Informatik I: Einfiihrung in die Programmierung
16. Ausnahmen, Generatoren und lteratoren, Backtracking

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann

13.01.2026

Prolog: Ausnahmen (Exceptions)

13.01.2026 P. Thiemann — Info | 2/68

Ausnahmen (1)

UNI
FREIBURG

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:

>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

13.01.2026 P. Thiemann — Info | 4/68

Ausnahmen (1)

UNI
FREIBURG

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:

>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

Solche Fehler heissen Ausnahmen (exceptions).

13.01.2026 P. Thiemann — Info | 4/68

Ausnahmen (1)

UNI
FREIBURG

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:

>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

Solche Fehler heissen Ausnahmen (exceptions).
Jetzt wollen wir Ausnahmen abfangen und selbst melden.

13.01.2026 P. Thiemann — Info | 4/68

Ausnahmen (2)

UNI
FREIBURG

Anwendungen von Ausnahmen

Ausnahmen

13.01.2026 P. Thiemann — Info | 5/68

Ausnahmen (2)

Anwendungen von Ausnahmen

Signalisieren einer Situation, die nicht spezifiziert ist.
Meist im Zusammenhang mit externen Ereignissen.
Beispiel: physikalischer Fehler beim Lesen einer Datei, mangelnder

Speicherplatz, etc

13.01.2026 P. Thiemann — Info |

3
i

5/68

UNI

FREIBURG

Ausnahmen (2)

Anwendungen von Ausnahmen

Signalisieren einer Situation, die nicht spezifiziert ist.

Meist im Zusammenhang mit externen Ereignissen.

Beispiel: physikalischer Fehler beim Lesen einer Datei, mangelnder
Speicherplatz, etc

Vereinfachte Behandlung des “Normalfalls” einer Funktion. Die Ausnahme
wird dabei als alternativer Riickgabewert verwendet.

13.01.2026 P. Thiemann — Info | 5/68

FREIBURG

Ausnahmen (3)

13.01.2026

This exception is raised when a system function returns a
system-related error, including I/O failures such as “file not found” or
“disk full” (not for illegal argument types or other incidental errors).

This exception is raised when the interpreter detects
that the maximum recursion depth is exceeded.

Raised when a sequence subscript is out of range.

Raised when a mapping (dictionary) key is not found in the
set of existing keys.

P. Thiemann — Info | 6/68

Ausnahmen (4)

UNI
FREIBURG

Das Auslésen einer Ausnahme bricht den normalen Programmablauf ab.

Ausnahmen

13.01.2026 P. Thiemann — Info | 7/68

Ausnahmen (4)

UNI
FREIBURG

Das Auslésen einer Ausnahme bricht den normalen Programmablauf ab.

Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelést wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.

13.01.2026 P. Thiemann — Info | 7/68

Ausnahmen (4)

o
+4
D
m
w
[+ 4
[

Das Auslésen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelést wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.

Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt, oo
so wird der Funktionsaufruf beendet, der zugehérige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Ruckgabewert bestimmt!

13.01.2026 P. Thiemann — Info | 7/68

Ausnahmen (4)

o
+4
D
m
w
[+ 4
[

UNI

Das Auslésen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelést wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.

Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt, oo
so wird der Funktionsaufruf beendet, der zugehérige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Ruckgabewert bestimmt!

Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.

13.01.2026 P. Thiemann — Info | 7/68

Ausnahmen (4)

o
+4
D
m
w
[+ 4
[

UNI

Das Auslésen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelést wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.

Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt, soe
so wird der Funktionsaufruf beendet, der zugehérige Kellerrahmen entfernt resee
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Ruckgabewert bestimmt!

Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.

Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann — Info | 7/68

Ausnahmen (5)

UNI
FREIBURG

Ausnahmen sind selbst Objekte.
Sie sind Instanzen von Subklassen der Klasse BaseException.

Die Subklasse Exception dient als Basisklasse fir selbstdefinierte
Ausnahmen.

13.01.2026 P. Thiemann — Info | 8/68

try-except

UNI
FREIBURG

Eine try-except-Anweisung behandelt Ausnahmen, die wahrend der Ausfiihrung des
try-Blocks auftreten. Wenn dort keine Ausnahme ausgeldst wurde oder die Ausnahme in
einer der except-Klauseln bearbeitet wurde, geht es nach der try-Anweisung einfach
weiter.
try-excopt

try:

critical_code()
except NameError as e:

print("Sieh mal einer amn:", e)
except KeyError:

print ("Oops! Ein KeyError!")
except (IOError, OSError):

print("Na sowas!")
except:

print("Ich verschwinde lieber!")

raise

13.01.2026 P. Thiemann — Info | 9/68

except-Blocke (1)

except XYError:

Ein solcher Block wird ausgefuhrt, wenn innerhalb des try-Blocks eine Ausnahme
ausgeldst wird, die eine Instanz von XYError (oder Subklasse) ist.

UNI
FREIBURG

13.01.2026 P. Thiemann — Info | 10/68

except-Blocke (1)

UNI
FREIBURG

except XYError:

Ein solcher Block wird ausgefuhrt, wenn innerhalb des try-Blocks eine Ausnahme
ausgeldst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zuséatzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

13.01.2026 P. Thiemann — Info | 10/68

except-Blocke (1)

except XYError:

UNI
FREIBURG

Ein solcher Block wird ausgefuhrt, wenn innerhalb des try-Blocks eine Ausnahme
ausgeldst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:

Wie oben; zuséatzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):

Ein Tupel fangt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

13.01.2026 P. Thiemann — Info | 10/68

except-Blocke (1)

except XYError:

Ein solcher Block wird ausgefuhrt, wenn innerhalb des try-Blocks eine Ausnahme
ausgeldst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zuséatzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):

Ein Tupel fangt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

except:
So werden unspezifisch alle Ausnahmen abgefangen.

13.01.2026 P. Thiemann — Info | 10/68

UNI
FREIBURG

except-Blocke (2)

UNI
FREIBURG

Die except-Bldocke werden der Reihe nach abgearbeitet, bis der erste o
passende Block gefunden wird (falls Gberhaupt einer passt). ce-exap-aie

Unspezifische except-Bldcke sind daher nur an letzter Stelle sinnvoll.

In einem except-Block kann die abgefangene Ausnahme mit einer
raise-Anweisung ohne Argument weitergereicht werden.

13.01.2026 P. Thiemann — Info | 11/68

try — except —else

o
+4
D
m
w
[+ 4
[

UNI

Ein try-except-Block kann mit einem else-Block abgeschlossen werden, der
ausgefihrt wird, falls im try-Block keine Ausnahme ausgel6st wurde:

v o
critical_code() resee
except IOError:
print ("IOError!")
else:
print("Keine Ausnahme")

13.01.2026 P. Thiemann — Info | 12/68

finally-Blocke

o
+4
D
m
w
[+ 4
[

UNI

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Ausnahmen

try-except

Blocke
finally-Blocke

ise-Anweisung

13.01.2026 P. Thiemann — Info | 13/68

else

finally-Blocke

o
+4
D
m
w
[+ 4
[

UNI

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Dazu dient der finally-Block:

Ausnahmen

try-except

Blocke
finally-Blocke

ise-Anweisung

13.01.2026 P. Thiemann — Info | 13/68

else

finally-Blocke

o
+4
D
m
w
[+ 4
[

UNI

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Dazu dient der finally-Block:

A
try: [

Bloc }_
critical_code() cinaty Blscke
finally: rasa Anweisung

print("Ich komme zuriick...")

Ausnahmen

13.01.2026 P. Thiemann — Info | 13/68

else

finally-Blocke

o
+4
D
m
w
[+ 4
[

UNI

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Dazu dient der finally-Block:

A
try: erye
critical_code() cimatty Bocks
finally: rasa Anweisung

print("Ich komme zuriick...")

Ausnahmen

Der finally-Block wird immer beim Verlassen des try-Blocks ausgefiihrt:

13.01.2026 P. Thiemann — Info | 13/68

t-else

finally-Blocke

o
+4
D
m
w
[+ 4
[

UNI

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Dazu dient der finally-Block:

A
try: erye
critical_code() cimatty Bocks
finally: ratsa Anweisung

print("Ich komme zuriick...")

Ausnahmen

Der finally-Block wird immer beim Verlassen des try-Blocks ausgefiihrt:

Bei einem return im try-Block wird der finally-Block vor Rickgabe des
Ergebnisses ausgeflhrt.

13.01.2026 P. Thiemann — Info | 13/68

t-else

finally-Blocke

o
+4
D
m
w
[+ 4
[

UNI

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Dazu dient der finally-Block:

(A

try: —

critical code() coneny ke

finally: ratsa Anweisung
print("Ich komme zuriick...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgefiihrt:
Bei einem return im try-Block wird der finally-Block vor Rickgabe des
Ergebnisses ausgeflhrt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausflihrung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann — Info | 13/68

ept-else

Beispiel

UNI
FREIBURG

kaboom. py

def kaboom(x, y):
print(x + y)

def tryout():

kaboom("abc", [1, 21)
f£inally-Blocke
try:

tryout ()
except TypeError as e:

print ("Hello world", e)
else:

print ("A1l OK")
finally:

print("Cleaning up")
print ("Resuming ...")

13.01.2026 P. Thiemann — Info | 14 /68

Die raise-Anweisung

UNI
FREIBURG

Die raise-Anweisung signalisiert eine Ausnahme.

Ausnahmen

13.01.2026 P. Thiemann — Info | 15/68

Die raise-Anweisung

UNI
FREIBURG

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Obijekt.

lelelele Anweisung

13.01.2026 P. Thiemann — Info | 15/68

Die raise-Anweisung

UNI
FREIBURG

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Obijekt.
Beispiele

raise KeyError("Fehlerbeschreibung")
raise KeyError()
raise KeyError

13.01.2026 P. Thiemann — Info | 15/68

Die raise-Anweisung

UNI
FREIBURG

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Obijekt.
Beispiele

raise KeyError("Fehlerbeschreibung")
raise KeyError()
raise KeyError
raise ohne Argument dient zum Weiterreichen einer Ausnahme in einem
except-Block.

13.01.2026 P. Thiemann — Info | 15/68

Generatoren

13.01.2026

P. Thiemann — Info |

16/68

UNI

FREIBURG

Generatoren

Das Geheimnis von range & Co

>>> for i in range(3): print(i)

0

1

2

>>> rng = range(3)

>>> rng

range (0, 3)

>>> for i in rng: print(i)

0
1
2

13.01.2026 P. Thiemann — Info |

o
+4
D
m
w
[+ 4
[

UNI

Generatoren
nwendung vol
’

18/68

Beobachtungen

o
+4
D
m
w
[+ 4
[

UNI

range (3) liefert keine Liste, sondern ein spezielles Objekt.

Dieses Objekt kann durch for zum “Durchlaufen” einer Sequenz von Werten
gebracht werden.

Generatoren
nwendung vol
ratc

Dieses Verhalten ist in Python eingebaut, aber es ist auch programmierbar.
Dafir gibt es mehrere Méglichkeiten u.a.

Generatoren
Iteratoren

13.01.2026 P. Thiemann — Info | 19/68

Ein Generator fiir range

>>> from typing import Iterator
>>> def myRange(n : int) -> Iterator[int]:
" generator that counts from 0 to n-1 """

i=0

while i<n:
yield i
i = i+1

Neue Anweisung: yield. Ihr Vorkommen bewirkt, dass der Funktionsaufruf myRange (3)
als Ergebnis einen Generator liefert.

Ein Generator ist ein Objekt, das eine Folge von Werten erzeugt, die mit der Funktion
next () einmal durchlaufen werden kann.

Typ eines Generators (vereinfacht): Iterator [T], wobei T der Typ vom Argument von
yieldist.

13.01.2026 P. Thiemann — Info |

20/68

UNI
FREIBURG

Generatoren

Action: Die Funktion next

o
+4
D
m
w
[+ 4
[

UNI

>>> mr = myRange(2)

>>> next (mr)

0

>>> next (mr)

1

>>> next (mr)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Generatoren

Intuitiv “lauft” myRange beim ersten Aufruf von next bis zum yield.

Beim nachsten next lauft es an dieser Stelle weiter bis zum nachsten yield.

13.01.2026 P. Thiemann — Info | 21/68

Das Generatorobjekt

o
+4
D
m
w
[+ 4
[

UNI

Fihrt Buch Uber den Stand der Ausfuhrung des Generators.

Stand der Ausfuhrung = Kellerrahmen: Belegung der lokalen Variablen und

Parameter, sowie die als néchstes auszufihrende Anweisung. Generatoren
Bei Konstruktion (d.h. Aufruf der Generatorfunktion) wird ein Generatorobjekt i
erzeugt:

Kellerrahmen mit den Ubergebenen Parametern,
erste Anweisung des Funktionsrumpfes.
Die Generatorfunktion l1&uft noch nicht los!

Beispiel: Beim Aufruf von gen = myRange (3) enthalt das Generatorobjekt

Parametern = 3
Néachste Anweisungisti = 0

13.01.2026 P. Thiemann — Info | 22/68

Verwendung von Generatoren (Methoden)

UNI
FREIBURG

Aufruf von next (gen)

Restauriere den zuletzt gespeicherten Stand der Ausfuhrung.

Generatoren

Fahre dort fort mit der Ausfiihrung des Rumpfes des Generators (Bsp:
Funktionsrumpf von myRange).
Fiihre aus bis zum néchsten yield:

Speichere den aktuellen Stand der Ausfihrung im Generator.
Liefere das Argument von yield als Ergebnis.

Falls das Ende des Rumpfs ohne yield erreicht wird:

Speichere den aktuellen Stand der Ausfiihrung im Generator.
Lése die Ausnahme StopIteration aus.

13.01.2026 P. Thiemann — Info | 23/68

Iteratoren als Argumente von Funktionen

i)
=

FREIBURG

Viele Funktionen erlauben lteratoren als Argumente, z.B. die Funktion 1list:
>>> mr = myRange(2)

>>> list(mr)

[0, 1] Generatoren
>>> list(mr) :

(]

UNI

Intern baut sie die Ergebnisliste durch wiederholtes Aufrufen von next auf,
bis StopIteration ausgeldst wird.

Auch eine for-Schleife kann durch einen lterator gesteuert werden:
>>> for i in myRange(3): print(i, end=' ')

012

13.01.2026 P. Thiemann — Info | 24/68

Ein Generator muss nicht endlich sein

UNI
FREIBURG

def upFrom(n:int) -> Iteratorl[int]:
while True:
yield n
n=mn+1

Generatoren

Anwendung

Python-Interpreter

>>> uf = upFrom(10)

>>> next (uf)

10

>>> next (uf)

11

>>> list (uf)

“CTraceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in upFrom
KeyboardInterrupt

13.01.2026 P. Thiemann — Info | 25/68

Abfragen eines (potentiell) unendlichen Generators

ZuFwmitAusnahmen — B
2

Zu Fuf3 mit Ausnahmen

def printGen(gen: Iterator[Any]):
try:
while True: Generatoren
v = next(gen) SR
print(v)
except Stoplteration:
pass

FREIBURG

13.01.2026 P. Thiemann — Info | 26/68

Abfragen eines (potentiell) unendlichen Generators

5
i}
f—

Zu Fuf3 mit Ausnahmen

def printGen(gen: Iterator[Any]):
try:
while True: Generatoren
v = next(gen) S
print(v)
except Stoplteration:
pass

FREIBURG

Elegant mit for-Schleife

def printGenFor(gen: Iterator[Any]):
for v in gen:
print (v)

13.01.2026 P. Thiemann — Info | 26/68

Zwei weitere Beispiele: map und filter

UNI
FREIBURG

def myMap[A,B](f : Callable[[A], B]
seq : Iterator[A]
) -> Iterator[B]:
for x in seq:
yield £ (x)

def twoxl (x : int) -> int:
return 2*x+1

printGenFor(
myMap (twox1, upFrom(10)))

B

Generatoren

Was wird gedruckt?

13.01.2026

P. Thiemann — Info | 27/68

Zwei weitere Beispiele: map und filter

UNI
FREIBURG

def myMap[A,B](f : Callable[[A], B]
seq : Iterator[A]
) -> Iterator[B]:
for x in seq:
yield £ (x)

def twoxl (x : int) -> int:
return 2*x+1

printGenFor(
myMap (twox1, upFrom(10)))

s def myFilter[A](p :

seq : Iterator[A]
) —> Iterator[A]l:
for x in seq:

if p(x):
yield x
def div3 (x : int) -> bool:

return x % 3 ==

printGenFor(
myFilter(div3, upFrom(0)))

Callable[[A], bool],

Generatoren

Was wird gedruckt?

13.01.2026

Was wird gedruckt?

P. Thiemann — Info |

27/68

Anwendung von Generatoren

Ein Problem

Nanga Eboko will seine Schwester in Kamerun besuchen. Sein Koffer darf 23kg
wiegen, die er mit Geschenken komplett ausnutzen will.

| RE S
UNI
FREIBURG

designed by & freepik.com

13.01.2026 P. Thiemann — Info | 28/68

Sublisten

FREIBURG

Definition: Subliste

Sei L =[xq,...,xy] eine Liste. Eine Subliste von L hat die Form [x;,,...,X;] und ist
gegeben durch eine Folge von Indizes iy <ip < --- <i, mitjj € {1,...,n}.

Anwendung von

Generatoren

13.01.2026 P. Thiemann — Info | 29/68

Sublisten 9
=2
=2 _

Definition: Subliste :Z’E
Sei L =[xq,...,xy] eine Liste. Eine Subliste von L hat die Form [x;,,...,X;] und ist
gegeben durch eine Folge von Indizes iy <ip < --- <i, mitjj € {1,...,n}.
Beispiel: Sublisten von L =[1,5,5,2,1,7] Anvendung on

L1=[175a57271a7] L2=[1557177] L3=[5a5]

Ly=[1,2] Ls=[2,1] Le=1]
keine Sublisten von L:

[1,2,8] [2,5,1]

13.01.2026 P. Thiemann — Info | 29/68

Sublisten

Definition: Subliste

Sei L =[xq,...,xy] eine Liste. Eine Subliste von L hat die Form [x;,,...,X;] und ist
gegeben durch eine Folge von Indizes iy <ip < --- <i, mitjj € {1,...,n}.

UNI
FREIBURG

Beispiel: Sublisten von L =[1,5,5,2,1,7] Arvercing v
L1=[175a57271a7] L2=[1557177] L3=[5a5]
Ly=[1,2] Ls=[2,1] Le =]
keine Sublisten von L:
[1,2,8] [2,5,1]

Fakt
Es gibt 2" Sublisten von L = [x1,...,x,], wenn alle x; unterschiedlich sind.

13.01.2026 P. Thiemann — Info | 29/68

Das Rucksackproblem

(&)
o
- |
@
zl.u
o5&

Ein spezielles 0/1 Rucksackproblem

Gegeben ist eine Liste L von positiven ganzen Zahlen (Gewichten) und ein Zielgewicht S.
Gibt es eine Subliste von L, deren Summe exakt S ergibt?

Generatoren

13.01.2026 P. Thiemann — Info | 30/68

Anwendung von

Das Rucksackproblem

o
+4
D
m
w
[+ 4
[

UNI

Ein spezielles 0/1 Rucksackproblem

Gegeben ist eine Liste L von positiven ganzen Zahlen (Gewichten) und ein Zielgewicht S.
Gibt es eine Subliste von L, deren Summe exakt S ergibt?

Generatoren

Ein schweres Problem
Der naive Algorithmus probiert alle maximal méglichen 2/°"() Sublisten durch.

Es ist nicht bekannt, ob es fiir dieses Problem einen effizienteren Algorithmus gibt.

13.01.2026 P. Thiemann — Info | 30/68

Anwendung von

Ein rekursiver Algorithmus mit Generatoren

UNI

def knapsack[A](goal : int, items : list[tuple[A,int]]) -> Iterator[list[A]]:

if goal ==

yield [] # solution found
elif not items:

return # out of items, mo solution
else:

item0, weight = items[0]
remaining_items = items[1:]
yield from knapsack (goal, remaining items) # solutions without itemO
if weight <= goal:
for solution in knapsack (goal - weight, remaining_items):
yield [itemO] + solution

13.01.2026 P. Thiemann — Info |

31/68

o
+4
D
m
w
[+ 4
[

Anwendung von
Generatoren

UNI
FREIBURG

Anwendung von
Generatoren

Beispielhafte Eingabe (Dictionary)

gifts = {'phone': 200, 'boots': 1200, 'laptop': 2200, 'glasses': 50,
'camera': 150, 'jumpsuit': 2340, 'headphones': 80, 'fitbit': 40,
'hanger': 10, 'pillow': 400, 'hoverboard': 870, 'handbag': 430}

13.01.2026 P. Thiemann — Info | 32/68

Neu und wichtig

UNI
FREIBURG

Wird der Rumpf eines Generators mit return beendet, I18st der Generator
eine StopIteration-Ausnahme aus.

Anstelle des Dictionaries wird 1ist (gifts.items()) Ubergeben, eine Liste
von key-value-Paaren.

yield from gen entspricht der Schleife

Generatoren

{for X in gen: yield x J

Der Algorithmus verwendet Backtracking:
Ein Lésungsansatz wird Schritt fir Schritt zusammengesetzt.
Erweist sich ein Ansatz als falsch, so werden Schritte zurlickgenommen
(Backtracking) bis ein alternativer Schritt méglich ist.

Mit rekursiven Generatoren und dem Verzicht auf Anderungen in der

Datenstruktur ist die Riicknahme von Schritten besonders einfach.
13.01.2026 P. Thiemann — Info | 33/68

Anwendung von

i

T

UNI
FREIBURG

lteratoren

Iteratoren

13.01.2026 P. Thiemann — Info | 34/68

Iterierbare Objekte

o
+4
D
m
w
[+ 4
[

UNI

Ein Objekt heif3t Container-Objekt, falls es untergeordnete Objekte verwaltet.
Die for-Schleife kann fur viele Container-Objekte die Elemente durchlaufen.
Dazu gehéren Sequenzen, Tupel, Listen, Strings, Dictionaries, Mengen usw:
>>> for el in {1, 5, 3, 0}: print(el, end=' ')

Iteratoren

0135

Dies alles sind Beispiele flr iterierbare Objekte (Generalisierung von
Generatoren).

Das Verhalten dieser Objekte wird durch das lterator-Protokoll bestimmt.

13.01.2026 P. Thiemann — Info | 36/68

Das Iterator-Protokoll (1)

o
+4
D
m
w
[+ 4
[

Das lterator-Protokoll unterscheidet zwei Arten von Objekten:

iterierbare Objekte (Typ Iterable[X]) und lteratoren (Typ Iterator [X]).

Ein iterierbares Objekt implementiert die dunder Methode _;ter__, die dann

ein lterator-Objekt zurlckliefert. fteratoren

Ein lterator-Objekt implementiert die dunder Methoden
_jter__, die dann immer self liefert, und
_next__, die das nachste Element liefert. Gibt es kein weiteres Element, so
|6st die Methode die Ausnahme StopIteration aus.

Die Funktion iter (object) ruft object. _jter__ () auf.
Die Funktion next (object) ruft object. _pext__() auf.

13.01.2026 P. Thiemann — Info | 37/68

Das Iterator-Protokoll (2)

o
+4
D
m
w
[+ 4
[

UNI

__iter_ __next_
lterable A lterator » Element
v Iteratoren

Ein iterierbares Objekt (lterable) erzeugt bei jedem Aufruf von __iter__ einen neuen
lterator flr eine Menge von Objekten.

Ein lterator liefert sich selbst beim Aufruf von __iter__; jeder Aufruf von __next__
liefert ein neues Objekt aus der Menge.

Da jeder Iterator die __iter__-Methode besitzen, kénnen lteratoren auch dort
verwendet werden, wo ein iterierbares Objekt erwartet wird (z.B. for-Schleife).

13.01.2026 P. Thiemann — Info | 38/68

Implementierung der for-Schleife

(&)
o
. 2
::ua
o5&

for
for el in seq:

do_something(el)

Iteratoren

13.01.2026 P. Thiemann — Info | 39/68

Implementierung der for-Schleife

o
+4
D
m
w
[+ 4
[

UNI

for

for el in seq:
do_something(el)

wird intern wie die folgende while-Schleife ausgeflihrt

Iteratoren

iterator

seq_iter = iter(seq)
try:
while True:
el = next(seq_iter)
do_something(el)
except StopIteration:
pass

13.01.2026 P. Thiemann — Info | 39/68

Das Iterator-Protokoll bei der Arbeit

>>> seq = ['Crackpot', 'Religion']

>>> seq_iter = iter(seq)

>>> seq_iter

<list_iterator object at 0x109f4a800>

>>> print(next(seq_iter))

Crackpot

>>> print(next(seq_iter))

Religion

>>> print(next(seq_iter))

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

13.01.2026 P. Thiemann — Info |

o
+4
D
m
w
[+ 4
[

UNI

Iteratoren

40/68

Iterierbare Objekte vs. Iteratoren (1)

UNI
FREIBURG

Ein lterator ist nach einem Durchlauf, der mit StopIteration abgeschlossen
wurde, erschopft, wie in diesem Beispiel:

Python-Interpreter

>>> iterator = myMap(twoxl, range(2))
>>> for x in iterator:
for y in iterator:
print(x,y)

Iteratoren

13.01.2026 P. Thiemann — Info | 41/68

Iterierbare Objekte vs. Iteratoren (1)

UNI
FREIBURG

Ein lterator ist nach einem Durchlauf, der mit StopIteration abgeschlossen
wurde, erschopft, wie in diesem Beispiel:

Python-Interpreter

>>> iterator = myMap(twoxl, range(2))
>>> for x in iterator:
for y in iterator:
print(x,y)

Iteratoren

13
>>>

13.01.2026 P. Thiemann — Info | 41/68

Iterierbare Objekte vs. Iteratoren (2)

3
i

UNI
FREIBURG

Alternativ: erzeuge bei jedem Start eines Schleifendurchlaufs einen neuen lterator.

Python-Interpreter

>>> for x in myMap(twoxl, range(2)): o
eratoren
for y in myMap(twoxl, range(2)):
print(x,y)

13.01.2026 P. Thiemann — Info | 42/68

Iterierbare Objekte vs. Iteratoren (2)

3
i

UNI
FREIBURG

Alternativ: erzeuge bei jedem Start eines Schleifendurchlaufs einen neuen lterator.

Python-Interpreter
>>> for x in myMap(twoxl, range(2)):
for y in myMap(twoxl, range(2)):
print(x,y)

Iteratoren

W W e
W= W -

>>>

13.01.2026 P. Thiemann — Info | 42/68

Weitere iterierbare Objekte

o
+4
D
m
w
[+ 4
[

74
UNI

Die range-Funktion liefert ein range-Objekt, das iterierbar ist.

D.h. das Objekt liefert bei jedem Aufruf von iter () einen neuen lterator.
>>> range_obj = range(10)

>>> range_obj

range (O N 10) Iteratoren
>>> range_iter = iter(range_obj)

>>> range_iter

<range_iterator object at 0x109f4d830>

>>> list(range_iter)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range_iter)

[]

>>> list(range_obj)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

13.01.2026 P. Thiemann — Info | 43/68

Direkte Verwendung des Iterator-Protokolls: myZip

o
+4
D
m
w
[+ 4
[

UNI

Erinnerung:

>>> zz = zip(range(20), range(0,20,3)); zz

<zip object at 0x109f2a280>

>>> list (ZZ) Iteratoren
[(O, O), (1, 3), (2, 6), (3, 9, (4, 12), (5, 15), (B, 18)]

Far die Implementierung von zip muss explizit das Iterator-Protokoll
verwendet werden, da zwei Eingaben unabhangig voneinander iteriert
werden mussen.

Eine Implementierung als Generator mit einer for-Schleife ist daher nicht
moglich!

13.01.2026 P. Thiemann — Info | 44/68

Implementierung: myZip

o
+4
D
m
w
[+ 4
[

UNI

def myZip[A,B](sl: Iterable[A], s2: Iterable[B]) -> Iterator[tuple[A,B]]:
il = iter(sl)
i2 = iter(s2)
try: Iteratoren
while True:
el = next(il)
e2 = next(i2)
yield (el, e2)
except StoplIteration:
pass

13.01.2026 P. Thiemann — Info | 45/68

Beispiel: Fibonacci-Iterator 9
=2
s_Qo_
fibiter.py 2y
Q@dataclass DL
class FibIterator:
maxn : int = 0O
def __post_init__(self):
self.n, self.a, self.b = 0, 0, 1 Iteratoren

def __iter__(self):
return self # an iterator object!

def __next__(self):
self.n += 1
self.a, self.b = self.b, self.a + self.b
if not self.maxn or self.n <= self.maxn:
return self.a
else:
raise StopIteration

13.01.2026 P. Thiemann — Info | 46/68

FibIterator bei der Arbeit

UNI
FREIBURG

Python-Interpreter

>>> f = FibIterator(10)
>>> list(f)

Iteratoren

13.01.2026 P. Thiemann — Info | 47168

FibIterator bei der Arbeit

UNI
FREIBURG

Python-Interpreter

>>> f = FibIterator(10)

>>> list(f)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>>> 1ist(f) Iteratoren

13.01.2026 P. Thiemann — Info | 47168

FibIterator bei der Arbeit

UNI
FREIBURG

Python-Interpreter

>>> f = FibIterator(10)
>>> list(f)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>>> 1ist(f) Iteratoren
(]

>>> for i in FibIterator(): print(i)

13.01.2026 P. Thiemann — Info | 47168

FibIterator bei der Arbeit

UNI
FREIBURG

Python-Interpreter

>>> f = FibIterator(10)

>>> list(f)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>>> 1ist(f) Iteratoren
1

>>> for i in FibIterator(): print(i)

g wWN = =

13.01.2026 P. Thiemann — Info | 47168

Iteratoren — selbst gestrickt

o
+4
D
m
w
[+ 4
[

UNI

lteratoren bieten:

eine einheitliche Schnittstelle zum Aufzahlen von Elementen;
ohne dabei eine Liste 0.4. aufbauen zu missen (Speicher-schonend!);

Iteratoren

weniger Beschrankungen als Generatoren;

die Mdglichkeit, unendliche Mengen zu durchlaufen (nattrlich nur endliche
Anfangssticke!).

13.01.2026 P. Thiemann — Info | 48/68

i

T

UNI
FREIBURG

Dateien

Dateien

13.01.2026 P. Thiemann — Info | 49/68

Dateien bearbeiten

:

UNI
FREIBURG

read

open /J:l\ close
)% » closed

write

Dateien

open(filename : str, mode = 'r': str) -> file:
Offnet die Datei mit dem Namen filename und liefert ein £ile-Objekt zurick.
mode bestimmt, ob die Datei gelesen oder geschrieben werden soll (oder beides):

"r: Lesen von Textdateien mit file.read ()
"w": Schreiben von Textdateien mit file.write()
"r+": Schreiben und Lesen von Textdateien

13.01.2026 P. Thiemann — Info | 51/68

Muster: Dateien mit Iterator und Kontextmanager lesen

i)
=

UNI
FREIBURG

with open (filename) as f:
initialize
for line in f:
pass
process this line

Dateien

Die Anweisung with resource as name: startet einen Kontextmanager
Der Ausdruck resource initialisiert eine Ressource. Sie ist im zugehdrigen
Block als name verflgbar.

Falls Ausnahmen im zugehérigen Block auftreten, wird die resource korrekt
finalisiert. D.h. es ist kein extra try-Block erforderlich.

Fur Dateien heisst das, dass sie geschlossen werden, egal wie der

with-Block verlassen wird.
13.01.2026 P. Thiemann — Info | 52/68

Beispiel: fgrep

o
+4
D
m
w
[+ 4
[

UNI

Das Unix-Kommando fgrep durchsucht Dateien nach einem festen String.

def fgrep (subject:str, filename:str):
with open (filename) as f:
for line in f: Dateien
if subject in line:
print(line)

fgrep ("joke", "text/killing_joke_sketch.txt")

13.01.2026 P. Thiemann — Info | 53/68

Beispiel: fgrep mit Ausgabe

o
+4
D
m
w
[+ 4
[

UNI

def fgrep2 (subject:str, infile:str, outfile:str):
with open (infile) as fin, open (outfile, 'w') as fout:
for line in fin:
if subject in line:
print(line, file=fout)

Dateien

Hier schitzt der Kontextmanager zwei Ressourcen, die Eingabedatei und die
Ausgabedatei.

Zum Schreiben in eine Datei wird print mit dem Keyword-Argument file
verwendet.

13.01.2026 P. Thiemann — Info | 54/68

Zugabe: Sudoku

13.01.2026 P. Thiemann — Info

55/68

7128
7 1
9 6|4
=] 2

3
1

34

8 S5

13.01.2026

P. Thiemann — Info |

Sudoku-Regeln

Eine Gruppe von Zellen ist
entweder

eine Zeile,

eine Spalte oder

ein fett umrahmter 3x3

Block.
Jede Gruppe muss die
Ziffern 1-9 genau einmal
enthalten.

Fulle die leeren Zellen,
sodass (2) erfullt ist!

57/68

UNI

FREIBURG

Zugabe:
Sudoku

Ein dhnlich schweres Problem wie das Rucksackproblem

UNI
FREIBURG

Suchraum

Der Suchraum hat in den meisten Fillen (17 Vorgaben) eine GréBe von ca. 108" méglichen
Kombinationen.

Wiirden wir eine Milliarde (10°) Kombinationen pro Sekunde testen kdnnen, wére die benétigte

Rechenzeit 1081 /(10%-3-107) ~ 3 10% Jahre. .
Die Lebensdauer des Weltalls wird mit 10'" Jahren angenommen. Stdoku

Selbst bei einer Beschleunigung um den Faktor 100 wiirde die Rechnung nicht innerhalb der
Lebensdauer des Weltalls abgeschlossen werden kénnen.

Trotzdem scheint das Lésen von Sudokus ja nicht so schwierig zu sein ...

13.01.2026 P. Thiemann — Info | 58/68

Sudoku mit Backtracking 16sen

o
+4
D
m
w
[+ 4
[

UNI

Reprasentiere das Spielfeld durch ein Dictionary

type Board = dict[Pos,set[int]] mit

type Pos = tfuple[int,int].

Das Dictionary b : Board bildet das Paar (row, col) auf die Menge der Zugabe:
moglichen Werte an Zeile row und Spalte col ab. Sudoku

Dabei ist row, col € {1,...,9}.
Wir verwenden die Invariante @ C b [(row,col)] C {1,...,9}.

13.01.2026 P. Thiemann — Info | 59/68

Einlesen des initialen Spielfelds 9
2
i_0_
N - . . o 2%
Wir méchten das initiale Spielfeld von einer Datei einlesen. 5%
Wenn ein Feld mit k vorbesetzt ist, dann gilt
bl[(row,col)] = {k}.
Wenn ein Feld frei ist, dann gilt
b[(row,col)] = {1, 2, 3, 4, 5, 6, 7, 8, 9}
Beispiel (leere Felder durch -, entnommen Wikipedia):
53-=7--—- Zugabe:
6--195-—-- Sudoku
-98----6-
8---6---3
4--8-3—-1
7---2---6
-6----28-
-—-419--5
-—--8--79

13.01.2026 P. Thiemann — Info | 60/68

Einlesen/Ausdrucken des Spielfelds

def read_board_from_file (filename : str) -> Board:
with open (filename, 'r') as bfile:

board = dict ()
empty = set(range(1,10))
row = 1

for line in bfile:
for col, x in zip(range(1,10), line):

board[(row, col)] = {int(x)} if x in "123456789" else empty.copy ()

row += 1
return board

def print_board(board : Board):
for row in range(1,10):
line = ""
for col in range(1,10):
line += print_single (board[(row, col)])
print (line)

13.01.2026 P. Thiemann — Info |

61/68

UNI
FREIBURG

Zugabe:
Sudoku

Suche mit Backtracking

(&)
-
5 - |
di o
zl.u
o5&

Durchlaufe systematisch die Zeilen/Spalten-Paare von (1,1) bis (9,9).

Betrachte die Zelle candidates = b[(row,col)]. Wir kénnen
voraussetzen, dass diese Zelle nicht leer ist! (Warum?)
Fur jeden méglichen Kandidaten ¢ in candidates:
Setze die Zelle auf c.
Entferne ¢ aus den anderen Zellen in der gleichen Zeile. Jugabe:

Entferne c aus den anderen Zellen in der gleichen Spalte. Sudoku
Entferne c aus den anderen Zellen im gleichen Block.

Wenn dabei eine Zelle leer wird, verwerfen wir den Kandidaten c.

Wenn dabei keine Zelle leer wird, dann betrachten wir rekursiv die nachste Zelle.
Danach stellen wir den Zustand vor Betrachtung von ¢ wieder her
(Backtracking) und betrachten den né&chsten Kandidaten.

Wenn die letzte Zelle erfolgreich bearbeitet wurde, haben wir eine Lésung!

13.01.2026 P. Thiemann — Info | 62/68

Entferne ¢ aus der Zeile

o
+4
D
m
w
[+ 4
[

UNI

Gesucht wird
propagate_row(b : Board, p : Pos, ¢ : int) -> bool
Annahme: c wurde schon in b[p] eingetragen.
Entferne c aus allen weiteren Zellen der gleichen Zeile! Zugabe:

Liefere False, falls dabei eine Zelle leer wird.
Ansonsten liefere True.

13.01.2026 P. Thiemann — Info | 63/68

Kopieren des Boards

o
+4
D
m
w
[+ 4
[

UNI

Gesucht wird
copy_board (b : Board) -> Board

Es muss eine vollstandige Kopie angefertigt werden, weil b noch fir das
Backtracking bendtigt wird! Zugabe:

. . s Sudoku
Ein neues Dictionary
Eine frische Kopie von jeder Menge

13.01.2026 P. Thiemann — Info | 64/68

Naive Suche mit Backtracking

UNI
FREIBURG

def try_from (b : Board, p : Optional[Pos] = None):
p = next_pos(p)
if p is None:
print_board (b)
return
candidates = b[p]
for ¢ in candidates: Zugabe:
next_b = copy_board(b) Sudoku
next b[p] ={ c}
if (propagate_row(next_b, p, c) and
propagate_col(next_b, p, c) and
propagate_blk(next_b, p, c)):
try_from (next_b, p)

13.01.2026 P. Thiemann — Info | 65/68

o
+4
D
m
w
[+ 4
[

UNI

Zusammenfassung

Zusammen-
fassung

13.01.2026 P. Thiemann — Info | 66/68

Zusammenfassung

o
+4
D
m
w
[+ 4
[

UNI

Ausnahmen sind in Python allgegenwartig.
Sie kénnen mit raise ausgeldst werden.
Sie kénnen mit try, except, else und finally abgefangen und behandelt
werden.

Generatoren sehen aus wie Funktionen, geben ihre Werte aber mit yield zurlick.

Ein Generatoraufruf liefert einen lterator, der beim Aufruf von next () bis zum nachsten yield
lauft.

Generatoren sind besonders nitzlich zur Lésung von Suchproblemen mit Backtracking.

Iteratoren besitzen die Methoden __iter__ und __next__. qusarnmen-
assun:

Durch Aufrufen der __next__-Methode werden alle Elemente aufgezahlt. °

lterierbare Objekte besitzen eine Methode __iter
Objekte erzeugt.

Dateien erlauben es, externe Inhalte zu lesen und zu schreiben.
Am einfachsten mit dem Kontextimanager with/as.

, die einen lterator fiir die enthaltenen

13.01.2026 P. Thiemann — Info | 68/68

	Prolog: Ausnahmen (Exceptions)
	Ausnahmen
	try-except
	try-except-else-Blöcke
	finally-Blöcke
	raise-Anweisung

	Generatoren
	Anwendung von Generatoren

	Iteratoren
	Dateien
	Zugabe: Sudoku
	Zusammenfassung

