
Informatik I: Einführung in die Programmierung
17. Funktionale Programmierung

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann
21.01.2026

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

1 Funktionale Programmierung

21.01.2026 P. Thiemann – Info I 3 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Programmierparadigmen

Es gibt verschiedene Programmierparadigmen oder Programmierstile.
Imperative Programmierung beschreibt, wie etwas erreicht werden soll.
Deklarative Programmierung beschreibt, was erreicht werden soll.

21.01.2026 P. Thiemann – Info I 4 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Imperative Programmierparadigmen

Imperative Programmierung
Zum Programm gehört ein Zustand (aktuelle Werte der Variablen,
Laufzeitkeller, etc), der sich während der Ausführung ändert.
Denkansatz beim Programmieren: Modifikation des Zustands.
Programm besteht aus Anweisungen (Zuweisung, . . .).

Organisation von imperativen Programmen
Prozedural: Die Aufgabe wird in kleinere Teile – Prozeduren – zerlegt, die auf
den Daten arbeiten. (Sprachen: Pascal, C, . . .)
Objekt-orientiert: Die Aufgabe wird in Klassen zerlegt, die lokal Daten und die
Methoden darauf enthalten. (Sprachen: Smalltalk, Eiffel, Java, . . .)

21.01.2026 P. Thiemann – Info I 5 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Deklarative Programmierparadigmen

Deklarative Programmierung
Keine explizite Bearbeitung eines Berechnungszustands.
Logische Programmierung (LP) beschreibt die Aufgabe durch logische
Formeln: Prolog, constraint programming, ASP.
Funktionale Programmierung (FP) beschreibt die Aufgabe durch
mathematische Funktionen: Haskell, OCaml, Racket, Clojure, Lisp
Abfragesprachen wie SQL oder XQuery sind ebenfalls deklarativ und bauen
auf der Relationenalgebra bzw. der XML-Algebra auf.

21.01.2026 P. Thiemann – Info I 6 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Eigenschaften funktionaler Programmierung

Es gibt Funktionen höherer Ordnung, d.h. Funktionen, deren Argumente
und/oder Ergebnisse selbst wieder Funktionen sind.
Keine Schleifen, sondern nur Rekursion.
Keine Anweisungen, sondern nur Ausdrücke.

Auch Funktionen sind als Ausdrücke definierbar.
In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.
⇒ Eine Variable erhält zu Beginn ihren Wert, der sich nicht mehr ändert.
⇒ Alle Datenstrukturen sind unveränderlich.
⇒ Referentielle Transparenz: Eine Funktion liefert bei gleichen Argumenten immer

das gleiche Ergebnis.
Die meisten funktionalen Sprachen besitzen ein starkes statisches
Typsystem, sodass zur Laufzeit kein TypeError auftreten kann.

21.01.2026 P. Thiemann – Info I 7 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Attribute von Typsystemen

Stark vs. schwach
In einem starken Typsystem besitzt jeder Wert einen unveränderlichen Typ.
In einem schwachen Typsystem kann ein Wert je nach Kontext
unterschiedliche Typen annehmen.

Statisch vs. dynamisch
In einem statischen Typsystem wird vor Ausführung eines Programms eine
Typüberprüfung durchgeführt. Das Programm kommt nur zur Ausführung,
wenn diese Prüfung erfolgreich ist.
In einem dynamischen Typsystem erfolgt die Typüberprüfung zur Laufzeit,
vor Ausführung jeder Operation.

Flexibler als statische Typüberprüfung, aber meist weniger effizient!

21.01.2026 P. Thiemann – Info I 8 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

2 Funktionale Programmierung in Python

21.01.2026 P. Thiemann – Info I 10 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

FP in Python

Funktionen werden durch Objekte repräsentiert.
Funktionen höherer Ordnung werden voll unterstützt.
Python besitzt ein starkes dynamisches Typsystem.

21.01.2026 P. Thiemann – Info I 11 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

FP in Python: Defizite

Referentielle Transparenz kann in Python verletzt werden.
Abhilfe: lokale Variablen nur einmal zuweisen, keine globalen Variablen
nutzen, keine Mutables ändern.
Die meisten Beispiele sind “mostly functional” in diesem Sinn.
Vereinfacht Überlegungen zum aktuellen Zustand der Berechnung.
Rekursion.
Python limitiert die Rekursionstiefe, während funktionale Sprachen beliebige
Rekursion erlauben und Endrekursion automatisch in Schleifen umwandeln.
Ausdrücke.
Python erlaubt bei lambda-Funktionen nur einen Ausdruck statt eines Blocks
von Anweisungen.

21.01.2026 P. Thiemann – Info I 12 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

3 Funktionen definieren und verwenden

21.01.2026 P. Thiemann – Info I 14 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Funktionsdefinition und -verwendung

Eine Funktion ist ein Python-Objekt.
>>> def simple() -> None:
... print('invoked')
...
>>> simple # keine Klammern -> Funktionsobjekt
<function simple at 0x10df3ec00>
>>> simple() # mit Klammern -> Funktionsaufruf
invoked

Es kann zugewiesen werden, als Argument übergeben werden und als
Funktionsresultat zurückgegeben werden.
Und es ist aufrufbar vom Typ Callable. . .

21.01.2026 P. Thiemann – Info I 15 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Funktionsverwendung

>>> from typing import Callable
>>> spam = simple; print(spam)
<function simple at 0x10df3ec00>
>>> def call_twice(fun : Callable[[],None]) -> None:
... fun(); fun()
...
>>> call_twice(spam) # keine Klammern hinter spam
invoked
invoked
>>> def gen_fun() -> Callable[[], None]:
... return spam
...
>>> gen_fun()
<function simple at 0x10df3ec00>
>>> gen_fun()()
invoked

21.01.2026 P. Thiemann – Info I 16 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

4 Lambda-Notation

21.01.2026 P. Thiemann – Info I 18 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Funktionen mit Lambda-Notation definieren

Der lambda-Operator definiert eine namenlose Funktion, deren Rumpf durch
einen Ausdruck gegeben ist.
>>> lambda x, y: x * y # multipliziere 2 Zahlen
<function <lambda> at 0x10df3ea20>
>>> (lambda x, y: x * y)(3, 8)
24
>>> mul = lambda x, y: x * y

21.01.2026 P. Thiemann – Info I 19 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Der Typ Callable

Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:
>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Der allgemeine Typ einer Funktion ist Callable[ArgTypes, RetType] mit
ArgTypes ist die Liste der Typen der Parameter,
RetType ist der Typ des Rückgabewerts.

Wird auch für Funktionsparameter verwendet, die selbst Funktionen sind.

21.01.2026 P. Thiemann – Info I 20 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Verwendung von Lambda-Funktionen (1)

>>> def mul2(x: int, y: int) -> int:
... return x * y
...
>>> mul(4, 5) == mul2(4, 5)
True

mul2 ist äquivalent zu mul!
Lambda-Funktionen werden hauptsächlich als Argumente für Funktionen
(höherer Ordnung) benutzt.
Solche Funktionen werden oft nur einmal verwendet und sind kurz, sodass
sich die Vergabe eines Namens nicht lohnt.

21.01.2026 P. Thiemann – Info I 21 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Verwendung von Lambda-Funktionen (2): Funktionsfabriken

Funktionen können Funktionen zurückgeben. Auch das Ergebnis einer
Funktion kann durch einen Lambda-Ausdruck definiert werden.
Beispiel: Eine Funktion, die einen Addierer erzeugt, der immer eine
vorgegebene Konstante addiert:
>>> def gen_adder(c : int) -> Callable[[int], int]:
... return lambda x: x + c
...
>>> add5: Callable[[int], int] = gen_adder(5)
>>> add5(15)
20

21.01.2026 P. Thiemann – Info I 22 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

5 Nützliche Funktionen höherer Ordnung:
map, filter und reduce

21.01.2026 P. Thiemann – Info I 24 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

map: Anwendung einer Funktion auf Iteratierbares

map hat zwei Argumente: eine Funktion und ein iterierbares Objekt.
map wendet die Funktion auf jedes Element der Eingabe an und liefert die
Funktionswerte als Iterator ab.
>>> list(map(lambda x: x**2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Eine getypte Definition für map:
def map[A, B](f : Callable[[A], B]

, xs : Iterable[A]) -> Iterator[B]:
for x in xs:

yield f (x)

21.01.2026 P. Thiemann – Info I 25 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Anwendungsbeispiel für map

Wir wollen eine Liste c_list von Temperaturen von Celsius nach Fahrenheit
konvertieren. Nach dem Muster zur Verarbeitung von Sequenzen:

ctof.py
def ctof(temp : float) -> float:

return ((9 / 5) * temp + 32)
def list_ctof(cl : list[float]) -> list[float]:

result = []
for c in cl:

result += [ctof(c)]
return result

c_list = [16, 3, -2, -1, 2, 4]
f_list = list_ctof(c_list)
21.01.2026 P. Thiemann – Info I 26 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Anwendungsbeispiel für map (2)

Mit map wesentlich knapper:
f_list = list(map(ctof, c_list))

Oder mit einer lambda Funktion:
f_list = list(map(lambda c: 1.8 * c + 32, c_list))

21.01.2026 P. Thiemann – Info I 27 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

map mit mehreren Eingaben

Die eingebaute map-Funktion kann auch mit einer k-stelligen Funktion und k
weiteren iterierbaren Eingaben aufgerufen werden (k > 0).
Für jeden Funktionsaufruf wird ein Argument von jeder der k Eingaben
angefordert. Stop, falls eine der Eingaben keinen Wert mehr liefert.
Ein Beispiel (vgl. convolute0)
def convolute_0(

xs : list[float], ys : list[float]
) -> float:
return sum(map(lambda x, y: x*y,

xs,
reversed(ys)))

21.01.2026 P. Thiemann – Info I 28 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Der wirkliche Typ von map

Der Typ der eingebauten map Funktion kann mit den bisherigen
Typannotationen nicht hingeschrieben werden.
Wir brauchen eine unbekannten Anzahl von Typvariablen, die sich nach der
Zahl der Argumente richtet.
def map[*As, B](f : Callable[[*As], B], *xs : Iterable[*As]

) -> Iterator[B]:
...

Dabei ist *As eine Tupeltypvariable, die für ein Tupel von Typen steht. Sie
kann nur zusammen mit Tupelunpacking (wie im Beispiel) verwendet werden.

21.01.2026 P. Thiemann – Info I 29 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Zip aus map

Ein einfaches zip mit map programmiert:
>>> list(map(lambda x, y: (x, y),
... range(5), range(0, 50, 10)))
[(0, 0), (1, 10), (2, 20), (3, 30), (4, 40)]

Das originale zip funktioniert auch mit > 2 Argumenten. . .
Volle Funktionalität von zip selbst gemacht:
def myzip[*As](*args : Iterable[*As]) -> Iterator[tuple[*As]]:

return map(lambda *args: args, *args)

21.01.2026 P. Thiemann – Info I 30 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

*arg?

21.01.2026 P. Thiemann – Info I 31 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Wiederholung: Variable Parameterlisten

Eine Funktion kann eine variable Zahl von Argumenten akzeptieren.
Schreibweise dafür
def func(a1, a2, a3, *args):

for a in args:
pass # process arguments 4, 5, ...

goo(a1, *args)
func muss mit mindestens drei Argumenten aufgerufen werden.
Weitere Argumente werden als Tupel zusammengefasst der Variablen args
zugewiesen.
Der *-Operator kann auch in einer Liste von Ausdrücken auf ein iterierbares
Argument angewendet werden.
Er fügt die Elemente aus dem Iterator der Liste hinzu.

21.01.2026 P. Thiemann – Info I 32 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

filter: Filtert unpassende Objekte aus

filter erwartet als Argumente eine Funktion mit einem Parameter und ein
iterierbares Objekt.
Es liefert einen Iterator zurück, der die Objekte aufzählt, bei denen die
Funktion nicht False (oder äquivalente Werte) zurück gibt.
>>> list(filter(lambda x: x > 0, [0, 3, -7, 9, 2]))
[3, 9, 2]

Eine Definition dazu
def filter[A](p : Callable[[A], bool], xs: Iterable[A]) -> Iterator[A]:

for x in xs:
if p(x):

yield x

21.01.2026 P. Thiemann – Info I 33 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

partial: Partielle Anwendung von Funktionen

from functools import partial
partial (f, *args, **kwargs) nimmt eine Funktion f , Argumente für f
und Keywordargumente für f
Ergebnis: Funktion, die die verbleibenden Argumente und Keywordargumente
für f nimmt und dann f mit sämtlichen Argumenten aufruft.

Beispiel
int besitzt einen Keywordparameter base=, mit dem die Basis der
Zahlendarstellung festgelegt wird.
int ("10011", base=2) liefert 19
Definiere int2 = partial (int, base=2)
assert int2 ("10011") == 19

21.01.2026 P. Thiemann – Info I 34 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

reduce: Reduktion eines iterierbaren Objekts auf ein Element

>>> from functools import reduce

reduce wendet eine Funktion ⊕ mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.
Der Startwert fungiert als akkumulierender Parameter:

Bei jedem Iterationsschritt wird der Akkumulator ersetzt durch
(alter Akkumulator ⊕ nächster Iterationswert).
Der finale Wert des Akkumulators ist das Ergebnis.

Falls kein Startwert angegeben wird, verwende das erste Element der Iteration.
>>> from typing import Iterable
>>> reduce(lambda x, y: x * y, range(1, 5))
24
>>> def product(it: Iterable[float]) -> float:
... return reduce (lambda x,y: x*y, it, 1)
...

21.01.2026 P. Thiemann – Info I 35 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Anwendung von reduce (1)

>>> def to_dict(d: dict[int,int], key:int) -> dict[int,int]:
... d[key] = key**2
... return d
...
>>> reduce (to_dict, range(5), {})
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

21.01.2026 P. Thiemann – Info I 36 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Anwendung von reduce (2)

Was genau wird da schrittweise reduziert?

21.01.2026 P. Thiemann – Info I 37 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Einschub: Der echte Reduktionsoperator ist parallel!

Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
Das echte reduce(⊕, [x0, . . . ,xm−1]) rechnet parallel und zwar so:

Arbeitet auf einem Array mit m = 2n Elementen.
Parameter ist assoziative Funktion ⊕.
Berechnet r = ((x0⊕x1)⊕x2) · · ·⊕xm−1.

Anstatt r mit ⊕-Operationen in m−1 Schritten zu berechnen . . .

21.01.2026 P. Thiemann – Info I 38 / 52

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Einschub: Der echte Reduktionsoperator ist parallel (2)

Berechne r = ((x0⊕x1)⊕x2) · · ·⊕xm−1 (m−1 Operationen ⊕).
Beginne mit x0,x2, . . . ,xm−2← (x0⊕x1), (x2⊕x3), . . . , (xm−2⊕xm−1).
D.h. m/2 Operationen parallel in einem Schritt!
Dann: x0,x4, . . . ,xm−4← (x0⊕x2), (x4⊕x6), . . . , (xm−4⊕xm−2).
Jetzt m/4 Operationen parallel in einem Schritt!
Dann weiter so bis zum Ergebnis x0← (x0⊕xm/2).
. . . in n = log2 m Schritten
Falls m keine Zweierpotenz, werden fehlende Argumente durch die (Rechts-)
Einheit von ⊕ ersetzt.

21.01.2026 P. Thiemann – Info I 39 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

6 Komprehensionen

21.01.2026 P. Thiemann – Info I 41 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Listen-Komprehension

Komprehensionen können Listen deklarativ und kompakt beschreiben.
Inspiriert von der mathematischen Mengenschreibweise:
{x ∈ U | φ (x)} (alle x aus U, die die Bedingung φ erfüllen).
Beispiel:
>>> [str(x) for x in range(10) if x % 2 == 0]
['0', '2', '4', '6', '8']

Bedeutung: Erstelle eine Liste aus allen str(x), wobei x über das iterierbare
Objekt range(10) läuft und nur die geraden Zahlen berücksichtigt werden.
Kurzschreibweise für Kombination aus map und filter.
>>> list(map(lambda y: str(y), filter(lambda x: x%2 == 0, range(10))))
['0', '2', '4', '6', '8']

21.01.2026 P. Thiemann – Info I 42 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Allgemeine Syntax von Listen-Komprehensionen

� �
[expr for tup 1 in seq 1 if cond 1

for tup 2 in seq 2 if cond 2
...
for tup n in seq n if cond n]� �

Jedes tupi ist ein Tupel (vgl. Tupel-Unpacking).
Jedes seqi ist ein iterierbares Objekt.
Die if-Klauseln mit den booleschen Ausdrücken cond1, . . . sind optional.
Ist expr ein Tupel, muss es in Klammern stehen!

21.01.2026 P. Thiemann – Info I 43 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Zusammenhang Komprehensionen vs map und filter

Betrachte� �
[expr for tup in seq if cond]� �
mit tup ::= x1,x2,...,xn für n > 0
Entspricht� �
list (map (lambda tup : expr , filter (lambda tup : cond , seq)))� �
Falls if cond fehlt, kann das Filter weggelassen werden:� �
list (map (lambda tup : expr , seq))� �

21.01.2026 P. Thiemann – Info I 44 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Geschachtelte Listen-Komprehensionen (1)

Konstruiere die Matrix [[0,1,2,3],[0,1,2,3],[0,1,2,3]]:
>>> matrix: list[list[int]] = []
>>> for y in range(3):
... matrix += [list(range(4))]
...
>>> matrix
[[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]
Lösung mit Listen-Komprehensionen:
>>> [list (range (4)) for y in range(3)]
[[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]

21.01.2026 P. Thiemann – Info I 45 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Geschachtelte Listen-Komprehensionen (2)

Konstruiere [[1,2,3],[4,5,6],[7,8,9]]:
>>> matrix: list[list[int]] = []
>>> for rownum in range(3):
... row = []
... for x in range(rownum*3, rownum*3 + 3):
... row += [x+1]
... matrix += [row]
...

Lösung mit Listen-Komprehensionen:
>>> [list (range (3*y+1, 3*y+4)) for y in range(3)]
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

21.01.2026 P. Thiemann – Info I 46 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Listen-Komprehensionen: Kartesisches Produkt

Erzeuge das kartesische Produkt aus [0, 1, 2] und ['a', 'b', 'c']:
>>> prod: list[tuple[int, str]] = []
>>> for x in range(3):
... for y in ['a', 'b', 'c']:
... prod += [(x, y)]
...

Lösung mit Listen-Komprehensionen:
>>> [(x, y) for x in range(3) for y in ['a','b','c']]
[(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b'), (2, 'c')]

21.01.2026 P. Thiemann – Info I 47 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Kartesisches Produkt mit map und filter

Erster Versuch
>>> map (lambda y: map (lambda x: (x,y), range(3)), "abc")
<map object at 0x10df5af80>

. . . etwas später
[[(0, 'a'), (1, 'a'), (2, 'a')], [(0, 'b'), (1, 'b'), (2, 'b')], [(0, 'c'), (1, 'c'), (2, 'c')]]

eine Liste von Listen, weil das map von map einen Iterator von Iteratoren liefert.

21.01.2026 P. Thiemann – Info I 48 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Kartesisches Produkt mit map, filter und flatten

Lösung: flatten entfernt eine Ebene von Iteration
def flatten[X](iix : Iterable[Iterable[X]]) -> Iterator[X]:

"""flattens a nested iterable to a single iterator"""
for ix in iix:

for x in ix:
yield x

Damit
print(list(flatten(map (lambda y: map (lambda x: (x,y)

, range(3))
, "abc"))))

Ergebnis: [(0, ’a’), (1, ’a’), (2, ’a’), (0, ’b’), (1, ’b’), (2, ’b’), (0, ’c’), (1, ’c’), (2, ’c’)]

21.01.2026 P. Thiemann – Info I 49 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Allgemein: Elimination von Listen-Komprehensionen

Wiederhole die Elimination des innersten for
[expr for tup in seq if cond for . . .] =

flatten(map(lambda tup : [expr for . . .],filter(lambda tup : cond,seq)))

Beispiel schematisch� �
[(x, y) for x in range (3) for y in "abc"]� �
Elimination von “for x” ergibt� �
flatten (map (lambda x: [(x, y) for y in "abc"], range (3)))� �
Elimination von “for y” ergibt� �
flatten (map (lambda x: flatten (map (lambda y: [(x, y)], "abc")), range (3)))� �
21.01.2026 P. Thiemann – Info I 50 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Generator-Komprehension

Eine Generator-Komprehension baut keine Liste auf, sondern liefert einen
Iterator, der die spezifizierten Objekte nacheinander generiert.
Syntaktischer Unterschied zur Listen-Komprehension:
Runde statt eckige Klammern.
Die runden Klammern können weggelassen werden, wenn der Ausdruck als
Argument einer Funktion mit nur einem Parameter dient.
Beispiel:
>>> sum(x**2 for x in range(11))
385
Braucht weniger Speichplatz als sum([x**2 for x in range(11)])!

21.01.2026 P. Thiemann – Info I 51 / 52

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Komprehension für Dictionaries und Mengen

Auch Mengen und Dictionaries können durch Komprehension-Ausdrücke definiert
werden. Nachfolgend ein paar Beispiele:
>>> evens = set(range(0, 20, 2))
>>> {x for x in evens if x % 3 == 0}
{0, 18, 12, 6}

>>> text = 'Management Training Course'
>>> {x for x in text if x >= 'a'}
{'e', 'i', 'o', 'u', 'm', 't', 'g', 'n', 's', 'a', 'r'}

>>> { x: x**2 for x in range(1, 10)}
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

21.01.2026 P. Thiemann – Info I 52 / 52

	Funktionale Programmierung
	Funktionale Programmierung in Python
	Funktionen definieren und verwenden
	Lambda-Notation
	Nützliche Funktionen höherer Ordnung: map, filter und reduce
	Komprehensionen

