Informatik I: Einfiihrung in die Programmierung
15. Rekursion, Endrekursion, lteration

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann

7. Januar 2026



i

o
+4
D
m
w
[+ 4
[

T

UNI

Rekursion

Rekursion

7. Januar 2026

P. Thiemann — Info |

2/61



Rekursive Funktionen
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Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion
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Rekursive Funktionen

UNI
FREIBURG

Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)
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Rekursive Funktionen

UNI
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Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Baumen: rekursive Aufrufe nur auf Teilbaum = Termination.
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Definition Du
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthélt. Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1
else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Baumen: rekursive Aufrufe nur auf Teilbaum = Termination.

Allgemein missen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion = Termination.
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Rekursion und Baume
Erinnerung
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Baume sind induktiv definiert:

Ein Baum ist entweder leer [J oder Rekursion
ein Knoten mit einer Markierung und einer Liste von Teilbdumen.
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Rekursion und Baume

Erinnerung

Baume sind induktiv definiert:
Ein Baum ist entweder leer [J oder
ein Knoten mit einer Markierung und einer Liste von Teilbdumen.

Schema fur Funktionen F auf Badumen, die natirlich rekursiv sind:
F(O)=A
mark

1 | _ B(mark,F(ty),...,F(t, 1))

B ist ein Programmstlick, das die Markierung der Wurzel, sowie die Ergebnisse
der Funktionsaufrufe von F auf den Teilbaumen verwenden darf.
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Rekursion und Baume
Codegerist

Q@dataclass
class Node:
mark : Any
children : list['Tree']
type Tree = Optional [Node]
def tree_skeleton (tree : Tree) -> Any:
match tree:
case None:
return "A" # result for empty tree
case Node (mark, children):
compute B from
- mark

#
#
# - tree_skeleton(children[0])
#_
#
#
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Rekursion

- tree_skeleton(children[n-1])
where n = len (childen)
return "B"
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Jede Rekursion folgt einer Baumstruktur 9
=2
-2_
Binére Suche — Spezifikation gﬂ
Eingabe =
1st : list[T] streng aufsteigend sortierte Liste Binire
key : T Suchbegriff Suche
Ausgabe
i sodass 1st[i] == key, fallskey in 1lst

andernfalls: None
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Jede Rekursion folgt einer Baumstruktur

FREIBURG

Binare Suche — Spezifikation 2
Eingabe >
1st : 1list[T] streng aufsteigend sortierte Liste Bindre
key : T Suchbegriff Suche
Ausgabe
i sodass 1st[i] == key, fallskey in 1lst

andernfalls: None
Betrachte die Liste wie einen bindaren Suchbaum

Wabhle ein beliebiges Element als Wurzel und vergleiche mit key:
alle Elemente links davon sind kleiner, rechts davon gréBer

Suche weiter im rechten oder linken Listensegment
Optimiere die Effizienz durch geschickte Wahl der Wurzel (in der Mitte)
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Biniare Suche
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Binire Suche (5) =1
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Binire Suche (23) = None
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Binare Suche
Elementtyp int

def bsearch (1st : list[int], key : int) -> Optionall[int]:
n = len (1st)

if n == O:

return None # key not in empty list
m=n//2 # position of root
if 1lst[m] == key:

return m

elif 1st[m] > key:
return bsearch (lst[:m], key)
else: # lst[m] < key
r = bsearch (lst[m+1:], key)
return None if r is None else r+m+l
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Funktioniert ..., aber 1st[:m] und 1st[m+1:] erzeugen jeweils Kopien der

halben Liste (— ineffizient!)
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Funktioniert ..., aber 1st[:m] und 1st[m+1:] erzeugen jeweils Kopien der
halben Liste (— ineffizient!)

Binare

Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in 1st Suche
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Funktioniert ..., aber 1st[:m] und 1st[m+1:] erzeugen jeweils Kopien der
halben Liste (— ineffizient!)

Binare

Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in 1st Suche
Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben

def bsearch (lst : list[int], key : int) -> Optionall[int]:
return bsearch2 (1st, key, 0, len (1lst))

def bsearch2 (lst : list[int], key : int,
low : int, high : int) -> Optiomnall[int]:
" search for key in lst between low
(inclusive) and high (exclusive)
assumes low <= high """
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Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n = hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI
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Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n =hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)
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Beobachtungen

7. Januar 2026 P. Thiemann — Info | 15/61



Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n =hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI

Beobachtungen
Der Testn == 0 entspricht hi - 1o == O unddamitlo == hi
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Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n =hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI

Beobachtungen
Der Testn == 0 entspricht hi - 1o == O unddamitlo == hi

lo + (hi - 1lo0)//2==(lo + hi)//2
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Binire Suche ohne Kopieren, vereinfacht 9
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def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2  # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)
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Binire Suche ohne Kopieren, vereinfacht 9
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def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2  # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen
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Binire Suche ohne Kopieren, vereinfacht 9
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def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2  # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen

Jeder rekursive Aufruf von bsearch? erfolgt in einer return Anweisung.
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Binire Suche ohne Kopieren, vereinfacht 9
=2
0 _
7}
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2  # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen

Jeder rekursive Aufruf von bsearch? erfolgt in einer return Anweisung.
Solche Aufrufe heiBen endrekursiv.
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Endrekursive Funktionen
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Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Binare
Suche
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Endrekursive Funktionen
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Definition
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Binare

Jede endrekursive Funktion kann durch eine while-Schleife (lteration) Suche

implementiert werden.
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Endrekursive Funktionen 9
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Definition :Z,E
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.
Binare
Jede endrekursive Funktion kann durch eine while-Schleife (lieration) Suche

implementiert werden.

Elimination von Endrekursion durch Iteration

Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.

Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.
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Endrekursive Funktionen 9
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[11]
Definition :Z,E
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.
Binare
Jede endrekursive Funktion kann durch eine while-Schleife (lieration) Suche

implementiert werden.

Elimination von Endrekursion durch Iteration

Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.

Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.
Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.
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Beispiel: bsearch? ist endrekursive Funktion

UNI
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Abbruchbedingung der Rekursion Bindire
Suche
if lo == hi:
return None
wird negiert zur Bedingung der while-Schleife

while lo != hi:

else:
return None
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Beispiel: bsearch? ist endrekursive Funktion

i
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Binare
Suche

Endrekursive Aufrufe
return bsearch2 (1lst, key, lo, m)
werden zu Zuweisungen an die Parameter
1st, key, lo, hi = 1st, key, lo, m
bzw. hier reicht

hi = m
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Binére Suche ohne Kopieren, iterativ
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def bsearch2 (
1st : list[int], key : int, lo:int, hi:int) -> Optionall[int]: Bindre
while lo != hi: Suche
m = (lo + hi)//2
if 1st[m] == key:
return m
elif 1st[m] > key:
hi =m # bsearch2 (lst, key, lo, m)
else: # lst[m] < key
lo = m+l # bsearch2 (lst, key, m+l, hi)
else:
return None
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Erinnerung: Suche im bindren Suchbaum

Ebenfalls endrekursiv

UNI
FREIBURG

def search(tree : Optional[Node], item : Any) -> bool:

if tree is None: gﬁﬁ
return False

elif tree.mark == item:
return True

elif tree.mark > item:
return search(tree.left, item)

else:
return search(tree.right, item)

Gleiches Muster ... nicht Uberraschend
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Suche im bindaren Suchbaum

Iterativ, umgewandelt gemaB Schema

UNI
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def search(tree : Optional[Nodel, item : Any) -> bool:
while tree is not None: onare
if tree.mark == item:
return True
elif tree.mark > item:
tree = tree.left
else:
tree = tree.right
else:
return False
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Rekursion als Definitionstechnik: Potenzieren
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Mathematische Definition: x0 =1 XM= x.xn

Rekursive
Definition
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Rekursion als Definitionstechnik: Potenzieren
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Mathematische Definition: x0 =1 XM = x.x" g
Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Rekursive
Definition
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Rekursion als Definitionstechnik: Potenzieren
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Mathematische Definition: x0 =1 XM = x.x" g

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Detoen
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Mathematische Definition: x0 =1 XM = x.x" g

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Detoen

Erinnerung: Induktive Definition der natlirlichen Zahlen
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Rekursion als Definitionstechnik: Potenzieren
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Mathematische Definition: x0 =1 XM = x.x" g

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Detoen

Erinnerung: Induktive Definition der natlirlichen Zahlen
Eine naturliche Zahl ist entweder 0 oder
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Rekursion als Definitionstechnik: Potenzieren
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Mathematische Definition: x0 =1 XM = x.x"

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) ==
power (x, nt+l) == x * power (x, n)

Wo ist da der Baum?

Erinnerung: Induktive Definition der natlirlichen Zahlen

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Rekursive
Definition
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Rekursion als Definitionstechnik: Potenzieren
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Mathematische Definition: x0 =1 XM = x.x"

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) ==

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? eion
Erinnerung: Induktive Definition der natlirlichen Zahlen

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Als Baum: 0 1+
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Rekursion als Definitionstechnik: Potenzieren 9

=2
o
o

Mathematische Definition: x%=1 XM= x . x" &

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Daimion

Erinnerung: Induktive Definition der natlirlichen Zahlen

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegertist.
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Potenzfunktion rekursiv
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def power (x : float, n : int) -> float:
mnimn T 'S 1 n fo,r. n >= 0 nimn o
if n —— . Definition
return 1
else: #n

1+n'
return x * power (x, n-1)
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Rekursive Aufrufe
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Was passiert genau?

Aufrufsequenz
— power(2,3) wahlt else-Zweig und ruft auf: v

Definition
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Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:

Rekursive
Definition
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Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:

Rekursive
Definition
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Rekursive Aufrufe
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Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:

o
g
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Rekursive Aufrufe
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Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick

o
g
292
3
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Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck

o
g
292
3
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Rekursive Aufrufe
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Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck
+ power(2,2) gibt (2 x 2) = 4 zurlck
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Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck
+ power(2,2) gibt (2 x 2) = 4 zurlck
+ power(2,3) gibt (2 x 4) = 8 zurlck

o
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el
=

def power (x : float, n : int) -> float:
if n==0:
return 1
else:
return x * power (x, n-1)

UNI
FREIBURG
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Rekursive
Definition

28/61



D A A A
O ( j. g
o
def power (x : float, n : int) -> float: zﬂ
if n==0: = T
return 1
else:
return x * power (x, n-1)

Rekursive
Definition

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.
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def power (x : float, n : int) -> float: zﬂ
if n==0: = JTH
return 1
else:

return x * power (x, n-1)

Rekursive
Definition

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:
return acc
else:
return power_acc (x, n-1, acc * x)
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O d § 1 hz
o
def power (x : float, n : int) -> float: Zﬂ
if n==0: = JTH
return 1
else:

return x * power (x, n-1)

Rekursive
Definition

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:
return acc
else:
return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n);die Funktion power_acc ist endrekursiv ...
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Iterative Power
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Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != 0:
n, acc = n-1, acc*x
Rekursive
else: Definition
return acc
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Iterative Power
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UNI

Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != O:
n, acc = n-1, acc*x
Rekursive
else: Definition
return acc

Startwert acc = 1 im Funktionskopf definiert.
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Iterative Power

o
+4
D
m
w
[+ 4
[

UNI

Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != O:
n, acc = n-1, acc*x
Rekursive
else: Definition
return acc

Startwert acc = 1 im Funktionskopf definiert.

Jeder Aufruf power_it (x, n) verwendet acc=1.
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Iterative Power

Schematische Transformation in lteration

UNI

def power_it (x : float, n : int, acc : float =
while n != O:
n, acc = n-1, acc*x
else:
return acc

1:

Startwert acc = 1 im Funktionskopf definiert.
Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.
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Schneller Potenzieren sl
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Efficient Power
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von

power (x, 0)?
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Efficient Power
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
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Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)?
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Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)? 1
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Efficient Power
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1

power (x, 2)?
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1

power (x, 2)? 2
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)? 2

power (x, n)?
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n
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Efficient Power
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def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von

power (x, 0)? 0

power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!
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Alternative Definition von Power

power (x, 0)
power (x, 2*n)
power(x, 2*n+1)

7. Januar 2026

=1

power (x*x, n) # n>0
x * power(x*x, n) # n>=0

P. Thiemann — Info |
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Alternative Definition von Power
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power (x, 0) == 1
power (x, 2#*n) == power (x*x, n) # n>0

power (x, 2*n+l1) == x * power(x*x, n) # n>=0
Schneller

Alternative Aufteilung der natirlichen Zahlen. Potenzieren
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power (x, 0) == 1
power (x, 2*n) == power(x*x, n) # n>0

power (x, 2*n+l1) == x * power(x*x, n) # n>=0
Schneller

Alternative Aufteilung der natlrlichen Zahlen. Potenzieren
Jede natlrliche Zahl ungleich 0 ist entweder gerade oder ungerade.
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Alternative Definition von Power
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power (x, 0) == 1
power (x, 2*n) == power(x*x, n) # n>0

power (x, 2*n+l1) == x * power(x*x, n) # n>=0
Schneller

Alternative Aufteilung der natlrlichen Zahlen. Potenzieren
Jede natlrliche Zahl ungleich 0 ist entweder gerade oder ungerade.

In jedem Fall kénnen wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurtckfuhren.
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elle Exponentiatio 9
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def fast_power (x : float, n : int) -> float: o
. . = [T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1?
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
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Schneller
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Multiplikationen fir n=1? 2
Multiplikationen fir n = 2?
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
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elle ponentiatio O
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. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4?
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def fast_power (x : float, n : int) -> float:

if n ==

return 1
elif n 7, 2 == 0O:

return fast_power (x*x, n//2)
else: #n 2 == 1

return x * fast_power (x*x, n//2)

UNI
FREIBURG

Schneller
Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4? 4
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elle ponentiatio O
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. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4? 4
Multiplikationen fur n = 2K?
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elle ponentiatio O
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¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4? 4
Multiplikationen fur n = 2K? k+2
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elle ponentiatio O
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n =17 2

Multiplikationen fur n = 27 3

Multiplikationen fur n = 4? 4

Multiplikationen fiir n = 262 k+2
Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n =17 2

Multiplikationen fur n = 27 3

Multiplikationen fur n = 4? 4

Multiplikationen fiir n = 262 k+2

Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.

Schneller als die power Funktion: logarithmisch viele Multiplikationen!
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def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n =17 2

Multiplikationen fur n = 27 3

Multiplikationen fur n = 4? 4

Multiplikationen fiir n = 262 k+2

Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.

Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?
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Schnelle Exponentiation, iterativ?

o
+4
D
m
w
[+ 4
[

UNI

def fast_power (x : float, n : int) -> float:
if n ==
return 1
elif n 7 2 ==
return fast_power (x*x, n//2) e
else: # n J 2 ==
return x * fast_power (x*x, n//2)

Nicht endrekursiv!

Aber es kann wieder ein akkumulierender Parameter eingeflhrt werden, der
die duBeren Multiplikationen mit dem x durchflhrt.
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Schnelle Exponentiation, endrekursiv!
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def fast_power_acc (
x : float, n : int, acc : float = 1) -> float:

if n ==

return acc Potararen
elif n % 2 ==

return fast_power_acc(x*x, n//2, acc)
else: #n J 2 == 1

return fast_power_acc(x*x, n//2, acc*x)
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Schnelle Exponentiation, iterativ!

Schematische Transformation |

iefert

UNI

def fast_power_it (

x : float, n : int, acc : float =

while n != O:
if nJ% 2 == 0:
X, n, acc =
else: # n J 2 ==
X, n, acc =
else:
return acc

(x*x, n//2, acc)

(x*x, n//2, acc*x)

1) -> float:

7. Januar 2026
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Sortieren

Sortieren
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Sortieren — Spezifikation 9
2
i_0_
Zp
(Soreren T HE

Eingabe

Liste 1st : list[T]

(Ordnung <= auf den Listenelementen vom Typ T)
Ausgabe

aufsteigend sortierte Liste (geman <=)
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren
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Sortieren — Spezifikation

UNI
FREIBURG

Sortieren
Eingabe

Liste 1st : list[T]
(Ordnung <= auf den Listenelementen vom Typ T)

Ausgabe

aufsteigend sortierte Liste (geman <=) Sortoren
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren durch Partitionieren

Quicksort
Erdacht von Sir C.A.R. Hoare um 1960
Lange Zeit einer der schnellsten Sortieralgorithmen
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Quicksort

='|‘
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Vorgehensweise

Falls 1st leer ist, so ist die Ausgabe die leere Liste.

Sonst wahle und entferne ein beliebiges Element p aus 1st.

Sei 1st_lo die Liste der Elemente aus 1st, die <= p sind. Sortieren
Sei 1st_hi die Liste der Elemente aus 1st, die nicht <= p sind.

Sortiere 1st_lo und 1st_hi mit Ergebnissen sort_lo und sort_hi.

Dannist sort_lo + [p] + sort_hi eine sortierte Version von 1st.
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Quicksort Beispiel

|69|64I91|89I69|5DI2|84I93|64I
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Quicksort Beispiel

69
64
50 2
2 50
2

7. Januar 2026

64 [ 91 [ 89 [ 69 [ 50 [ 2 [ 84 [ 93 [ 64
69 | 50 2 | 64 | 69 S99 e 3
64 64 69 89 | 84 { 91 ‘ 93
64 84 | 89
‘. a : Ll ; r 1 ; ¥
50 | 64 | 64 | 69 | 69 | 84 | 89 | 91 | o3
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Implementierung 9
=2
~8_
def quick . Tist[i > 1istlint]: 4~
ef quicksort (1st : list[int]) -> list[int]: o
if len (1st) <= 1: Su
return 1lst
else:
p, 1lst_lo, 1lst_hi = partition (1st)
return (quicksort (1lst_lo) + [p] + quicksort (lst_hi))
Sortieren
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Implementierung

UNI
FREIBURG

def quicksort (lst : list[int]) -> list[int]:
if len (1st) <= 1:
return lst
else:
p, 1lst_lo, 1lst_hi = partition (1st)
return (quicksort (lst_lo) + [p] + quicksort (1st_hi))

Wunschdenken Sortieren

Annahme: partition (1st) liefertfur len (1st)>=1 ein 3-Tupel
(p, 1st_lo, 1lst_hi), sodass

p ist ein Element von 1st
1st_lo enthalt die Elemente z von 1st mitz <= p
1st_hi enthalt die Elemente z von 1st mitz > p
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Partition

mnn gssume len (lst) >= 1 """

[}
]
ld‘
=2
e
]
—/
L

1st_lo += [x]

1st_hi += [x]
return p, 1lst_lo, 1lst_hi

def partition (1st : list[int]) -> tuplelint, list([int], list[int]]:

Codegerdist flr Listenverarbeitung
Zwei Akkumulatoren 1st_lound 1st_hi
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Betrachtung von Quicksort
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Der rekursive Algorithmus ist die einfachste Beschreibung von Quicksort.
Eine iterative Implementierung ist méglich.

Sortieren

Diese ist aber deutlich schwieriger zu verstehen.
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Lindenmayer Systeme

Lindenmayer
Systeme
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Lindenmayer Systeme
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Wikipedia

Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid

Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
vorgeschlagen wurde. In jingerer Zeit fanden L-Systeme Anwendung in der Lindenmayer
Computergrafik bei der Erzeugung von Fraktalen und in der realitatsnahen Systeme
Modellierung von Pflanzen.
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Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid
Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
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Lindenmayer Systeme, formal
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Definition

Ein OL-System ist ein Tupel G = (V, @, P). Dabei ist
V eine Menge von Symbolen (Alphabet),
® € V* ein String von Symbolen und

P C V x V* eine Menge von Produktionen, sodass zu jedem A € V
mindestens eine Produktion (A,w) € P existiert.

Lindenmayer
Systeme
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Lindenmayer Systeme, formal
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Definition
Ein OL-System ist ein Tupel G = (V, @, P). Dabei ist
V eine Menge von Symbolen (Alphabet),
® € V* ein String von Symbolen und
P C V x V* eine Menge von Produktionen, sodass zu jedem A € V
mindestens eine Produktion (A,w) € P existiert.

Lindenmayer
Systeme

Beispiel (Lindenmayer): OL-System flr Algenwachstum
V = {A,B}
w=A
P={A—BAB— A}
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Wie rechnet ein OL-System?

UNI
FREIBURG

Definition (Berechnungsrelation eines 0L-Systems)

Sei G = (V, @, P) ein OL-System.

Sei A4A, ... A, ein String Uber Symbolen aus V (also A; € V).

Ein Rechenschritt von G ersetzt jedes Symbol durch eine zugehdrige rechte
Produktionsseite:

Lindenmayer

A1A2...An = WiWso...Wp Systeme

wobei (Aj,w;) € P, fir1 <i<n.
Die Sprache von G besteht aus allen Strings, die aus @ durch endlich viele
=--Schritte erzeugt werden kénnen.
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Beispiel: Algenwachstum

FREIBURG

V={AB}, w=A, P={A—BAB—A}

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 51/61



Beispiel: Algenwachstum

FREIBURG

V={AB}, w=A, P={A—BAB—A}

Lindenmayer
Systeme
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Beispiel: Algenwachstum

Prgfs s
UNI
FREIBURG

V={AB}, w=A, P={A—BAB—A}

ABA

Lindenmayer
Systeme
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Beispiel: Algenwachstum

Prgfs s
UNI
FREIBURG

w=A, P={A—BAB—A}

ABA
BAABA

Lindenmayer
Systeme
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Beispiel: Algenwachstum

[
UNI
FREIBURG

V={AB}, w=A, P={A—BAB—A}
A

BA

ABA

BAABA

ABABAABA Lindenmayer

Systeme
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Beispiel: Algenwachstum

Prgfs s
UNI
FREIBURG

V={AB}, w=A, P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA Lo
BAABAABABAABA
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Beispiel: Algenwachstum 9
D
§_0_
2 L
=1
V={AB}, w=A P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA ;i;ﬂgzrr\nrgayer
BAABAABABAABA

ABABAABABAABAABABAABA
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Beispiel: Algenwachstum 9
D
§_0_
2 L
=1
V={AB}, w=A P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA ;i;ﬂgzrr\nrgayer
BAABAABABAABA

ABABAABABAABAABABAABA
usw
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Beispiel Kochkurve

o
+4
D
m
w
[+ 4
[

UNI

Die Kochkurve ist ein Fraktal.

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 52/ 61


https://commons.wikimedia.org/wiki/File:Kochkurve.png

Beispiel Kochkurve

o
+4
D
m
w
[+ 4
[

UNI

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme
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https://commons.wikimedia.org/wiki/File:Kochkurve.png

Beispiel Kochkurve

UNI
FREIBURG

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme

https://commons.wikimedia.org/wiki/File:Kochkurve.png
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Beispiel Kochkurve

UNI
FREIBURG

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein OL-System beschrieben werden.
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Kochkurve O
=2
=8_
zl.u
=1
OL-System fur die Kochkurve
V={F+—}
o=F

P={F— F+F—F+F} sowie ++— +und — — —

Lindenmayer
Systeme
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Kochkurve i Y
=
OL-System fur die Kochkurve
V={F+—}
w=F

P={F— F+F—F+F} sowie ++— +und — — —

Lindenmayer
Systeme

Interpretation der Symbole als Zeichenoperationen
F Strecke vorwarts zeichnen
+ um 60° nach links abbiegen
— um 120° nach rechts abbiegen
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Zeichenmodell: Turtle-Graphics

o
+4
D
m
w
[+ 4
[

ldee der “Schildkrétengrafik”

Eine Schildkrote sitzt auf einer Zeichenflache. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei Uber den Boden schleift, hinterlaBt sie einen geraden
Strich.

Lindenmayer
Systeme
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Zeichenmodell: Turtle-Graphics

3
i

UNI
FREIBURG

ldee der “Schildkrétengrafik”

Eine Schildkrote sitzt auf einer Zeichenflache. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei Uber den Boden schleift, hinterlaBt sie einen geraden
Strich.

Befehle an die Schildkrote

from turtle import * )
pencolor('black') #use the force g‘;gz:;gayer
pendown () #let it all hang out

forward(100)

left(120)

forward(100)

left (120)

forward(100)
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Schildkroten-Interpretation

Die Operationen

o
+4
D
m
w
[+ 4
[

UNI

F forward (size)
+ left (60)
- right (120)

Lindenmayer
Systeme
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Schildkroten-Interpretation

Die Operationen

UNI
FREIBURG

F forward (size)
+ left (60)
- right (120)
Die Produktion F — F+F —F + F

def koch(size:float, n:int):

#...

koch(size/3, n-1) #F ;‘;jtzpnrgayer
left (60) #+

koch(size/3, n-1) #F

right (120) #-

koch(size/3, n-1) #F

left (60) #t

koch(size/3, n-1) #F
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Die letzte Generation

def koch (size:float, n:int):
if n ==
forward(size)
else:
koch (size/3, n-1)
left (60)
koch (size/3, n-1)
right (120)
koch (size/3, n-1)
left(60)
koch (size/3, n-1)

o
+4
D
m
w
[+ 4
[

UNI

Lindenmayer
Systeme
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Beispiel: Fraktaler Bindrbaum

o
+4
D
m
w
[+ 4
[

UNI

OL-System fir fraktale Binarbdume

V={0,1,[.1}
®w=0
P={1+— 11,0~ 1[0]0}

Lindenmayer
Systeme
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Beispiel: Fraktaler Bindrbaum

UNI
FREIBURG

OL-System fur fraktale Binarbaume

V={0,1,[.1}
®w=0
P={1+— 11,0~ 1[0]0}

Interpretation
0 Strecke vorwérts zeichnen mit Blatt am Ende i
1 Strecke vorwarts zeichnen
[ Position und Richtung merken und um 45° nach links abbiegen

] Position und Richtung von zugehériger 6ffnender Klammer
wiederherstellen und um 45° nach rechts abbiegen
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Turtle-Graphics Implementierung Teil 1

o
+4
D
m
w
[+ 4
[

UNI

def btree_1 (size:float, n:int):
if n ==
forward (size)
else:
n=n-1
btree_1 (size/3, n)
btree_1 (size/3, n)

Lindenmayer
Systeme

==0: letzte Generation erreicht
Faktor 1/3 willkiirlich gewahlt
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Turtle-Graphics Implementierung Teil O

def btree_0 (size:float, n:int):

if n ==
forward(size)
dot (2, 'green')
else:
n=n-1
btree_1 (size/3, n)
pos = position()
ang = heading()
left (45)
btree_0 (size/3, n)
penup ()
setposition (pos)
setheading (ang)
pendown ()
right (45)
btree_0 (size/3, n)

7. Januar 2026

# line segment

# draw leaf
# Hl n
#@# " [H
# non
# IIJ "
# HO "

P. Thiemann — Info |
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Zusammenfassung

o
+4
D
m
w
[+ 4
[

UNI

Induktion ist eine Definitionstechnik aus der Mathematik.

Funktionen auf induktiv definierten Daten (d.h. baumartigen Strukturen) sind
meist rekursiv.

Sie terminieren, weil die rekursiven Aufrufe stets auf Teilstrukturen erfolgen.

In Python ist Rekursion oft nicht die effizienteste Implementierung einer
Funkt|0n' Lindenmayer

Systeme
Endrekursion kann schematisch in effiziente lteration umgewandelt werden.

Jede rekursive Funktion lasst sich schematisch in eine aquivalente
endrekursive Function umzuwandeln.
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