Informatik I: Einfiihrung in die Programmierung
17. Funktionale Programmierung

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann
21.01.2026

FREIBURG

I Funktionale Programmierung

FREIBURG

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 3/52

Programmierparadigmen

FREIBURG

Funktionale
Programmie-
rung

FP in Python
Es gibt verschiedene Programmierparadigmen oder Programmierstile. Funktionen

definieren

Imperative Programmierung beschreibt, wie etwas erreicht werden soll. und

verwenden

Deklarative Programmierung beschreibt, was erreicht werden soll. Lambda-

Notation

map, filter
und reduce

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 4/52

Imperative Programmierparadigmen O
-
@_
L
Imperative Programmierung &
Zum Programm gehdrt ein Zustand (aktuelle Werte der Variablen, oo
Laufzeitkeller, etc), der sich wahrend der Ausfihrung andert. rung

Denkansatz beim Programmieren: Modifikation des Zustands.
Programm besteht aus Anweisungen (Zuweisung, ...).

Organisation von imperativen Programmen

Prozedural: Die Aufgabe wird in kleinere Teile — Prozeduren — zerlegt, die auf
den Daten arbeiten. (Sprachen: Pascal, C, ...)

Objekt-orientiert: Die Aufgabe wird in Klassen zerlegt, die lokal Daten und die
Methoden darauf enthalten. (Sprachen: Smalltalk, Eiffel, Java, ...)

21.01.2026 P. Thiemann — Info | 5/52

Deklarative Programmierparadigmen

FREIBURG

Funktionale

Deklarative Programmierung Programmie-

rung

Keine explizite Bearbeitung eines Berechnungszustands.

Logische Programmierung (LP) beschreibt die Aufgabe durch logische
Formeln: Prolog, constraint programming, ASP.

Funktionale Programmierung (FP) beschreibt die Aufgabe durch
mathematische Funktionen: Haskell, OCaml, Racket, Clojure, Lisp

Abfragesprachen wie SQL oder XQuery sind ebenfalls deklarativ und bauen
auf der Relationenalgebra bzw. der XML-Algebra auf.

21.01.2026 P. Thiemann — Info | 6/52

Eigenschaften funktionaler Programmierung 9

z D

Es gibt Funktionen héherer Ordnung, d.h. Funktionen, deren Argumente :Z,E
und/oder Ergebnisse selbst wieder Funktionen sind. Funktionale
Keine Schleifen, sondern nur Rekursion. 2’23""‘”“'9'

Keine Anweisungen, sondern nur Ausdricke.
Auch Funktionen sind als Ausdrucke definierbar.
In rein funktionalen Sprachen: keine Zuweisungen und keine Seiteneffekte.
Eine Variable erhalt zu Beginn ihren Wert, der sich nicht mehr &ndert.
Alle Datenstrukturen sind unveranderlich.
Referentielle Transparenz: Eine Funktion liefert bei gleichen Argumenten immer
das gleiche Ergebnis.
Die meisten funktionalen Sprachen besitzen ein starkes statisches
Typsystem, sodass zur Laufzeit kein TypeError auftreten kann.

21.01.2026 P. Thiemann — Info | 7152

Attribute von Typsystemen “ik 2
) -
G 0
zI.IJ
[
Stark vs. schwach =]
In einem starken Typsystem besitzt jeder Wert einen unverénderlichen Typ. oo

rung

In einem schwachen Typsystem kann ein Wert je nach Kontext
unterschiedliche Typen annehmen.

Statisch vs. dynamisch
In einem statischen Typsystem wird vor Ausfiihrung eines Programms eine
Typuberprufung durchgefiihrt. Das Programm kommt nur zur Ausfiihrung,
wenn diese Priufung erfolgreich ist.

In einem dynamischen Typsystem erfolgt die Typuberprifung zur Laufzeit,
vor Ausfihrung jeder Operation.
Flexibler als statische Typuberpriifung, aber meist weniger effizient!

21.01.2026 P. Thiemann — Info | 8/52

2 Funktionale Programmierung in Python

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 10/52

FP in Python

FREIBURG

FP in Python
Funktionen werden durch Objekte reprasentiert.

Funktionen héherer Ordnung werden voll unterstitzt.
Python besitzt ein starkes dynamisches Typsystem.

21.01.2026 P. Thiemann — Info | 11/52

FP in Python: Defizite

UNI
FREIBURG

Referentielle Transparenz kann in Python verletzt werden.

Abhilfe: lokale Variablen nur einmal zuweisen, keine globalen Variablen
nutzen, keine Mutables &ndern.

Die meisten Beispiele sind “mostly functional” in diesem Sinn.
Vereinfacht Uberlegungen zum aktuellen Zustand der Berechnung.

FP in Python

Rekursion.

Python limitiert die Rekursionstiefe, wahrend funktionale Sprachen beliebige
Rekursion erlauben und Endrekursion automatisch in Schleifen umwandeln.
Ausdricke.

Python erlaubt bei 1ambda-Funktionen nur einen Ausdruck statt eines Blocks
von Anweisungen.

21.01.2026 P. Thiemann — Info | 12/52

3 Funktionen definieren und verwenden

FREIBURG

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 14 /52

Funktionsdefinition und -verwendung

FREIBURG

Eine Funktion ist ein Python-Objekt.

>>> def simple() -> None:
print('invoked')

e Funktionen
>>> simple # keine Klammern -> Funktionsobjekt definieren

d
<function simple at 0x10df3ec00> verwenden
>>> simple() # mit Klammern -> Funktionsaufruf
invoked

Es kann zugewiesen werden, als Argument Ubergeben werden und als
Funktionsresultat zuriickgegeben werden.

Und es ist aufrufbar vom Typ Callable...

21.01.2026 P. Thiemann — Info | 15/52

Funktionsverwendung

>>> from typing import Callable

>>> spam = simple; print(spam)

<function simple at 0x10df3ec00>

>>> def call_twice(fun : Callable[[],None]l) -> None:
fun(); funQ)

>>> call_twice(spam) # keine Klammern hinter spam
invoked
invoked
>>> def gen_fun() -> Callable[[], Nonel:
return spam

>>> gen_fun()

<function simple at 0x10df3ec00>
>>> gen_fun() O

invoked

21.01.2026 P. Thiemann — Info |

16/52

UNI
FREIBURG

Funktionen
definieren
und
verwenden

4 Lambda-Notation

21.01.2026

P. Thiemann — Info |

18/52

FREIBURG

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Funktionen mit Lambda-Notation definieren

UNI
FREIBURG

Der 1ambda-Operator definiert eine namenlose Funktion, deren Rumpf durch
einen Ausdruck gegeben ist.

>>> lambda x, y: x * y # multipliziere 2 Zahlen
<function <lambda> at 0x10df3ea20>

>>> (lambda x, y: x * y)(3, 8) Lambda-
2 Notation
>>> mul = lambda x, y: X * y

21.01.2026 P. Thiemann — Info | 19/52

Der Typ Callable

UNI
FREIBURG

Der Typ von mul kann nicht wie bei einer Funktionsdefinition geschrieben
werden. Stattdessen verwende typing.Callable:

>>> from typing import Callable
>>> mul: Callable[[int, int], int] = lambda x, y: x * y

Der allgemeine Typ einer Funktion ist Callable [ArgTypes, RetType] mit Lambda-

Notation
ArgTypes ist die Liste der Typen der Parameter,
RetType ist der Typ des Riuckgabewerts.

Wird auch fir Funktionsparameter verwendet, die selbst Funktionen sind.

21.01.2026 P. Thiemann — Info | 20/52

Verwendung von Lambda-Funktionen (1)

FREIBURG

>>> def mul2(x: int, y: int) -> int:
return x * y

>>> mul(4, 5) == mul2(4, 5)
True

mul? ist dquivalent zu mul! Lambda-

Notation

Lambda-Funktionen werden hauptséchlich als Argumente fiir Funktionen
(héherer Ordnung) benutzt.

Solche Funktionen werden oft nur einmal verwendet und sind kurz, sodass
sich die Vergabe eines Namens nicht lohnt.

21.01.2026 P. Thiemann — Info | 21/52

Verwendung von Lambda-Funktionen (2): Funktionsfabriken

Funktionen kénnen Funktionen zurtickgeben. Auch das Ergebnis einer

Funktion kann durch einen Lambda-Ausdruck definiert werden.

Beispiel: Eine Funktion, die einen Addierer erzeugt, der immer eine

vorgegebene Konstante addiert:

>>> def gen_adder(c : int) -> Callable[[int], int]:
return lambda x: x + cC

>>> add6: Callable[[int], int] = gen_adder(5)

>>> add5(15)
20

21.01.2026 P. Thiemann — Info |

UNI
FREIBURG

Lambda-
Notation

22/52

5 Niitzliche Funktionen hoherer Ordnung:
map, filter und reduce

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 24/52

map: Anwendung einer Funktion auf Iteratierbares

FREIBURG

map hat zwei Argumente: eine Funktion und ein iterierbares Objeki.
map wendet die Funktion auf jedes Element der Eingabe an und liefert die
Funktionswerte als lterator ab.

>>> list(map(lambda x: x**2, range(10)))
(o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Eine getypte Definition fir map:
def map[A, B](f : Callable[[A], B] nap, £ilter
, xs : Iterable[A]) -> Iterator[B]: und reduce
for x in xs:
yield £ (x)

21.01.2026 P. Thiemann — Info | 25/52

Anwendungsbeispiel fiir map

=
) =]
s —

REIBURG

2
Wir wollen eine Liste c_1ist von Temperaturen von Celsius nach Fahrenheit -
konvertieren. Nach dem Muster zur Verarbeitung von Sequenzen:

ctof.py

def ctof(temp : float) -> float:
return ((9 / 5) * temp + 32)
def list_ctof(cl : list[float]) -> list([float]:
result = []
for ¢ in cl: map, filter
result += [ctof(c)] und reduce
return result
c_list = [16, 3, -2, -1, 2, 4]
f list = list_ctof(c_list)

21.01.2026 P. Thiemann — Info | 26/52

Anwendungsbeispiel fiir map (2)

Mit map wesentlich knapper:

UNI
FREIBURG

f_list

list(map(ctof, c_list))

Oder mit einer lambda Funktion:

f _list

list(map(lambda c: 1.8 * ¢ + 32, c_list))

21.01.2026

P. Thiemann — Info |

map, filter
und reduce

27152

map mit mehreren Eingaben

UNI
FREIBURG

Die eingebaute map-Funktion kann auch mit einer k-stelligen Funktion und k
weiteren iterierbaren Eingaben aufgerufen werden (k > 0).

Fir jeden Funktionsaufruf wird ein Argument von jeder der k Eingaben
angefordert. Stop, falls eine der Eingaben keinen Wert mehr liefert.

Ein Beispiel (vgl. convolute0)
def convolute 0(
xs : list[float], ys : list[float]
) —> float: map, filter
return sum(map(lambda x, y: x*y, e reduce
XS,
reversed(ys)))

21.01.2026 P. Thiemann — Info | 28/52

Der wirkliche Typ von map

UNI
FREIBURG

Der Typ der eingebauten map Funktion kann mit den bisherigen
Typannotationen nicht hingeschrieben werden.
Wir brauchen eine unbekannten Anzahl von Typvariablen, die sich nach der
Zahl der Argumente richtet.
def map[*As, B](f : Callable[[*As], B], #*xs : Iterable[*As]

) —> Iterator([B]:

map, filter
und reduce

Dabei ist *As eine Tupeltypvariable, die fir ein Tupel von Typen steht. Sie
kann nur zusammen mit Tupelunpacking (wie im Beispiel) verwendet werden.

21.01.2026 P. Thiemann — Info | 29/52

Zip aus map

FREIBURG

Ein einfaches zip mit map programmiert:

>>> list(map(lambda x, y: (x, y),
e range(5), range(0, 50, 10)))
[(0, O), (1, 10), (2, 20), (3, 30), (4, 40)]

Das originale zip funktioniert auch mit > 2 Argumenten...
Volle Funktionalitat von zip selbst gemacht: pap, £ilter

def myzip[*As] (xargs : Iterable[*As]) -> Iterator[tuple[*As]]: e reduce
return map(lambda *args: args, *args)

21.01.2026 P. Thiemann — Info | 30/52

*arg? LB
m E‘; :
~8_
. - Zor
There Magic. Su
— ”/ -
- 9
SL-A ¢
nap, filter

und reduce

There Is oniy kinowledge.

21.01.2026 P. Thiemann — Info | 31/52

Wiederholung: Variable Parameterlisten

FREIBURG

Eine Funktion kann eine variable Zahl von Argumenten akzeptieren.
Schreibweise dafir
def func(al, a2, a3, *args):
for a in args:
pass # process arguments 4, 5,
goo(al, *args)
func muss mit mindestens drei Argumenten aufgerufen werden.

Weitere Argumente werden als Tupel zusammengefasst der Variablen args wap, £i1ver
zugewiesen. und reduce

Der *-Operator kann auch in einer Liste von Ausdriicken auf ein iterierbares
Argument angewendet werden.

Er fugt die Elemente aus dem lterator der Liste hinzu.

21.01.2026 P. Thiemann — Info | 32/52

filter: Filtert unpassende Objekte aus

UNI
FREIBURG

filter erwartet als Argumente eine Funktion mit einem Parameter und ein
iterierbares Objeki.

Es liefert einen Iterator zurlck, der die Objekte aufzahlt, bei denen die
Funktion nicht False (oder dquivalente Werte) zurlck gibt.

>>> list(filter(lambda x: x > 0, [0, 3, -7, 9, 21))

[3, 9, 2]

Eine Definition dazu map, £ilter

def filter[A]l(p : Callable[[A], booll, xs: Iterable[A]) -> Iterator[A]: und reduce
for x in xs:
if p(x):
yield x

21.01.2026 P. Thiemann — Info | 33/52

partial: Partielle Anwendung von Funktionen 9
=2
i _
. : Zo
from functools import partial =] T
partial (£, *args, **kwargs) nimmt eine Funktion f, Argumente fir f
und Keywordargumente fur f
Ergebnis: Funktion, die die verbleibenden Argumente und Keywordargumente
far f nimmt und dann f mit sémtlichen Argumenten aufruft.
Beispiel
int besitzt einen Keywordparameter base=, mit dem die Basis der
Zahlendarstellung festgelegt wird. mep, f1lter

int ("10011", base=2) liefert 19
Definiere int2 = partial (int, base=2)
assert int2 ("10011") == 19

21.01.2026 P. Thiemann — Info | 34 /52

reduce: Reduktion eines iterierbaren Objekts auf ein Element

>>> from functools import reduce

FREIBURG

reduce wendet eine Funktion & mit zwei Argumenten auf ein iterierbares Objekt und einen
Startwert an.
Der Startwert fungiert als akkumulierender Parameter:
Bei jedem Iterationsschritt wird der Akkumulator ersetzt durch
(alter Akkumulator & néchster lterationswert).
Der finale Wert des Akkumulators ist das Ergebnis.
Falls kein Startwert angegeben wird, verwende das erste Element der lteration.

>>> from typing import Iterable map, filter

>>> reduce(lambda x, y: x * y, range(l, 5)) und reduce

24

>>> def product(it: Iterable[float]) -> float:
return reduce (lambda x,y: x*y, it, 1)

21.01.2026 P. Thiemann — Info | 35/52

.
N
\‘g

7
=

Anwendung von reduce (1)

T
-
bk
EIA

e
1
!

i

&
UNI
FREIBURG

Funktionale
Programmie-

>>> def to_dict(d: dict[int,int], key:int) -> dict[int,int]: rung
d [key] = key**2 FP in Python
return d Funktionen

definieren
und
verwenden

>>> reduce (to_dict, range(5), {}) Lambda-
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16} Hoteton

map, filter
und reduce

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 36/52

Anwendung von reduce (2)

Was genau wird da schrittweise reduziert?

map, filter
und reduce

{0:0,1:1,2:4,3: 9

{0:0,1:1,2:4,3:9, 4: 16}

21.01.2026 P. Thiemann — Info | 37/52

Einschub: Der echte Reduktionsoperator ist parallel! 9
e D
2
=1
Pythons reduce ist ein sogenannter Fold Operator.
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
Das echte reduce(®,[Xg, - - -,Xm_1]) rechnet parallel und zwar so:
Arbeitet auf einem Array mit m = 2" Elementen.
Parameter ist assoziative Funktion .
Berechnet r = ((xo ®x1) ®X2) -+ - B Xm_1-
map, filter
Anstatt r mit ¢-Operationen in m — 1 Schritten zu berechnen ... und reduce

21.01.2026 P. Thiemann — Info | 38/52

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Einschub: Der echte Reduktionsoperator ist parallel (2)))
B D
4_;_%_
£
=1
Berechne r = ((xo ® x1) © X2) - - - & Xm—1 (m — 1 Operationen @).
Beginne mit X0,X2, -+, Xm—2 < (X0 D X1),(Xo BX3),...,(Xm_2 B Xm_1)-
D.h. m/2 Operationen parallel in einem Schritt!
Dann: X0,X4;- s Xm—4 < (X0 D X2),(Xa ©Xp), ..., (Xm—4 D Xm—2).
Jetzt m/4 Operationen parallel in einem Schritt!
Dann weiter so bis zum Ergebnis Xo < (Xo ® Xm/2)-
. in n = log, m Schritten Und redues

Falls m keine Zweierpotenz, werden fehlende Argumente durch die (Rechts-)
Einheit von & ersetzt.

21.01.2026 P. Thiemann — Info | 39/52

6 Komprehensionen

21.01.2026

P. Thiemann — Info |

41/52

FREIBURG

Funktionale
Programmie-
rung

FP in Python

Funktionen
definieren
und
verwenden

Lambda-
Notation

map, filter
und reduce

Komprehen-
sionen

Listen-Komprehension

21.01.2026

Komprehensionen kénnen Listen deklarativ und kompakt beschreiben.

Inspiriert von der mathematischen Mengenschreibweise:
{xeU| ¢(x)} (alle x aus U, die die Bedingung ¢ erfillen).
Beispiel:

>>> [str(x) for x in range(10) if x % 2 == 0]

[lol’ |2|’ |4|’ '6', '8']

Bedeutung: Erstelle eine Liste aus allen str(x), wobei x Uber das iterierbare
Objekt range (10) lauft und nur die geraden Zahlen berlcksichtigt werden.

Kurzschreibweise fiir Kombination aus map und filter.

>>> list(map(lambda y: str(y), filter(lambda x: x%2 == 0, range(10)

[lol, |2l, l4l, |6l, l8l:|

P. Thiemann — Info | 42 /52

UNI

))

FREIBURG

Komprehen-
sionen

Allgemeine Syntax von Listen-Komprehensionen 9
=2
zl.l.l
=1
Funktionale
Programmie-
rung
FP in Python
Funktionen
definieren
und
verwenden
m Jedes rup; ist ein Tupel (vgl. Tupel-Unpacking). e
= Jedes seq; ist ein iterierbares Objekt. Notation
map, filter
= Die if-Klauseln mit den booleschen Ausdriicken condy, ... sind optional. und reduce
= Ist expr ein Tupel, muss es in Klammern stehen! Sonorere

21.01.2026 P. Thiemann — Info | 43/52

Zusammenhang Komprehensionen vs map und filter 9
=2
=_0
zl.u
=)
m Betrachte Funktionale
Programmie-
e N B
FP in Python
mit wp '=X1,%X2,...,%Xp firn>0 Zugk_tionen
= Entspricht verwenden
Notation
= Falls if cond fehlt, kann das Filter weggelassen werden: Und rednes

21.01.2026 P. Thiemann — Info | 44752

Geschachtelte Listen-Komprehensionen (1)

UNI
FREIBURG

Konstruiere die Matrix [[0,1,2,3],[0,1,2,3]1,[0,1,2,3]1]:
>>> matrix: list([list[int]] = []
>>> for y in range(3):

matrix += [list(range(4))]

>>> matrix
[[O, 1, 2’ 3]9 [O, 1, 2’ 3], [O’ l, 2’ 3]]

Lésung mit Listen-Komprehensionen:

>>> [list (range (4)) for y in range(3)] Komprehen-
[[O, 1, 2’ 3], [O, 1, 2’ 3], [O’ l, 2’ 3]]

21.01.2026 P. Thiemann — Info | 45/52

Geschachtelte Listen-Komprehensionen (2)

UNI
FREIBURG

Konstruiere [[1,2,3],[4,5,6],[7,8,9]]:
>>> matrix: list[list[int]] = []
>>> for rownum in range(3):
row = []
for x in range(rownum*3, rownum*3 + 3):
row += [x+1]
matrix += [row]

Lésung mit Listen-Komprehensionen:
Komprehen-

>>> [list (range (3xy+1, 3*y+4)) for y in range(3)] sionen
(1, 2, 31, [4, 5, 61, [7, 8, 9]]

21.01.2026 P. Thiemann — Info | 46 /52

Listen-Komprehensionen: Kartesisches Produkt

UNI
FREIBURG

Erzeuge das kartesische Produkt aus [0, 1, 2] und ['a', 'b', 'c']:
>>> prod: list[tuplel[int, str]] = []
>>> for x in range(3):
for y in ['a', 'b', 'c']:
prod += [(x, y)]

Lésung mit Listen-Komprehensionen:
>>> [(x, y) for x in range(3) for y in ['a','b','c']]
[(O, 'a'), (O’ ’bl)’ (O: IC'): (1, 'a’)’ (1’ lbl)’ (1, Ic'): (2’ 'a(dm))r,eher(—Q

sionen

21.01.2026 P. Thiemann — Info | 47152

Kartesisches Produkt mit map und filter

FREIBURG

Erster Versuch

>>> map (lambda y: map (lambda x: (x,y), range(3)), "abc")
<map object at 0x10df5af80>

... etwas spéter
(o, 'a"y, &, 'a", (2, 'avl, [O, '), (1, 'p), (2, 'p')], [(O)" 'c

eine Liste von Listen, weil das map von map einen Iterator von Iteratoren liefert.

Komprehen-
sionen

21.01.2026 P. Thiemann — Info | 48/52

Kartesisches Produkt mit map, filter und flatten

FREIBURG

Lésung: flatten entfernt eine Ebene von lteration
def flatten[X](iix : Iterable[Iterable[X]]) -> Iterator[X]:
"""flattens a nested iterable to a single iterator”"""
for ix in iix:
for x in ix:
yield x
Damit

print(list(flatten(map (lambda y: map (lambda x: (x,y)
, range(3))
, "abc")))) Komprehen-

Ergebnis: [(0, ’a), (1,@’), (2,°’a), (0,’b), (1, D), (2, D), (0, ¢, (1,°C’), (2, °C’)]

21.01.2026 P. Thiemann — Info | 49/52

Allgemein: Elimination von Listen-Komprehensionen

— Wiederhole die Elimination des innersten for
[expr for tup in seq if cond for...] = _
flatten(map(lambda tup : [expr for...],filter(lambda tup : cond,seq))) El:gg:fr:?r:?e—

rung

FREIBURG

. . . FP in Python
Beispiel schematisch !
Funktionen
definieren
und
verwenden

Elimination von “for x” ergibt Lambda-

Notation

map, filter
und reduce

Komprehen-

Elimination von “for y” ergibt sionen

~
~

21.01.2026 P. Thiemann — Info | 50/52

Generator-Komprehension

=
) =]
o=

UNI
FREIBURG

Eine Generator-Komprehension baut keine Liste auf, sondern liefert einen
lterator, der die spezifizierten Objekte nacheinander generiert.

Syntaktischer Unterschied zur Listen-Komprehension:
Runde statt eckige Klammern.

Die runden Klammern kénnen weggelassen werden, wenn der Ausdruck als

Argument einer Funktion mit nur einem Parameter dient.

Beispiel:

>>> sum(x**2 for x in range(11))

385 Komprehen-

sionen

Braucht weniger Speichplatz als sum([x**2 for x in range(11)])!

21.01.2026 P. Thiemann — Info | 51/52

v il
&b

Komprehension fir Dictionaries und Mengen

]
]
o<

UNI
FREIBURG

Auch Mengen und Dictionaries kénnen durch Komprehension-Ausdricke definiert
werden. Nachfolgend ein paar Beispiele:
>>> evens = set(range(0, 20, 2))

>>> {x for x in evens if x % 3 == 0}
{0, 18, 12, 6%}

>>> text = 'Management Training Course'
>>> {x for x in text if x >= 'a'}
{lel, lil’ IO‘, lul, Iml’ Itl, Igl, lnl’ IS', Ial, lrl}

Kpmprehen—
>>> { x: x**2 for x in range(l, 10)} sionen
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

21.01.2026 P. Thiemann — Info | 52/52

	Funktionale Programmierung
	Funktionale Programmierung in Python
	Funktionen definieren und verwenden
	Lambda-Notation
	Nützliche Funktionen höherer Ordnung: map, filter und reduce
	Komprehensionen

