
Informatik I: Einführung in die Programmierung
16. Ausnahmen, Generatoren und Iteratoren, Backtracking

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann
13.01.2026

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Prolog: Ausnahmen (Exceptions)

13.01.2026 P. Thiemann – Info I 2 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (1)

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:
>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

Solche Fehler heissen Ausnahmen (exceptions).
Jetzt wollen wir Ausnahmen abfangen und selbst melden.

13.01.2026 P. Thiemann – Info I 4 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (1)

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:
>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

Solche Fehler heissen Ausnahmen (exceptions).

Jetzt wollen wir Ausnahmen abfangen und selbst melden.

13.01.2026 P. Thiemann – Info I 4 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (1)

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:
>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

Solche Fehler heissen Ausnahmen (exceptions).
Jetzt wollen wir Ausnahmen abfangen und selbst melden.

13.01.2026 P. Thiemann – Info I 4 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (2)

Anwendungen von Ausnahmen

1 Signalisieren einer Situation, die nicht spezifiziert ist.
Meist im Zusammenhang mit externen Ereignissen.
Beispiel: physikalischer Fehler beim Lesen einer Datei, mangelnder
Speicherplatz, etc

2 Vereinfachte Behandlung des “Normalfalls” einer Funktion. Die Ausnahme
wird dabei als alternativer Rückgabewert verwendet.

13.01.2026 P. Thiemann – Info I 5 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (2)

Anwendungen von Ausnahmen
1 Signalisieren einer Situation, die nicht spezifiziert ist.

Meist im Zusammenhang mit externen Ereignissen.
Beispiel: physikalischer Fehler beim Lesen einer Datei, mangelnder
Speicherplatz, etc

2 Vereinfachte Behandlung des “Normalfalls” einer Funktion. Die Ausnahme
wird dabei als alternativer Rückgabewert verwendet.

13.01.2026 P. Thiemann – Info I 5 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (2)

Anwendungen von Ausnahmen
1 Signalisieren einer Situation, die nicht spezifiziert ist.

Meist im Zusammenhang mit externen Ereignissen.
Beispiel: physikalischer Fehler beim Lesen einer Datei, mangelnder
Speicherplatz, etc

2 Vereinfachte Behandlung des “Normalfalls” einer Funktion. Die Ausnahme
wird dabei als alternativer Rückgabewert verwendet.

13.01.2026 P. Thiemann – Info I 5 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (3)

Beispiele
exception OSError (1) This exception is raised when a system function returns a

system-related error, including I/O failures such as “file not found” or
“disk full” (not for illegal argument types or other incidental errors).

exception RecursionError (1) This exception is raised when the interpreter detects
that the maximum recursion depth is exceeded.

exception IndexError (2) Raised when a sequence subscript is out of range.
exception KeyError (2) Raised when a mapping (dictionary) key is not found in the

set of existing keys.

13.01.2026 P. Thiemann – Info I 6 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (4)

Das Auslösen einer Ausnahme bricht den normalen Programmablauf ab.

Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelöst wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.
Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt,
so wird der Funktionsaufruf beendet, der zugehörige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Rückgabewert bestimmt!
Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.
Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann – Info I 7 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (4)

Das Auslösen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelöst wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.

Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt,
so wird der Funktionsaufruf beendet, der zugehörige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Rückgabewert bestimmt!
Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.
Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann – Info I 7 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (4)

Das Auslösen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelöst wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.
Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt,
so wird der Funktionsaufruf beendet, der zugehörige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Rückgabewert bestimmt!

Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.
Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann – Info I 7 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (4)

Das Auslösen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelöst wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.
Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt,
so wird der Funktionsaufruf beendet, der zugehörige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Rückgabewert bestimmt!
Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.

Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann – Info I 7 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (4)

Das Auslösen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelöst wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.
Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt,
so wird der Funktionsaufruf beendet, der zugehörige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Rückgabewert bestimmt!
Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.
Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann – Info I 7 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ausnahmen (5)

Ausnahmen sind selbst Objekte.
Sie sind Instanzen von Subklassen der Klasse BaseException.
Die Subklasse Exception dient als Basisklasse für selbstdefinierte
Ausnahmen.

13.01.2026 P. Thiemann – Info I 8 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

try-except

Eine try-except-Anweisung behandelt Ausnahmen, die während der Ausführung des
try-Blocks auftreten. Wenn dort keine Ausnahme ausgelöst wurde oder die Ausnahme in
einer der except-Klauseln bearbeitet wurde, geht es nach der try-Anweisung einfach
weiter.

try:
critical_code()

except NameError as e:
print("Sieh mal einer an:", e)

except KeyError:
print("Oops! Ein KeyError!")

except (IOError, OSError):
print("Na sowas!")

except:
print("Ich verschwinde lieber!")
raise

13.01.2026 P. Thiemann – Info I 9 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

except-Blöcke (1)

except XYError:
Ein solcher Block wird ausgeführt, wenn innerhalb des try-Blocks eine Ausnahme
ausgelöst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zusätzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):
Ein Tupel fängt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

except:
So werden unspezifisch alle Ausnahmen abgefangen.

13.01.2026 P. Thiemann – Info I 10 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

except-Blöcke (1)

except XYError:
Ein solcher Block wird ausgeführt, wenn innerhalb des try-Blocks eine Ausnahme
ausgelöst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zusätzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):
Ein Tupel fängt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

except:
So werden unspezifisch alle Ausnahmen abgefangen.

13.01.2026 P. Thiemann – Info I 10 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

except-Blöcke (1)

except XYError:
Ein solcher Block wird ausgeführt, wenn innerhalb des try-Blocks eine Ausnahme
ausgelöst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zusätzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):
Ein Tupel fängt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

except:
So werden unspezifisch alle Ausnahmen abgefangen.

13.01.2026 P. Thiemann – Info I 10 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

except-Blöcke (1)

except XYError:
Ein solcher Block wird ausgeführt, wenn innerhalb des try-Blocks eine Ausnahme
ausgelöst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zusätzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):
Ein Tupel fängt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

except:
So werden unspezifisch alle Ausnahmen abgefangen.
13.01.2026 P. Thiemann – Info I 10 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

except-Blöcke (2)

Die except-Blöcke werden der Reihe nach abgearbeitet, bis der erste
passende Block gefunden wird (falls überhaupt einer passt).
Unspezifische except-Blöcke sind daher nur an letzter Stelle sinnvoll.
In einem except-Block kann die abgefangene Ausnahme mit einer
raise-Anweisung ohne Argument weitergereicht werden.

13.01.2026 P. Thiemann – Info I 11 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

try – except – else

Ein try-except-Block kann mit einem else-Block abgeschlossen werden, der
ausgeführt wird, falls im try-Block keine Ausnahme ausgelöst wurde:

try:
critical_code()

except IOError:
print("IOError!")

else:
print("Keine Ausnahme")

13.01.2026 P. Thiemann – Info I 12 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

finally-Blöcke

Wenn eine Ausnahme nicht behandelt werden kann, müssen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schließen.

Dazu dient der finally-Block:

try:
critical_code()

finally:
print("Ich komme zurück...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgeführt:

Bei einem return im try-Block wird der finally-Block vor Rückgabe des
Ergebnisses ausgeführt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausführung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann – Info I 13 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

finally-Blöcke

Wenn eine Ausnahme nicht behandelt werden kann, müssen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schließen.
Dazu dient der finally-Block:

try:
critical_code()

finally:
print("Ich komme zurück...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgeführt:

Bei einem return im try-Block wird der finally-Block vor Rückgabe des
Ergebnisses ausgeführt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausführung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann – Info I 13 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

finally-Blöcke

Wenn eine Ausnahme nicht behandelt werden kann, müssen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schließen.
Dazu dient der finally-Block:

try:
critical_code()

finally:
print("Ich komme zurück...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgeführt:

Bei einem return im try-Block wird der finally-Block vor Rückgabe des
Ergebnisses ausgeführt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausführung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann – Info I 13 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

finally-Blöcke

Wenn eine Ausnahme nicht behandelt werden kann, müssen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schließen.
Dazu dient der finally-Block:

try:
critical_code()

finally:
print("Ich komme zurück...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgeführt:

Bei einem return im try-Block wird der finally-Block vor Rückgabe des
Ergebnisses ausgeführt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausführung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann – Info I 13 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

finally-Blöcke

Wenn eine Ausnahme nicht behandelt werden kann, müssen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schließen.
Dazu dient der finally-Block:

try:
critical_code()

finally:
print("Ich komme zurück...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgeführt:
Bei einem return im try-Block wird der finally-Block vor Rückgabe des
Ergebnisses ausgeführt.

Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausführung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann – Info I 13 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

finally-Blöcke

Wenn eine Ausnahme nicht behandelt werden kann, müssen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schließen.
Dazu dient der finally-Block:

try:
critical_code()

finally:
print("Ich komme zurück...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgeführt:
Bei einem return im try-Block wird der finally-Block vor Rückgabe des
Ergebnisses ausgeführt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausführung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann – Info I 13 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Beispiel

kaboom.py

def kaboom(x, y):
print(x + y)

def tryout():
kaboom("abc", [1, 2])

try:
tryout()

except TypeError as e:
print("Hello world", e)

else:
print("All OK")

finally:
print("Cleaning up")

print("Resuming ...")

13.01.2026 P. Thiemann – Info I 14 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Die raise-Anweisung

Die raise-Anweisung signalisiert eine Ausnahme.

raise hat als optionales Argument ein Exception Objekt.
Beispiele

raise KeyError("Fehlerbeschreibung")
raise KeyError()
raise KeyError .

raise ohne Argument dient zum Weiterreichen einer Ausnahme in einem
except-Block.

13.01.2026 P. Thiemann – Info I 15 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Die raise-Anweisung

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Objekt.

Beispiele
raise KeyError("Fehlerbeschreibung")

raise KeyError()
raise KeyError .

raise ohne Argument dient zum Weiterreichen einer Ausnahme in einem
except-Block.

13.01.2026 P. Thiemann – Info I 15 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Die raise-Anweisung

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Objekt.
Beispiele

raise KeyError("Fehlerbeschreibung")
raise KeyError()
raise KeyError .

raise ohne Argument dient zum Weiterreichen einer Ausnahme in einem
except-Block.

13.01.2026 P. Thiemann – Info I 15 / 68

Prolog:
Ausnahmen
(Exceptions)
Ausnahmen

try-except

try-except-else-
Blöcke

finally-Blöcke

raise-Anweisung

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Die raise-Anweisung

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Objekt.
Beispiele

raise KeyError("Fehlerbeschreibung")
raise KeyError()
raise KeyError .

raise ohne Argument dient zum Weiterreichen einer Ausnahme in einem
except-Block.

13.01.2026 P. Thiemann – Info I 15 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Generatoren

13.01.2026 P. Thiemann – Info I 16 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Geheimnis von range & Co

>>> for i in range(3): print(i)
...
0
1
2
>>> rng = range(3)
>>> rng
range(0, 3)
>>> for i in rng: print(i)
...
0
1
2
13.01.2026 P. Thiemann – Info I 18 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Beobachtungen

range(3) liefert keine Liste, sondern ein spezielles Objekt.
Dieses Objekt kann durch for zum “Durchlaufen” einer Sequenz von Werten
gebracht werden.
Dieses Verhalten ist in Python eingebaut, aber es ist auch programmierbar.
Dafür gibt es mehrere Möglichkeiten u.a.

Generatoren
Iteratoren

13.01.2026 P. Thiemann – Info I 19 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ein Generator für range

>>> from typing import Iterator
>>> def myRange(n : int) -> Iterator[int]:
... """ generator that counts from 0 to n-1 """
... i = 0
... while i<n:
... yield i
... i = i+1
...

Neue Anweisung: yield. Ihr Vorkommen bewirkt, dass der Funktionsaufruf myRange(3)
als Ergebnis einen Generator liefert.
Ein Generator ist ein Objekt, das eine Folge von Werten erzeugt, die mit der Funktion
next() einmal durchlaufen werden kann.
Typ eines Generators (vereinfacht): Iterator[T], wobei T der Typ vom Argument von
yield ist.

13.01.2026 P. Thiemann – Info I 20 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Action: Die Funktion next

>>> mr = myRange(2)
>>> next(mr)
0
>>> next(mr)
1
>>> next(mr)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

Intuitiv “läuft” myRange beim ersten Aufruf von next bis zum yield.

Beim nächsten next läuft es an dieser Stelle weiter bis zum nächsten yield.

13.01.2026 P. Thiemann – Info I 21 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Generatorobjekt

Führt Buch über den Stand der Ausführung des Generators.
Stand der Ausführung = Kellerrahmen: Belegung der lokalen Variablen und
Parameter, sowie die als nächstes auszuführende Anweisung.
Bei Konstruktion (d.h. Aufruf der Generatorfunktion) wird ein Generatorobjekt
erzeugt:

Kellerrahmen mit den übergebenen Parametern,
erste Anweisung des Funktionsrumpfes.
Die Generatorfunktion läuft noch nicht los!

Beispiel: Beim Aufruf von gen = myRange (3) enthält das Generatorobjekt
Parameter n = 3
Nächste Anweisung ist i = 0

13.01.2026 P. Thiemann – Info I 22 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Verwendung von Generatoren (Methoden)

Aufruf von next(gen)
1 Restauriere den zuletzt gespeicherten Stand der Ausführung.

2 Fahre dort fort mit der Ausführung des Rumpfes des Generators (Bsp:
Funktionsrumpf von myRange).

3 Führe aus bis zum nächsten yield:
Speichere den aktuellen Stand der Ausführung im Generator.
Liefere das Argument von yield als Ergebnis.

4 Falls das Ende des Rumpfs ohne yield erreicht wird:
Speichere den aktuellen Stand der Ausführung im Generator.
Löse die Ausnahme StopIteration aus.

13.01.2026 P. Thiemann – Info I 23 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iteratoren als Argumente von Funktionen

Viele Funktionen erlauben Iteratoren als Argumente, z.B. die Funktion list:
>>> mr = myRange(2)
>>> list(mr)
[0, 1]
>>> list(mr)
[]

Intern baut sie die Ergebnisliste durch wiederholtes Aufrufen von next auf,
bis StopIteration ausgelöst wird.
Auch eine for-Schleife kann durch einen Iterator gesteuert werden:
>>> for i in myRange(3): print(i, end=' ')
...
0 1 2

13.01.2026 P. Thiemann – Info I 24 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ein Generator muss nicht endlich sein

def upFrom(n:int) -> Iterator[int]:
while True:

yield n
n = n + 1

Python-Interpreter
>>> uf = upFrom(10)
>>> next(uf)
10
>>> next(uf)
11
>>> list(uf)
^CTraceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in upFrom
KeyboardInterrupt

13.01.2026 P. Thiemann – Info I 25 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Abfragen eines (potentiell) unendlichen Generators

Zu Fuß mit Ausnahmen
def printGen(gen: Iterator[Any]):

try:
while True:

v = next(gen)
print(v)

except StopIteration:
pass

Elegant mit for-Schleife
def printGenFor(gen: Iterator[Any]):

for v in gen:
print(v)

13.01.2026 P. Thiemann – Info I 26 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Abfragen eines (potentiell) unendlichen Generators

Zu Fuß mit Ausnahmen
def printGen(gen: Iterator[Any]):

try:
while True:

v = next(gen)
print(v)

except StopIteration:
pass

Elegant mit for-Schleife
def printGenFor(gen: Iterator[Any]):

for v in gen:
print(v)

13.01.2026 P. Thiemann – Info I 26 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Zwei weitere Beispiele: map und filter

def myMap[A,B](f : Callable[[A], B],
seq : Iterator[A]

) -> Iterator[B]:
for x in seq:

yield f (x)

def twox1 (x : int) -> int:
return 2*x+1

printGenFor(
myMap(twox1, upFrom(10)))

Was wird gedruckt?

def myFilter[A](p : Callable[[A], bool],
seq : Iterator[A]

) -> Iterator[A]:
for x in seq:

if p(x):
yield x

def div3 (x : int) -> bool:
return x % 3 == 0

printGenFor(
myFilter(div3, upFrom(0)))

Was wird gedruckt?

13.01.2026 P. Thiemann – Info I 27 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Zwei weitere Beispiele: map und filter

def myMap[A,B](f : Callable[[A], B],
seq : Iterator[A]

) -> Iterator[B]:
for x in seq:

yield f (x)

def twox1 (x : int) -> int:
return 2*x+1

printGenFor(
myMap(twox1, upFrom(10)))

Was wird gedruckt?

def myFilter[A](p : Callable[[A], bool],
seq : Iterator[A]

) -> Iterator[A]:
for x in seq:

if p(x):
yield x

def div3 (x : int) -> bool:
return x % 3 == 0

printGenFor(
myFilter(div3, upFrom(0)))

Was wird gedruckt?

13.01.2026 P. Thiemann – Info I 27 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Anwendung von Generatoren

Ein Problem
Nanga Eboko will seine Schwester in Kamerun besuchen. Sein Koffer darf 23kg
wiegen, die er mit Geschenken komplett ausnutzen will.

13.01.2026 P. Thiemann – Info I 28 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Sublisten

Definition: Subliste
Sei L = [x1, . . . ,xn] eine Liste. Eine Subliste von L hat die Form [xi1 , . . . ,xik] und ist
gegeben durch eine Folge von Indizes i1 < i2 < · · ·< ik mit ij ∈ {1, . . . ,n}.

Beispiel: Sublisten von L = [1,5,5,2,1,7]
L1 = [1,5,5,2,1,7] L2 = [1,5,1,7] L3 = [5,5]
L4 = [1,2] L5 = [2,1] L6 = []

keine Sublisten von L:
[1,2,8] [2,5,1]

Fakt
Es gibt 2n Sublisten von L = [x1, . . . ,xn], wenn alle xi unterschiedlich sind.

13.01.2026 P. Thiemann – Info I 29 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Sublisten

Definition: Subliste
Sei L = [x1, . . . ,xn] eine Liste. Eine Subliste von L hat die Form [xi1 , . . . ,xik] und ist
gegeben durch eine Folge von Indizes i1 < i2 < · · ·< ik mit ij ∈ {1, . . . ,n}.

Beispiel: Sublisten von L = [1,5,5,2,1,7]
L1 = [1,5,5,2,1,7] L2 = [1,5,1,7] L3 = [5,5]
L4 = [1,2] L5 = [2,1] L6 = []

keine Sublisten von L:
[1,2,8] [2,5,1]

Fakt
Es gibt 2n Sublisten von L = [x1, . . . ,xn], wenn alle xi unterschiedlich sind.

13.01.2026 P. Thiemann – Info I 29 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Sublisten

Definition: Subliste
Sei L = [x1, . . . ,xn] eine Liste. Eine Subliste von L hat die Form [xi1 , . . . ,xik] und ist
gegeben durch eine Folge von Indizes i1 < i2 < · · ·< ik mit ij ∈ {1, . . . ,n}.

Beispiel: Sublisten von L = [1,5,5,2,1,7]
L1 = [1,5,5,2,1,7] L2 = [1,5,1,7] L3 = [5,5]
L4 = [1,2] L5 = [2,1] L6 = []

keine Sublisten von L:
[1,2,8] [2,5,1]

Fakt
Es gibt 2n Sublisten von L = [x1, . . . ,xn], wenn alle xi unterschiedlich sind.
13.01.2026 P. Thiemann – Info I 29 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Rucksackproblem

Ein spezielles 0/1 Rucksackproblem
Gegeben ist eine Liste L von positiven ganzen Zahlen (Gewichten) und ein Zielgewicht S.
Gibt es eine Subliste von L, deren Summe exakt S ergibt?

Ein schweres Problem
Der naive Algorithmus probiert alle maximal möglichen 2len(L) Sublisten durch.

Es ist nicht bekannt, ob es für dieses Problem einen effizienteren Algorithmus gibt.

13.01.2026 P. Thiemann – Info I 30 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Rucksackproblem

Ein spezielles 0/1 Rucksackproblem
Gegeben ist eine Liste L von positiven ganzen Zahlen (Gewichten) und ein Zielgewicht S.
Gibt es eine Subliste von L, deren Summe exakt S ergibt?

Ein schweres Problem
Der naive Algorithmus probiert alle maximal möglichen 2len(L) Sublisten durch.

Es ist nicht bekannt, ob es für dieses Problem einen effizienteren Algorithmus gibt.

13.01.2026 P. Thiemann – Info I 30 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ein rekursiver Algorithmus mit Generatoren

def knapsack[A](goal : int, items : list[tuple[A,int]]) -> Iterator[list[A]]:
if goal == 0:

yield [] # solution found
elif not items:

return # out of items, no solution
else:

item0, weight = items[0]
remaining_items = items[1:]
yield from knapsack (goal, remaining_items) # solutions without item0
if weight <= goal:

for solution in knapsack (goal - weight, remaining_items):
yield [item0] + solution

13.01.2026 P. Thiemann – Info I 31 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Beispielhafte Eingabe (Dictionary)
gifts = {'phone': 200, 'boots': 1200, 'laptop': 2200, 'glasses': 50,

'camera': 150, 'jumpsuit': 2340, 'headphones': 80, 'fitbit': 40,
'hanger': 10, 'pillow': 400, 'hoverboard': 870, 'handbag': 430}

13.01.2026 P. Thiemann – Info I 32 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren
Anwendung von
Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Neu und wichtig

Wird der Rumpf eines Generators mit return beendet, löst der Generator
eine StopIteration-Ausnahme aus.
Anstelle des Dictionaries wird list(gifts.items()) übergeben, eine Liste
von key-value-Paaren.
yield from gen entspricht der Schleife� �
for x in gen: yield x� �
Der Algorithmus verwendet Backtracking:

Ein Lösungsansatz wird Schritt für Schritt zusammengesetzt.
Erweist sich ein Ansatz als falsch, so werden Schritte zurückgenommen
(Backtracking) bis ein alternativer Schritt möglich ist.

Mit rekursiven Generatoren und dem Verzicht auf Änderungen in der
Datenstruktur ist die Rücknahme von Schritten besonders einfach.

13.01.2026 P. Thiemann – Info I 33 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iteratoren

13.01.2026 P. Thiemann – Info I 34 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iterierbare Objekte

Ein Objekt heißt Container-Objekt, falls es untergeordnete Objekte verwaltet.
Die for-Schleife kann für viele Container-Objekte die Elemente durchlaufen.
Dazu gehören Sequenzen, Tupel, Listen, Strings, Dictionaries, Mengen usw:
>>> for el in {1, 5, 3, 0}: print(el, end=' ')
...
0 1 3 5
Dies alles sind Beispiele für iterierbare Objekte (Generalisierung von
Generatoren).
Das Verhalten dieser Objekte wird durch das Iterator-Protokoll bestimmt.

13.01.2026 P. Thiemann – Info I 36 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Iterator-Protokoll (1)

Das Iterator-Protokoll unterscheidet zwei Arten von Objekten:
iterierbare Objekte (Typ Iterable[X]) und Iteratoren (Typ Iterator[X]).
Ein iterierbares Objekt implementiert die dunder Methode _ i ter__, die dann
ein Iterator-Objekt zurückliefert.
Ein Iterator-Objekt implementiert die dunder Methoden

_ i ter__, die dann immer self liefert, und
_next__, die das nächste Element liefert. Gibt es kein weiteres Element, so
löst die Methode die Ausnahme StopIteration aus.

Die Funktion iter(object) ruft object._ i ter__() auf.
Die Funktion next(object) ruft object._next__() auf.

13.01.2026 P. Thiemann – Info I 37 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Iterator-Protokoll (2)

Iterable Iterator Element
__iter__

__iter__

__next__

Ein iterierbares Objekt (Iterable) erzeugt bei jedem Aufruf von __iter__ einen neuen
Iterator für eine Menge von Objekten.

Ein Iterator liefert sich selbst beim Aufruf von __iter__; jeder Aufruf von __next__
liefert ein neues Objekt aus der Menge.

Da jeder Iterator die __iter__-Methode besitzen, können Iteratoren auch dort
verwendet werden, wo ein iterierbares Objekt erwartet wird (z.B. for-Schleife).

13.01.2026 P. Thiemann – Info I 38 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Implementierung der for-Schleife

for
for el in seq:

do_something(el)

wird intern wie die folgende while-Schleife ausgeführt

iterator
seq_iter = iter(seq)
try:

while True:
el = next(seq_iter)
do_something(el)

except StopIteration:
pass

13.01.2026 P. Thiemann – Info I 39 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Implementierung der for-Schleife

for
for el in seq:

do_something(el)

wird intern wie die folgende while-Schleife ausgeführt

iterator
seq_iter = iter(seq)
try:

while True:
el = next(seq_iter)
do_something(el)

except StopIteration:
pass

13.01.2026 P. Thiemann – Info I 39 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Das Iterator-Protokoll bei der Arbeit

>>> seq = ['Crackpot', 'Religion']
>>> seq_iter = iter(seq)
>>> seq_iter
<list_iterator object at 0x109f4a800>
>>> print(next(seq_iter))
Crackpot
>>> print(next(seq_iter))
Religion
>>> print(next(seq_iter))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

13.01.2026 P. Thiemann – Info I 40 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iterierbare Objekte vs. Iteratoren (1)

Ein Iterator ist nach einem Durchlauf, der mit StopIteration abgeschlossen
wurde, erschöpft, wie in diesem Beispiel:

Python-Interpreter
>>> iterator = myMap(twox1, range(2))
>>> for x in iterator:
... for y in iterator:
... print(x,y)
...

1 3
>>>

13.01.2026 P. Thiemann – Info I 41 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iterierbare Objekte vs. Iteratoren (1)

Ein Iterator ist nach einem Durchlauf, der mit StopIteration abgeschlossen
wurde, erschöpft, wie in diesem Beispiel:

Python-Interpreter
>>> iterator = myMap(twox1, range(2))
>>> for x in iterator:
... for y in iterator:
... print(x,y)
...
1 3
>>>

13.01.2026 P. Thiemann – Info I 41 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iterierbare Objekte vs. Iteratoren (2)

Alternativ: erzeuge bei jedem Start eines Schleifendurchlaufs einen neuen Iterator.

Python-Interpreter
>>> for x in myMap(twox1, range(2)):
... for y in myMap(twox1, range(2)):
... print(x,y)
...

1 1
1 3
3 1
3 3
>>>

13.01.2026 P. Thiemann – Info I 42 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iterierbare Objekte vs. Iteratoren (2)

Alternativ: erzeuge bei jedem Start eines Schleifendurchlaufs einen neuen Iterator.

Python-Interpreter
>>> for x in myMap(twox1, range(2)):
... for y in myMap(twox1, range(2)):
... print(x,y)
...
1 1
1 3
3 1
3 3
>>>

13.01.2026 P. Thiemann – Info I 42 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Weitere iterierbare Objekte

Die range-Funktion liefert ein range-Objekt, das iterierbar ist.
D.h. das Objekt liefert bei jedem Aufruf von iter() einen neuen Iterator.
>>> range_obj = range(10)
>>> range_obj
range(0, 10)
>>> range_iter = iter(range_obj)
>>> range_iter
<range_iterator object at 0x109f4d830>
>>> list(range_iter)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range_iter)
[]
>>> list(range_obj)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

13.01.2026 P. Thiemann – Info I 43 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Direkte Verwendung des Iterator-Protokolls: myZip

Erinnerung:
>>> zz = zip(range(20), range(0,20,3)); zz
<zip object at 0x109f2a280>
>>> list(zz)
[(0, 0), (1, 3), (2, 6), (3, 9), (4, 12), (5, 15), (6, 18)]

Für die Implementierung von zip muss explizit das Iterator-Protokoll
verwendet werden, da zwei Eingaben unabhängig voneinander iteriert
werden müssen.
Eine Implementierung als Generator mit einer for-Schleife ist daher nicht
möglich!

13.01.2026 P. Thiemann – Info I 44 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Implementierung: myZip

def myZip[A,B](s1: Iterable[A], s2: Iterable[B]) -> Iterator[tuple[A,B]]:
i1 = iter(s1)
i2 = iter(s2)
try:

while True:
e1 = next(i1)
e2 = next(i2)
yield (e1, e2)

except StopIteration:
pass

13.01.2026 P. Thiemann – Info I 45 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Beispiel: Fibonacci-Iterator

fibiter.py
@dataclass
class FibIterator:

maxn : int = 0

def __post_init__(self):
self.n, self.a, self.b = 0, 0, 1

def __iter__(self):
return self # an iterator object!

def __next__(self):
self.n += 1
self.a, self.b = self.b, self.a + self.b
if not self.maxn or self.n <= self.maxn:

return self.a
else:

raise StopIteration

13.01.2026 P. Thiemann – Info I 46 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

FibIterator bei der Arbeit

Python-Interpreter
>>> f = FibIterator(10)
>>> list(f)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> list(f)
[]
>>> for i in FibIterator(): print(i)
...
1
1
2
3
5
...

13.01.2026 P. Thiemann – Info I 47 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

FibIterator bei der Arbeit

Python-Interpreter
>>> f = FibIterator(10)
>>> list(f)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> list(f)

[]
>>> for i in FibIterator(): print(i)
...
1
1
2
3
5
...

13.01.2026 P. Thiemann – Info I 47 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

FibIterator bei der Arbeit

Python-Interpreter
>>> f = FibIterator(10)
>>> list(f)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> list(f)
[]
>>> for i in FibIterator(): print(i)
...

1
1
2
3
5
...

13.01.2026 P. Thiemann – Info I 47 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

FibIterator bei der Arbeit

Python-Interpreter
>>> f = FibIterator(10)
>>> list(f)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> list(f)
[]
>>> for i in FibIterator(): print(i)
...
1
1
2
3
5
...
13.01.2026 P. Thiemann – Info I 47 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Iteratoren – selbst gestrickt

Iteratoren bieten:
1 eine einheitliche Schnittstelle zum Aufzählen von Elementen;

ohne dabei eine Liste o.ä. aufbauen zu müssen (Speicher-schonend!);
2 weniger Beschränkungen als Generatoren;
3 die Möglichkeit, unendliche Mengen zu durchlaufen (natürlich nur endliche

Anfangsstücke!).

13.01.2026 P. Thiemann – Info I 48 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Dateien

13.01.2026 P. Thiemann – Info I 49 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Dateien bearbeiten

File closed
open

read

write

close

open(filename : str, mode = 'r': str) -> file:
Öffnet die Datei mit dem Namen filename und liefert ein file-Objekt zurück.
mode bestimmt, ob die Datei gelesen oder geschrieben werden soll (oder beides):

"r": Lesen von Textdateien mit file.read()
"w": Schreiben von Textdateien mit file.write()
"r+": Schreiben und Lesen von Textdateien

13.01.2026 P. Thiemann – Info I 51 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Muster: Dateien mit Iterator und Kontextmanager lesen

with open (filename) as f:
initialize
for line in f:

pass
process this line

Die Anweisung with resource as name: startet einen Kontextmanager
Der Ausdruck resource initialisiert eine Ressource. Sie ist im zugehörigen
Block als name verfügbar.
Falls Ausnahmen im zugehörigen Block auftreten, wird die resource korrekt
finalisiert. D.h. es ist kein extra try-Block erforderlich.
Für Dateien heisst das, dass sie geschlossen werden, egal wie der
with-Block verlassen wird.

13.01.2026 P. Thiemann – Info I 52 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Beispiel: fgrep

Das Unix-Kommando fgrep durchsucht Dateien nach einem festen String.
def fgrep (subject:str, filename:str):

with open (filename) as f:
for line in f:

if subject in line:
print(line)

fgrep ("joke", "text/killing_joke_sketch.txt")

13.01.2026 P. Thiemann – Info I 53 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Beispiel: fgrep mit Ausgabe

def fgrep2 (subject:str, infile:str, outfile:str):
with open (infile) as fin, open (outfile, 'w') as fout:

for line in fin:
if subject in line:

print(line, file=fout)

Hier schützt der Kontextmanager zwei Ressourcen, die Eingabedatei und die
Ausgabedatei.
Zum Schreiben in eine Datei wird print mit dem Keyword-Argument file
verwendet.

13.01.2026 P. Thiemann – Info I 54 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Zugabe: Sudoku

13.01.2026 P. Thiemann – Info I 55 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Sudoku

Sudoku-Regeln
1 Eine Gruppe von Zellen ist

entweder
eine Zeile,
eine Spalte oder
ein fett umrahmter 3x3
Block.

2 Jede Gruppe muss die
Ziffern 1-9 genau einmal
enthalten.

3 Fülle die leeren Zellen,
sodass (2) erfüllt ist!

13.01.2026 P. Thiemann – Info I 57 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Ein ähnlich schweres Problem wie das Rucksackproblem

Suchraum
Der Suchraum hat in den meisten Fällen (17 Vorgaben) eine Größe von ca. 1061 möglichen
Kombinationen.
Würden wir eine Milliarde (109) Kombinationen pro Sekunde testen können, wäre die benötigte
Rechenzeit 1061/(109 ·3 ·107) ≈ 3 ·1044 Jahre.
Die Lebensdauer des Weltalls wird mit 1011 Jahren angenommen.
Selbst bei einer Beschleunigung um den Faktor 1030 würde die Rechnung nicht innerhalb der
Lebensdauer des Weltalls abgeschlossen werden können.
Trotzdem scheint das Lösen von Sudokus ja nicht so schwierig zu sein . . .

13.01.2026 P. Thiemann – Info I 58 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Sudoku mit Backtracking lösen

Repräsentiere das Spielfeld durch ein Dictionary
type Board = dict[Pos,set[int]] mit
type Pos = tuple[int,int].
Das Dictionary b : Board bildet das Paar (row, col) auf die Menge der
möglichen Werte an Zeile row und Spalte col ab.

Dabei ist row, col ∈ {1, . . . ,9}.
Wir verwenden die Invariante /0 ⊂ b[(row,col)] ⊆ {1, . . . ,9}.

13.01.2026 P. Thiemann – Info I 59 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Einlesen des initialen Spielfelds

Wir möchten das initiale Spielfeld von einer Datei einlesen.
Wenn ein Feld mit k vorbesetzt ist, dann gilt
b[(row,col)] = {k}.
Wenn ein Feld frei ist, dann gilt
b[(row,col)] = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Beispiel (leere Felder durch -, entnommen Wikipedia):
53--7----
6--195---
-98----6-
8---6---3
4--8-3--1
7---2---6
-6----28-
---419--5
----8--79

13.01.2026 P. Thiemann – Info I 60 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Einlesen/Ausdrucken des Spielfelds

� �
def read_board_f rom_f i le (f i lename : st r) −> Board :

with open (f i lename , ' r ') as b f i l e :
board = dic t ()
empty = set (range (1 , 10))
row = 1
for l i n e in b f i l e :

for col , x in zip (range (1 ,10) , l i n e) :
board [(row , co l)] = { i n t (x) } i f x in " 123456789 " else empty . copy ()

row += 1
return board� �� �

def pr in t_board (board : Board) :
for row in range (1 , 1 0) :

l i n e = " "
for co l in range (1 , 1 0) :

l i n e += p r i n t _ s i n g l e (board [(row , co l)])
pr in t (l i n e)� �

13.01.2026 P. Thiemann – Info I 61 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Suche mit Backtracking

Durchlaufe systematisch die Zeilen/Spalten-Paare von (1,1) bis (9,9).
Betrachte die Zelle candidates = b[(row,col)]. Wir können
voraussetzen, dass diese Zelle nicht leer ist! (Warum?)
Für jeden möglichen Kandidaten c in candidates:

Setze die Zelle auf c.
Entferne c aus den anderen Zellen in der gleichen Zeile.
Entferne c aus den anderen Zellen in der gleichen Spalte.
Entferne c aus den anderen Zellen im gleichen Block.

Wenn dabei eine Zelle leer wird, verwerfen wir den Kandidaten c.
Wenn dabei keine Zelle leer wird, dann betrachten wir rekursiv die nächste Zelle.
Danach stellen wir den Zustand vor Betrachtung von c wieder her
(Backtracking) und betrachten den nächsten Kandidaten.

Wenn die letzte Zelle erfolgreich bearbeitet wurde, haben wir eine Lösung!
13.01.2026 P. Thiemann – Info I 62 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Entferne c aus der Zeile

Gesucht wird
propagate_row(b : Board, p : Pos, c : int) -> bool

Annahme: c wurde schon in b[p] eingetragen.
Entferne c aus allen weiteren Zellen der gleichen Zeile!
Liefere False, falls dabei eine Zelle leer wird.
Ansonsten liefere True.

13.01.2026 P. Thiemann – Info I 63 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Kopieren des Boards

Gesucht wird
copy_board (b : Board) -> Board

Es muss eine vollständige Kopie angefertigt werden, weil b noch für das
Backtracking benötigt wird!

Ein neues Dictionary
Eine frische Kopie von jeder Menge

13.01.2026 P. Thiemann – Info I 64 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Naive Suche mit Backtracking

� �
def t r y_ f rom (b : Board , p : Opt iona l [Pos] = None) :

p = next_pos (p)
i f p is None :

p r in t_board (b)
return

candidates = b [p]
for c in candidates :

next_b = copy_board (b)
next_b [p] = { c }
i f (propagate_row (next_b , p , c) and

propagate_col (next_b , p , c) and
propagate_blk (next_b , p , c)) :
t r y_ f rom (next_b , p)� �

13.01.2026 P. Thiemann – Info I 65 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Zusammenfassung

13.01.2026 P. Thiemann – Info I 66 / 68

Prolog:
Ausnahmen
(Exceptions)

Generatoren

Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

Zusammenfassung

Ausnahmen sind in Python allgegenwärtig.
Sie können mit raise ausgelöst werden.
Sie können mit try, except, else und finally abgefangen und behandelt
werden.

Generatoren sehen aus wie Funktionen, geben ihre Werte aber mit yield zurück.
Ein Generatoraufruf liefert einen Iterator, der beim Aufruf von next() bis zum nächsten yield
läuft.
Generatoren sind besonders nützlich zur Lösung von Suchproblemen mit Backtracking.
Iteratoren besitzen die Methoden __iter__ und __next__.
Durch Aufrufen der __next__-Methode werden alle Elemente aufgezählt.
Iterierbare Objekte besitzen eine Methode __iter__, die einen Iterator für die enthaltenen
Objekte erzeugt.
Dateien erlauben es, externe Inhalte zu lesen und zu schreiben.
Am einfachsten mit dem Kontextmanager with/as.

13.01.2026 P. Thiemann – Info I 68 / 68

	Prolog: Ausnahmen (Exceptions)
	Ausnahmen
	try-except
	try-except-else-Blöcke
	finally-Blöcke
	raise-Anweisung

	Generatoren
	Anwendung von Generatoren

	Iteratoren
	Dateien
	Zugabe: Sudoku
	Zusammenfassung

