Informatik I: Einfiihrung in die Programmierung
16. Ausnahmen, Generatoren und lteratoren, Backtracking

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann
13.01.2026

FREIBURG

1 Prolog: Ausnahmen (Exceptions)

Ausnahmen

try-except
try-except-else-Bldcke
finally-Blécke
raise-Anweisung

13.01.2026

P. Thiemann — Info |

UNI
FREIBURG

Prolog:
Ausnahmen
(Exceptions)

3/68

Ausnahmen (1)

In vielen Beispielen sind uns Tracebacks wie der folgende begegnet:

UNI
FREIBURG

>>> print({"spam": "egg"}["parrot"])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'parrot'

Solche Fehler heissen Ausnahmen (exceptions).
Jetzt wollen wir Ausnahmen abfangen und selbst melden.

13.01.2026 P. Thiemann — Info |

4/68

Ausnahmen (2)

Anwendungen von Ausnahmen

Signalisieren einer Situation, die nicht spezifiziert ist.

Meist im Zusammenhang mit externen Ereignissen.

Beispiel: physikalischer Fehler beim Lesen einer Datei, mangelnder
Speicherplatz, etc

Vereinfachte Behandlung des “Normalfalls” einer Funktion. Die Ausnahme
wird dabei als alternativer Rickgabewert verwendet.

13.01.2026 P. Thiemann — Info |

5/68

UNI

Ausnahmen (3)

Beispiele

13.01.2026

This exception is raised when a system function returns a
system-related error, including I/O failures such as “file not found” or
“disk full” (not for illegal argument types or other incidental errors).

This exception is raised when the interpreter detects
that the maximum recursion depth is exceeded.

Raised when a sequence subscript is out of range.

Raised when a mapping (dictionary) key is not found in the
set of existing keys.

P. Thiemann — Info | 6/68

UNI
FREIBURG

Ausnahmen (4)

Das Auslésen einer Ausnahme bricht den normalen Programmablauf ab.
Stattdessen beginnt ab der Stelle, wo die Ausnahme ausgelést wurde, die
Suche nach der Ausnahmebehandlung mit der Anweisung try mit Optionen
except, finally und else.

Wird die Ausnahme nicht innerhalb des aktuellen Funktionsaufrufs behandelt,
so wird der Funktionsaufruf beendet, der zugehérige Kellerrahmen entfernt
und die Ausnahme wird an den Aufrufer der Funktion hochgereicht. Dabei
wird kein Ruckgabewert bestimmt!

Dort wird die Suche nach einer try Anweisung beginnend nach dem Aufruf
der Funktion fortgesetzt.

Das geschieht solange, bis sich ein Kellerrahmen findet, in dem die
Ausnahme behandelt wird.

13.01.2026 P. Thiemann — Info | 7168

Ausnahmen (5)

Ausnahmen sind selbst Objekte.
Sie sind Instanzen von Subklassen der Klasse BaseException.

Die Subklasse Exception dient als Basisklasse fir selbstdefinierte
Ausnahmen.

13.01.2026 P. Thiemann — Info |

8/68

UNI

FREIBURG

try-except

FREIBURG

Eine try-except-Anweisung behandelt Ausnahmen, die wahrend der Ausfihrung des
try-Blocks auftreten. Wenn dort keine Ausnahme ausgeldst wurde oder die Ausnahme in
einer der except-Klauseln bearbeitet wurde, geht es nach der try-Anweisung einfach
weiter.

Ausnahmen

try-except
try:
critical_code()

t

Blécke

finally-Blocke

except NameError as e: raise
print("Sieh mal einer an:", e)
except KeyError:
print ("Oops! Ein KeyError!")
except (IOError, OSError):
print("Na sowas!")
except:
print("Ich verschwinde lieber!")
raise

13.01.2026 P. Thiemann — Info | 9/68

except-Blocke (1)

except XYError:

UNI
FREIBURG

Ein solcher Block wird ausgefiihrt, wenn innerhalb des try-Blocks eine Ausnahme
ausgeldst wird, die eine Instanz von XYError (oder Subklasse) ist.

except XYError as e:
Wie oben; zuséatzlich wird das Ausnahmeobjekt an die Variable e zugewiesen.

except (XYError, YZError):

Ein Tupel fAngt mehrere Ausnahmetypen gemeinsam ab: sowohl XYError als
auch YZError.

except :

So werden unspezifisch alle Ausnahmen abgefangen.

13.01.2026 P. Thiemann — Info | 10/68

except-Blocke (2)

Die except-Bldocke werden der Reihe nach abgearbeitet, bis der erste
passende Block gefunden wird (falls Gberhaupt einer passt).

Unspezifische except-Bldcke sind daher nur an letzter Stelle sinnvoll.

In einem except-Block kann die abgefangene Ausnahme mit einer
raise-Anweisung ohne Argument weitergereicht werden.

13.01.2026 P. Thiemann — Info |

11/68

UNI

FREIBURG

try — except —else

Ein try-except-Block kann mit einem else-Block abgeschlossen werden, der
ausgefihrt wird, falls im try-Block keine Ausnahme ausgel6st wurde:

try:
critical_code()
except IOError:
print ("IOError!")
else:
print ("Keine Ausnahme")

13.01.2026 P. Thiemann — Info | 12/68

finally-Blocke

FREIBURG

Wenn eine Ausnahme nicht behandelt werden kann, miissen trotzdem oft
Ressourcen freigegeben werden — etwa um Netzwerkverbindungen zu schlie3en.

Dazu dient der finally-Block:

try:

critical_code() cinaty Blscke
finally:

print("Ich komme zuriick...")

Der finally-Block wird immer beim Verlassen des try-Blocks ausgefiihrt:
Bei einem return im try-Block wird der finally-Block vor Rickgabe des
Ergebnisses ausgeflhrt.
Bleibt eine Ausnahme auch nach Bearbeitung der try-Anweisung bestehen, so
wird sie nach Ausflihrung des finally-Blocks weitergegeben.

13.01.2026 P. Thiemann — Info | 13/68

Beispiel

kaboom. py

def kaboom(x, y):
print(x + y)

def tryout():
kaboom("abc", [1, 21)

try:

tryout ()
except TypeError as e:

print ("Hello world", e)
else:

print ("A1l OK")
finally:

print("Cleaning up")
print ("Resuming ...")

13.01.2026 P. Thiemann — Info |

14/68

Prolog
Ausnahmen
(Exceptions)

Ausnahmen

try-except-else
Blocke
finally-Blocke

raise-Anweisung
Generatoren
Iteratoren
Dateien

Zugabe
Sudoku

Zusammen-
fassung

Die raise-Anweisung

FREIBURG

Die raise-Anweisung signalisiert eine Ausnahme.
raise hat als optionales Argument ein Exception Obijekt.
Beispiele

raise KeyError("Fehlerbeschreibung")

raise KeyError()
raise KeyError

111111 Anweisung

raise ohne Argument dient zum Weiterreichen einer Ausnahme in einem
except-Block.

13.01.2026 P. Thiemann — Info | 15/68

2 Generatoren

Anwendung von Generatoren

13.01.2026 P. Thiemann — Info | 17/68

Das Geheimnis von range & Co

>>> for i in range(3): print(i)

0

1

2

>>> rng = range(3)

>>> rng

range(0, 3)

>>> for i in rng: print(i)
0

1

2

13.01.2026 P. Thiemann — Info |

18/68

Prolog
Ausnahmen
(Exceptions)

Generatoren

dung von
atoren

Iteratoren
Dateien

Zugabe
Sudoku

Zusammen
fassung

Beobachtungen

UNI
FREIBURG

range (3) liefert keine Liste, sondern ein spezielles Objekt.

Generatoren

Dieses Objekt kann durch for zum “Durchlaufen” einer Sequenz von Werten
gebracht werden.

Dieses Verhalten ist in Python eingebaut, aber es ist auch programmierbar.
Dafur gibt es mehrere Méglichkeiten u.a.

Generatoren
Iteratoren

13.01.2026 P. Thiemann — Info | 19/68

Ein Generator fiir range

>>> from typing import Iterator
>>> def myRange(n : int) -> Iterator[int]:
" generator that counts from 0 to n-1 """

i=0

while i<n:
yield i
i = i+1

FREIBURG

Generatoren

Neue Anweisung: yield. Ihr Vorkommen bewirkt, dass der Funktionsaufruf myRange (3)

als Ergebnis einen Generator liefert.

Ein Generator ist ein Objekt, das eine Folge von Werten erzeugt, die mit der Funktion

next () einmal durchlaufen werden kann.

Typ eines Generators (vereinfacht): Iterator [T], wobei T der Typ vom Argument von

yieldist.

13.01.2026 P. Thiemann — Info |

20/68

Action: Die Funktion next

UNI
FREIBURG

>>> mr = myRange(2)

>>> next (mr)

0

>>> next (mr)

1

>>> next (mr)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIlteration

Generatoren

Anwendung
Seneratorer

Intuitiv “lauft” myRange beim ersten Aufruf von next bis zum yield.

Beim nachsten next lauft es an dieser Stelle weiter bis zum nachsten yield.

13.01.2026 P. Thiemann — Info | 21/68

Das Generatorobjekt

UNI
FREIBURG

Fihrt Buch Uber den Stand der Ausfuhrung des Generators.

Stand der Ausfuhrung = Kellerrahmen: Belegung der lokalen Variablen und
Parameter, sowie die als néchstes auszufihrende Anweisung. Generatoren
Bei Konstruktion (d.h. Aufruf der Generatorfunktion) wird ein Generatorobjekt
erzeugt:
Kellerrahmen mit den Ubergebenen Parametern,

erste Anweisung des Funktionsrumpfes.
Die Generatorfunktion lauft noch nicht los!

Beispiel: Beim Aufruf von gen = myRange (3) enthalt das Generatorobjekt

Parametern = 3
Néachste Anweisungisti = 0

13.01.2026 P. Thiemann — Info | 22/68

Verwendung von Generatoren (Methoden)

Aufruf von next (gen)

Restauriere den zuletzt gespeicherten Stand der Ausfuhrung.

Fahre dort fort mit der Ausfiihrung des Rumpfes des Generators (Bsp:

Funktionsrumpf von myRange).
Fiihre aus bis zum néchsten yield:

Speichere den aktuellen Stand der Ausfihrung im Generator.
Liefere das Argument von yield als Ergebnis.

Falls das Ende des Rumpfs ohne yield erreicht wird:

Speichere den aktuellen Stand der Ausfihrung im Generator.
Lése die Ausnahme StopIteration aus.

13.01.2026 P. Thiemann — Info |

23/68

FREIBURG

Generatoren

Iteratoren als Argumente von Funktionen

UNI
FREIBURG

Viele Funktionen erlauben lteratoren als Argumente, z.B. die Funktion 1list:
>>> mr = myRange(2)

>>> list(mr)

[0, 1] Generatoren
>>> list(mr)

(]

Intern baut sie die Ergebnisliste durch wiederholtes Aufrufen von next auf,
bis StopIteration ausgeldst wird

Auch eine for-Schleife kann durch einen lterator gesteuert werden:
>>> for i in myRange(3): print(i, end=' ')

012

13.01.2026 P. Thiemann — Info | 24/68

Ein Generator muss nicht endlich sein

def upFrom(n:int) -> Iterator[int]:
while True:
yield n
n=mn+1

Python-Interpreter

>>> uf = upFrom(10)

>>> next (uf)

10

>>> next (uf)

11

>>> list (uf)

“CTraceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in upFrom
KeyboardInterrupt

13.01.2026 P. Thiemann — Info |

25/68

FREIBURG

Generatoren

Abfragen eines (potentiell) unendlichen Generators

Zu FuB3 mit Ausnahmen
def printGen(gen: Iterator[Any]):
try:
while True:
v = next(gen)
print(v)
except Stoplteration:
pass

Elegant mit for-Schleife

def printGenFor(gen: Iterator[Any]):
for v in gen:
print(v)

13.01.2026 P. Thiemann — Info |

26/68

UNI

FREIBURG

Prolog
Ausnahmen
(Exceptions

Generatoren
Anwendung v

Iteratoren
Dateien

Zugabe
Sudoku

Zusammen
fassung

Zwei weitere Beispiele: map und filter

def myMap[A,B](f : Callable[[A], BI, def myFilter[A]l(p : Callable[[A], bool],

seq : Iterator[A]
) -> Iterator[B]:
for x in seq:
yield £ (x)

def twoxl (x : int) -> int:
return 2*x+1

printGenFor(
myMap (twox1, upFrom(10)))

seq : Iterator[A]
) —> Iterator[A]l:
for x in seq:
if p(x):
yield x

def div3 (x : int) -> bool:
return x % 3 == 0

printGenFor(
myFilter(div3, upFrom(0)))

Generatoren

Anwendung ve
eneratorer

Was wird gedruckt?

13.01.2026

Was wird gedruckt?

P. Thiemann — Info |

27168

Anwendung von Generatoren

Ein Problem
Nanga Eboko will seine Schwester in Kamerun besuchen. Sein Koffer darf 23kg Prolog
wiegen, die er mit Geschenken komplett ausnutzen will. SR

Generatoren
Anwendung von
Generatoren
Iteratoren
Dateien

Zugabe
Sudoku

Zusammen-
fassung

13.01.2026 P. Thiemann — Info | 28/68

Sublisten &
) =
iai._;_%_

Definition: Subliste :Z)E
Sei L =[xq,...,xp] eine Liste. Eine Subliste von L hat die Form [x;,,...,x;] und ist
gegeben durch eine Folge von Indizes iy <ip < --- <i, mitjj € {1,...,n}.
Beispiel: Sublisten von L =[1,5,5,2,1,7] Anvendung on

L1=[175557271a7] L2=[135,1a7] L3=[5a5]

La=01,2] Ls=[2,1] Le =1l
keine Sublisten von L:

[1,2,8] [2,5,1]

Fakt
Es gibt 2" Sublisten von L = [x4,...,x,], wenn alle x; unterschiedlich sind.

13.01.2026 P. Thiemann — Info | 29/68

Das Rucksackproblem

UNI
FREIBURG

Ein spezielles 0/1 Rucksackproblem

Gegeben ist eine Liste L von positiven ganzen Zahlen (Gewichten) und ein Zielgewicht S.
Gibt es eine Subliste von L, deren Summe exakt S ergibt?

Generatoren

Ein schweres Problem
Der naive Algorithmus probiert alle maximal méglichen 2¢"1) Sublisten durch.

Es ist nicht bekannt, ob es fiir dieses Problem einen effizienteren Algorithmus gibt.

13.01.2026 P. Thiemann — Info | 30/68

Anwendung von

Ein rekursiver Algorithmus mit Generatoren

FREIBURG

def knapsack[A](goal : int, items : list[tuple[A,int]]) -> Iterator[list[A]]:

if goal ==

yield [] # solution found
elif not items:

return # out of items, mo solution
else:

item0, weight = items[0]
remaining_items = items[1:]
yield from knapsack (goal, remaining items) # solutions without itemO
if weight <= goal:
for solution in knapsack (goal - weight, remaining_items):
yield [itemO] + solution

Anwendung von
Generatoren

13.01.2026 P. Thiemann — Info |

31/68

Prolog
Ausnahmen

(Exceptions)
. . . T Generatoren
Beispielhafte Eingabe (Dictionary) Ju—
Generatoren
gifts = {'phone': 200, 'boots': 1200, 'laptop': 2200, 'glasses': 50, Iteratoren
'camera': 150, 'jumpsuit': 2340, 'headphones': 80, 'fitbit': 40, Dateien
'hanger': 10, 'pillow': 400, 'hoverboard': 870, 'handbag': 430} -
ugabe:
Sudoku

Zusammen
fassung

13.01.2026 P. Thiemann — Info | 32/68

Neu und wichtig

UNI
FREIBURG

Wird der Rumpf eines Generators mit return beendet, I18st der Generator
eine StopIteration-Ausnahme aus.

Anstelle des Dictionaries wird 1ist (gifts.items()) Ubergeben, eine Liste
von key-value-Paaren.

Anwendung von

yield from gen entspricht der Schleife Generstre

{for X in gen: yield x J

Der Algorithmus verwendet Backtracking:
Ein Lésungsansatz wird Schritt fir Schritt zusammengesetzt.
Erweist sich ein Ansatz als falsch, so werden Schritte zurlickgenommen
(Backtracking) bis ein alternativer Schritt méglich ist.
Mit rekursiven Generatoren und dem Verzicht auf Anderungen in der
Datenstruktur ist die Riicknahme von Schritten besonders einfach.

13.01.2026 P. Thiemann — Info | 33/68

3 Iteratoren

FREIBURG

Prolog
Ausnahmen
(Exceptions)

Generatoren
Iteratoren
Dateien

Zugabe:
Sudoku

Zusammen
fassung

13.01.2026 P. Thiemann — Info | 35/68

Iterierbare Objekte

FREIBURG

Ein Objekt heif3t Container-Objekt, falls es untergeordnete Objekte verwaltet.
Die for-Schleife kann fur viele Container-Objekte die Elemente durchlaufen.
Dazu gehéren Sequenzen, Tupel, Listen, Strings, Dictionaries, Mengen usw:
>>> for el in {1, 5, 3, 0}: print(el, end=' ')

Iteratoren

0135

Dies alles sind Beispiele flr iterierbare Objekte (Generalisierung von
Generatoren).

Das Verhalten dieser Objekte wird durch das lterator-Protokoll bestimmt.

13.01.2026 P. Thiemann — Info | 36/68

Das Iterator-Protokoll (1)

UNI
FREIBURG

Das lterator-Protokoll unterscheidet zwei Arten von Objekten:
iterierbare Objekte (Typ Iterable[X]) und lteratoren (Typ Iterator [X]).

Ein iterierbares Objekt implementiert die dunder Methode _;ter__, die dann
ein lterator-Objekt zurlckliefert. fteratoren
Ein lterator-Objekt implementiert die dunder Methoden

_jter__, die dann immer self liefert, und
_next__, die das nachste Element liefert. Gibt es kein weiteres Element, so
|6st die Methode die Ausnahme StopIteration aus.

Die Funktion iter (object) ruft object. _jter__ () auf.
Die Funktion next (object) ruft object. _pext__() auf.

13.01.2026 P. Thiemann — Info | 37/68

Das Iterator-Protokoll (2)

__iter__

UNI
FREIBURG

__iter_ __next_
lterable A lterator » Element
U Iteratoren

Ein iterierbares Objekt (lterable) erzeugt bei jedem Aufruf von __iter__ einen neuen
lterator flr eine Menge von Objekten.

Ein lterator liefert sich selbst beim Aufruf von __iter__; jeder Aufruf von __next__
liefert ein neues Objekt aus der Menge.

Da jeder Iterator die __iter__-Methode besitzen, kénnen lteratoren auch dort
verwendet werden, wo ein iterierbares Objekt erwartet wird (z.B. for-Schleife).

13.01.2026 P. Thiemann — Info | 38/68

Implementierung der for-Schleife

for

for el in seq:
do_something(el)

wird intern wie die folgende while-Schleife ausgeflihrt

iterator

seq_iter = iter(seq)
try:
while True:
el = next(seq_iter)
do_something(el)
except StopIteration:
pass

13.01.2026 P. Thiemann — Info |

FREIBURG

Iteratoren

39/68

Das Iterator-Protokoll bei der Arbeit

>>> seq = ['Crackpot', 'Religion']

>>> seq_iter = iter(seq)

>>> seq_iter

<list_iterator object at 0x110d24ca0>

>>> print(next(seq_iter))

Crackpot

>>> print(next(seq_iter))

Religion

>>> print(next(seq_iter))

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

13.01.2026 P. Thiemann — Info |

40/68

FREIBURG

Iteratoren

Iterierbare Objekte vs. Iteratoren (1)

UNI
FREIBURG

Ein lterator ist nach einem Durchlauf, der mit StopIteration abgeschlossen
wurde, erschopft, wie in diesem Beispiel:

Python-Interpreter

>>> iterator = myMap(twoxl, range(2))
>>> for x in iterator:
for y in iterator:
print(x,y)

Iteratoren

13
>>>

13.01.2026 P. Thiemann — Info | 41/68

Iterierbare Objekte vs. Iteratoren (2)

UNI
FREIBURG

Alternativ: erzeuge bei jedem Start eines Schleifendurchlaufs einen neuen lterator.

Python-Interpreter
>>> for x in myMap(twoxl, range(2)):
for y in myMap(twoxl, range(2)):
print(x,y)

Iteratoren

W W= =
W= W

>>>

13.01.2026 P. Thiemann — Info | 42/68

Weitere iterierbare Objekte

FREIBURG

Die range-Funktion liefert ein range-Objekt, das iterierbar ist.

D.h. das Objekt liefert bei jedem Aufruf von iter () einen neuen lterator.
>>> range_obj = range(10)

>>> range_obj

range (O N 10) Iteratoren
>>> range_iter = iter(range_obj)

>>> range_iter

<range_iterator object at 0x110451d40>

>>> list(range_iter)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range_iter)

[]

>>> list(range_obj)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

13.01.2026 P. Thiemann — Info | 43/68

Direkte Verwendung des Iterator-Protokolls: myZip

FREIBURG

Erinnerung:

>>> zz = zip(range(20), range(0,20,3)); zz

<zip object at 0x110d1e600>

>>> list (ZZ) Iteratoren
[(O, O), (1, 3), (2, 6), (3, 9, (4, 12), (5, 15), (B, 18)]

Far die Implementierung von zip muss explizit das Iterator-Protokoll
verwendet werden, da zwei Eingaben unabhangig voneinander iteriert
werden mussen.

Eine Implementierung als Generator mit einer for-Schleife ist daher nicht
moglich!

13.01.2026 P. Thiemann — Info | 44/68

Implementierung: myZip

il = iter(sl)
i2 = iter(s2)
try:
while True:
el = next(il)
e2 = next(i2)
yield (el, e2)
except StopIteration:
pass

def myZip[A,B](s1: Iterable[A], s2:

Iterable[B]) -> Iterator[tuple[A,B]]:

13.01.2026

P. Thiemann — Info |

Prolog
Ausnahmen
(Exceptions)

Generatoren
Iteratoren
Dateien

Zugabe:
Sudoku

Zusammen
fassung

Beispiel: Fibonacci-Iterator

—fibiter.py

Q@dataclass
class FibIterator:

maxn :

def

def

def

13.01.2026

int = 0

__post_init__(self):
self.n, self.a, self.b = 0, 0, 1

__iter__(self):
return self # an iterator object!

__next__(self):
self.n += 1
self.a, self.b = self.b, self.a + self.b
if not self.maxn or self.n <= self.maxn:
return self.a
else:
raise StopIteration

P. Thiemann — Info |

46/68

FREIBURG

Prolog
Ausnahmen
(Exceptions)

Generatoren
Iteratoren
Dateien

Zugabe
Sudoku

Zusammen
fassung

FibIterator bei der Arbeit

Python-Interpreter

>>> f = FibIterator(10)

>>> list(f)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> list (f)

(]

>>> for i in FibIterator(): print(i)

O wWN = =

13.01.2026 P. Thiemann — Info |

47168

FREIBURG

Iteratoren

Iteratoren — selbst gestrickt

UNI
FREIBURG

lteratoren bieten:

eine einheitliche Schnittstelle zum Aufzahlen von Elementen;
ohne dabei eine Liste 0.4. aufbauen zu missen (Speicher-schonend!);

Iteratoren

weniger Beschrankungen als Generatoren;

die Mdglichkeit, unendliche Mengen zu durchlaufen (nattrlich nur endliche
Anfangssticke!).

13.01.2026 P. Thiemann — Info | 48 /68

4 Dateien

FREIBURG

Prolog
Ausnahmen
(Exceptions)

Generatoren
Iteratoren
Dateien

Zugabe:
Sudoku

Zusammen
fassung

13.01.2026 P. Thiemann — Info | 50/68

Dateien bearbeiten

read
open A 1
)\%;;/ c-ose > closed
write
open(filename : str, mode = 'r': str) -> file:
Offnet die Datei mit dem Namen filename und liefert ein £ile-Objekt zurick.
mode bestimmt, ob die Datei gelesen oder geschrieben werden soll (oder beides):
"r": Lesen von Textdateien mit file.read ()
"w": Schreiben von Textdateien mit file.write ()
"r+": Schreiben und Lesen von Textdateien

13.01.2026 P. Thiemann — Info |

51/68

UNI

FREIBURG

Dateien

Muster: Dateien mit Iterator und Kontextmanager lesen

UNI
FREIBURG

with open (filename) as f:
initialize
for line in f:
pass
process this line

Dateien

Die Anweisung with resource as name: startet einen Kontextmanager
Der Ausdruck resource initialisiert eine Ressource. Sie ist im zugehdrigen
Block als name verflgbar.

Falls Ausnahmen im zugehérigen Block auftreten, wird die resource korrekt
finalisiert. D.h. es ist kein extra try-Block erforderlich.

Fir Dateien heisst das, dass sie geschlossen werden, egal wie der

with-Block verlassen wird.

13.01.2026 P. Thiemann — Info | 52/68

Beispiel: fgrep

Das Unix-Kommando fgrep durchsucht Dateien nach einem festen String.

def fgrep (subject:str, filename:str):
with open (filename) as f:
for line in f:
if subject in line:
print(line)

fgrep ("joke", "text/killing_joke_sketch.txt")

13.01.2026 P. Thiemann — Info |

53/68

Dateien

Beispiel: fgrep mit Ausgabe

FREIBURG

def fgrep2 (subject:str, infile:str, outfile:str):
with open (infile) as fin, open (outfile, 'w') as fout:
for line in fin:
if subject in line:
print(line, file=fout) Pateien

Hier schitzt der Kontextmanager zwei Ressourcen, die Eingabedatei und die
Ausgabedatei.

Zum Schreiben in eine Datei wird print mit dem Keyword-Argument file
verwendet.

13.01.2026 P. Thiemann — Info | 54 /68

5 Zugabe: Sudoku

Prolog
Ausnahmen
(Exceptions)

Generatoren
Iteratoren
Dateien

Zugabe:
Sudoku

Zusammen
fassung

13.01.2026 P. Thiemann — Info | 56 /68

Sudoku

712|8
2|7 1
9 6|4
=] 2
3
1
1 34
7 8 S5

13.01.2026

P. Thiemann — Info |

FREIBURG

Sudoku-Regeln

Eine Gruppe von Zellen ist
entweder

eine Zeile,

eine Spalte oder

ein fett umrahmter 3x3

Block. Suos
Jede Gruppe muss die
Ziffern 1-9 genau einma
enthalten.

Fllle die leeren Zellen,
sodass (2) erfllt ist!

57/68

Ein dhnlich schweres Problem wie das Rucksackproblem

UNI
FREIBURG

Suchraum

Der Suchraum hat in den meisten Fallen (17 Vorgaben) eine GréBe von ca. 108" méglichen
Kombinationen.

Wiirden wir eine Milliarde (10%) Kombinationen pro Sekunde testen kdnnen, wére die benstigte
Rechenzeit 1081 /(10°-3-107) ~ 3-10%** Jahre.

Die Lebensdauer des Weltalls wird mit 10" Jahren angenommen.

Zugabe:
Sudoku

Selbst bei einer Beschleunigung um den Faktor 1039 wiirde die Rechnung nicht innerhalb der
Lebensdauer des Weltalls abgeschlossen werden kénnen.

Trotzdem scheint das Lésen von Sudokus ja nicht so schwierig zu sein ...

13.01.2026 P. Thiemann — Info | 58/68

Sudoku mit Backtracking 16sen

UNI
FREIBURG

Reprasentiere das Spielfeld durch ein Dictionary

type Board = dict[Pos,set[int]] mit
type Pos = tfuple[int,int].
Das Dictionary b : Board bildet das Paar (row, col) auf die Menge der Zugabe:

moglichen Werte an Zeile row und Spalte col ab. Sudoku

Dabei ist row, col € {1,...,9}.
Wir verwenden die Invariante @ C b[(row,col)] C {1,...,9}.

13.01.2026 P. Thiemann — Info | 59/68

Einlesen des initialen Spielfelds

FREIBURG

Wir mdchten das initiale Spielfeld von einer Datei einlesen.
Wenn ein Feld mit k vorbesetzt ist, dann gilt
bl[(row,col)] = {k}.

Wenn ein Feld frei ist, dann gilt
b[(row,col)] = {1, 2, 3, 4, 5, 6, 7, 8, 9}
Beispiel (leere Felder durch -, entnommen Wikipedia):

53-=7--—- Zugabe:
6--195-—- Sudoku
-98----6-

13.01.2026 P. Thiemann — Info | 60/68

Einlesen/Ausdrucken des Spielfelds

UNI
FREIBURG

Prolog:
Ausnahmen
(Exceptions)
Generatoren
Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

13.01.2026 P. Thiemann — Info |

Suche mit Backtracking

UNI
FREIBURG

Durchlaufe systematisch die Zeilen/Spalten-Paare von (1,1) bis (9,9).

Betrachte die Zelle candidates = b[(row,col)]. Wir kbnnen
voraussetzen, dass diese Zelle nicht leer ist! (Warum?)

Fur jeden méglichen Kandidaten ¢ in candidates:

Setze die Zelle auf c.
Entferne ¢ aus den anderen Zellen in der gleichen Zeile.
Entferne ¢ aus den anderen Zellen in der gleichen Spalte. Sugabe:
Entferne c aus den anderen Zellen im gleichen Block.

Wenn dabei eine Zelle leer wird, verwerfen wir den Kandidaten c.

Wenn dabei keine Zelle leer wird, dann betrachten wir rekursiv die nachste Zelle.

Danach stellen wir den Zustand vor Betrachtung von ¢ wieder her

(Backtracking) und betrachten den né&chsten Kandidaten.

Wenn die letzte Zelle erfolgreich bearbeitet wurde, haben wir eine Lésung!

13.01.2026 P. Thiemann — Info | 62/68

Entferne ¢ aus der Zeile

Gesucht wird
propagate_row(b : Board, p

. Pos, c

int) -> bool

Annahme: c wurde schon in b[p] eingetragen.

Entferne c aus allen weiteren Zellen der gleichen Zeile!

Liefere False, falls dabei eine Zelle leer wird.

Ansonsten liefere True.

13.01.2026

P. Thiemann — Info |

UNI
FREIBURG

Zugabe:
Sudoku

63/68

Kopieren des Boards

UNI
FREIBURG

Gesucht wird
copy_board (b : Board) -> Board

Es muss eine vollstandige Kopie angefertigt werden, weil b noch fir das
Backtracking bendtigt wird! Zugabe:

. . s Sudoku
Ein neues Dictionary
Eine frische Kopie von jeder Menge

13.01.2026 P. Thiemann — Info | 64/68

Naive Suche mit Backtracking

UNI
FREIBURG

Prolog:
Ausnahmen
(Exceptions)
Generatoren
Iteratoren

Dateien

Zugabe:
Sudoku

Zusammen-
fassung

13.01.2026 P. Thiemann — Info | 65/68

6 Zusammenfassung

FREIBURG

Prolog
Ausnahmen
(Exceptions)

Generatoren
Iteratoren
Dateien

Zugabe:
Sudoku

Zusammen-
fassung

13.01.2026 P. Thiemann — Info | 67 /68

Zusammenfassung

FREIBURG

Ausnahmen sind in Python allgegenwartig.
Sie kénnen mit raise ausgeldst werden.

Sie kdnnen mit try, except, else und finally abgefangen und behandelt
werden.

Generatoren sehen aus wie Funktionen, geben ihre Werte aber mit yield zurlick.
Ein Generatoraufruf liefert einen lterator, der beim Aufruf von next () bis zum nachsten yield

lauft.
Generatoren sind besonders nitzlich zur Lésung von Suchproblemen mit Backtracking.
Iteratoren besitzen die Methoden __iter__ und __next__. Zusammen-

f
Durch Aufrufen der __next__-Methode werden alle Elemente aufgezahlt. s

lterierbare Objekte besitzen eine Methode __iter
Objekte erzeugt.

, die einen lterator fiir die enthaltenen

Dateien erlauben es, externe Inhalte zu lesen und zu schreiben.
Am einfachsten mit dem Kontextimanager with/as.

13.01.2026 P. Thiemann — Info | 68/68

	Prolog: Ausnahmen (Exceptions)
	Ausnahmen
	try-except
	try-except-else-Blöcke
	finally-Blöcke
	raise-Anweisung

	Generatoren
	Anwendung von Generatoren

	Iteratoren
	Dateien
	Zugabe: Sudoku
	Zusammenfassung

