefert einen
Iterator, der die spezifizierten Objekte nacheinander generiert.

Syntaktischer Unterschied zur Listen-Komprehension:
Runde statt eckige Klammern.
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Eine Generator-Komprehension baut keine Liste auf, sondern liefert einen

Iterator, der die spezifizierten Objekte nacheinander generiert.

Syntaktischer Unterschied zur Listen-Komprehension:

Runde statt eckige Klammern.

Die runden Klammern kénnen weggelassen werden, wenn der Ausdruck als

Argument einer Funktion mit nur einem Parameter dient.

Beispiel:

>>> sum(x**2 for x in range(11))
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Generator-Komprehension
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Eine Generator-Komprehension baut keine Liste auf, sondern liefert einen
Iterator, der die spezifizierten Objekte nacheinander generiert.

Syntaktischer Unterschied zur Listen-Komprehension:
Runde statt eckige Klammern.

Die runden Klammern kénnen weggelassen werden, wenn der Ausdruck als

Argument einer Funktion mit nur einem Parameter dient.

Beispiel:

>>> sum(x**2 for x in range(11))

385 Komprehen-

sionen

Braucht weniger Speichplatz als sum([x**2 for x in range(11)])!
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Komprehension fiir Dictionaries und Mengen

Auch Mengen und Dictionaries kénnen durch Komprehension-Ausdricke definiert
werden. Nachfolgend ein paar Beispiele:

>>> evens = set(range(0, 20, 2))
>>> {x for x in evens if x % 3 == 0}
{0, 18, 12, 6}

>>> text = 'Management Training Course'
>>> {x for x in text if x >= 'a'}
{lnl, lel’ Iul, lal, 'O', Igl, Iil, 'S', Irl, Iml, ltl}
Kpmprehen—
>>> { x: x**2 for x in range(l, 10)} sionen

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
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