Informatik I: Einfiihrung in die Programmierung
15. Rekursion, Endrekursion, lteration

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann

7. Januar 2026

i

o
+4
D
m
w
[+ 4
[

T

UNI

Rekursion

Rekursion

7. Januar 2026

P. Thiemann — Info |

2/61

Rekursive Funktionen

UNI
FREIBURG

Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion

7. Januar 2026 P. Thiemann — Info | 4/61

Rekursive Funktionen

UNI
FREIBURG

Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

7. Januar 2026 P. Thiemann — Info | 4/61

Rekursive Funktionen

UNI
FREIBURG

Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)

4/61

7. Januar 2026 P. Thiemann — Info |

Rekursive Funktionen

UNI
FREIBURG

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthalt.

Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Baumen: rekursive Aufrufe nur auf Teilbaum = Termination.

7. Januar 2026 P. Thiemann — Info | 4/61

Rekursive Funktionen 9
=
8_0_
vy Zx
Definition Du
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthélt. Rekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1
else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Baumen: rekursive Aufrufe nur auf Teilbaum = Termination.

Allgemein missen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion = Termination.

7. Januar 2026 P. Thiemann — Info | 4/61

Rekursion und Baume
Erinnerung

o
+4
D
m
w
[+ 4
[

74
UNI

Baume sind induktiv definiert:

Ein Baum ist entweder leer [J oder Rekursion
ein Knoten mit einer Markierung und einer Liste von Teilbdumen.

7. Januar 2026 P. Thiemann — Info | 5/61

Rekursion und Baume

Erinnerung

Baume sind induktiv definiert:
Ein Baum ist entweder leer [J oder
ein Knoten mit einer Markierung und einer Liste von Teilbdumen.

Schema fur Funktionen F auf Badumen, die natirlich rekursiv sind:
F(O)=A
mark

1 | _ B(mark,F(ty),...,F(t, 1))

B ist ein Programmstlick, das die Markierung der Wurzel, sowie die Ergebnisse
der Funktionsaufrufe von F auf den Teilbaumen verwenden darf.

7. Januar 2026 P. Thiemann — Info | 5/61

UNI

FREIBURG

Rekursion

Rekursion und Baume
Codegerist

Q@dataclass
class Node:
mark : Any
children : list['Tree']
type Tree = Optional [Node]
def tree_skeleton (tree : Tree) -> Any:
match tree:
case None:
return "A" # result for empty tree
case Node (mark, children):
compute B from
- mark

#
#
- tree_skeleton(children[0])
#_
#
#

o
+4
D
m
w
[+ 4
[

UNI

Rekursion

- tree_skeleton(children[n-1])
where n = len (childen)
return "B"

7. Januar 2026 P. Thiemann — Info | 6/61

i

=
]
]
E
Zpy
= T
Binare
Suche

Binare Suche

7. Januar 2026 P. Thiemann — Info |

7/61

Jede Rekursion folgt einer Baumstruktur 9
=2
-2_
Binére Suche — Spezifikation gﬂ
Eingabe =
1st : list[T] streng aufsteigend sortierte Liste Binire
key : T Suchbegriff Suche
Ausgabe
i sodass 1st[i] == key, fallskey in 1lst

andernfalls: None

7. Januar 2026 P. Thiemann — Info | 9/61

Jede Rekursion folgt einer Baumstruktur

FREIBURG

Binare Suche — Spezifikation 2
Eingabe >
1st : 1list[T] streng aufsteigend sortierte Liste Bindre
key : T Suchbegriff Suche
Ausgabe
i sodass 1st[i] == key, fallskey in 1lst

andernfalls: None
Betrachte die Liste wie einen bindaren Suchbaum

Wabhle ein beliebiges Element als Wurzel und vergleiche mit key:
alle Elemente links davon sind kleiner, rechts davon gréBer

Suche weiter im rechten oder linken Listensegment
Optimiere die Effizienz durch geschickte Wahl der Wurzel (in der Mitte)

7. Januar 2026 P. Thiemann — Info | 9/61

Biniare Suche

7. Januar 2026

o1 s | B 2 | 2 |
IR ' IEREIEDR

P. Thiemann — Info |

10/61

UNI

o
+4
D
m
w
[+ 4
[

Binare
Suche

Binire Suche (5) =1

&]
o
=2
-
zl.u
S
\1\5|7\a\10\21|22\25\
| | | | Binare
/\ Suche
‘1‘5'7‘8‘ ‘21|22‘25‘
L+ s EN N
[

7. Januar 2026 P. Thiemann — Info | 11/61

Binire Suche (23) = None

&]
o
=
~2_
zl.u
o5&
‘ 1 ‘ 5 | ! ‘ 8 ‘ 1? ‘ 2t | 22 ‘ 25 ‘ Binare
/ ~— Suche
S s [e EREEEE
1/__5_! RN EN ER
[+] »

7. Januar 2026 P. Thiemann — Info | 12/61

Binare Suche
Elementtyp int

def bsearch (1st : list[int], key : int) -> Optionall[int]:
n = len (1st)

if n == O:

return None # key not in empty list
m=n//2 # position of root
if 1lst[m] == key:

return m

elif 1st[m] > key:
return bsearch (lst[:m], key)
else: # lst[m] < key
r = bsearch (lst[m+1:], key)
return None if r is None else r+m+l

7. Januar 2026 P. Thiemann — Info |

13/61

UNI

o
+4
D
m
w
[+ 4
[

Binare
Suche

Funktioniert ..., aber 1st[:m] und 1st[m+1:] erzeugen jeweils Kopien der

halben Liste (— ineffizient!)

7. Januar 2026

P. Thiemann — Info |

14 /61

UNI

o
+4
D
m
w
[+ 4
[

Binare
Suche

o
+4
D
m
w
[+ 4
[

UNI

Funktioniert ..., aber 1st[:m] und 1st[m+1:] erzeugen jeweils Kopien der
halben Liste (— ineffizient!)

Binare

Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in 1st Suche

7. Januar 2026 P. Thiemann — Info | 14 /61

o
+4
D
m
w
[+ 4
[

UNI

Funktioniert ..., aber 1st[:m] und 1st[m+1:] erzeugen jeweils Kopien der
halben Liste (— ineffizient!)

Binare

Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in 1st Suche
Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben

def bsearch (lst : list[int], key : int) -> Optionall[int]:
return bsearch2 (1st, key, 0, len (1lst))

def bsearch2 (lst : list[int], key : int,
low : int, high : int) -> Optiomnall[int]:
" search for key in lst between low
(inclusive) and high (exclusive)
assumes low <= high """

7. Januar 2026 P. Thiemann — Info | 14 /61

Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n = hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI

7. Januar 2026 P. Thiemann — Info | 15/61

Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n =hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI

Beobachtungen

7. Januar 2026 P. Thiemann — Info | 15/61

Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n =hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI

Beobachtungen
Der Testn == 0 entspricht hi - 1o == O unddamitlo == hi

7. Januar 2026 P. Thiemann — Info | 15/61

Binire Suche ohne Kopieren

def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Optionall[int

n =hi - lo # length of list segment
if n ==

return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:

return m
elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

FREIBURG

UNI

Beobachtungen
Der Testn == 0 entspricht hi - 1o == O unddamitlo == hi

lo + (hi - 1lo0)//2==(lo + hi)//2

7. Januar 2026 P. Thiemann — Info | 15/61

Binire Suche ohne Kopieren, vereinfacht 9
=2
0 _
w
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2 # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

7. Januar 2026 P. Thiemann — Info | 16/61

Binire Suche ohne Kopieren, vereinfacht 9
=2
0 _
7}
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2 # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen

7. Januar 2026 P. Thiemann — Info | 16/61

Binire Suche ohne Kopieren, vereinfacht 9
=2
0 _
7}
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2 # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen

Jeder rekursive Aufruf von bsearch? erfolgt in einer return Anweisung.

7. Januar 2026 P. Thiemann — Info | 16/61

Binire Suche ohne Kopieren, vereinfacht 9
=2
0 _
7}
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2 # position of root Suehe
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen

Jeder rekursive Aufruf von bsearch? erfolgt in einer return Anweisung.
Solche Aufrufe heiBen endrekursiv.

7. Januar 2026 P. Thiemann — Info | 16/61

Endrekursive Funktionen

o
+4
D
m
w
[+ 4
[

UNI

Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Binare
Suche

7. Januar 2026 P. Thiemann — Info | 17 /61

Endrekursive Funktionen

3
i

UNI
FREIBURG

Definition
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Binare

Jede endrekursive Funktion kann durch eine while-Schleife (lteration) Suche

implementiert werden.

7. Januar 2026 P. Thiemann — Info | 17 /61

Endrekursive Funktionen 9
=
20
[11]
Definition :Z,E
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.
Binare
Jede endrekursive Funktion kann durch eine while-Schleife (lieration) Suche

implementiert werden.

Elimination von Endrekursion durch Iteration

Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.

Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.

7. Januar 2026 P. Thiemann — Info | 17 /61

Endrekursive Funktionen 9
=
20
[11]
Definition :Z,E
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.
Binare
Jede endrekursive Funktion kann durch eine while-Schleife (lieration) Suche

implementiert werden.

Elimination von Endrekursion durch Iteration

Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.

Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.
Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.

7. Januar 2026 P. Thiemann — Info | 17 /61

Beispiel: bsearch? ist endrekursive Funktion

UNI
FREIBURG

Abbruchbedingung der Rekursion Bindire
Suche
if lo == hi:
return None
wird negiert zur Bedingung der while-Schleife

while lo != hi:

else:
return None

7. Januar 2026 P. Thiemann — Info | 18/61

Beispiel: bsearch? ist endrekursive Funktion

i

UNI
FREIBURG

Binare
Suche

Endrekursive Aufrufe
return bsearch2 (1lst, key, lo, m)
werden zu Zuweisungen an die Parameter
1st, key, lo, hi = 1st, key, lo, m
bzw. hier reicht

hi = m

7. Januar 2026 P. Thiemann — Info | 19/61

Binére Suche ohne Kopieren, iterativ

o
+4
D
m
w
[+ 4
[

UNI

def bsearch2 (
1st : list[int], key : int, lo:int, hi:int) -> Optionall[int]: Bindre
while lo != hi: Suche
m = (lo + hi)//2
if 1st[m] == key:
return m
elif 1st[m] > key:
hi =m # bsearch2 (lst, key, lo, m)
else: # lst[m] < key
lo = m+l # bsearch2 (lst, key, m+l, hi)
else:
return None

7. Januar 2026 P. Thiemann — Info | 20/61

Erinnerung: Suche im bindren Suchbaum

Ebenfalls endrekursiv

UNI
FREIBURG

def search(tree : Optional[Node], item : Any) -> bool:

if tree is None: gﬁﬁ
return False

elif tree.mark == item:
return True

elif tree.mark > item:
return search(tree.left, item)

else:
return search(tree.right, item)

Gleiches Muster ... nicht Uberraschend

7. Januar 2026 P. Thiemann — Info | 21/61

Suche im bindaren Suchbaum

Iterativ, umgewandelt gemaB Schema

UNI
FREIBURG

def search(tree : Optional[Nodel, item : Any) -> bool:
while tree is not None: onare
if tree.mark == item:
return True
elif tree.mark > item:
tree = tree.left
else:
tree = tree.right
else:
return False

7. Januar 2026 P. Thiemann — Info | 22/61

Potenzieren

7. Januar 2026

P. Thiemann — Info |

23/61

UNI
FREIBURG

Potenzieren

Rek
Defi

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

UNI

Mathematische Definition: x0 =1 XM= x.xn

Rekursive
Definition

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

Mathematische Definition: x0 =1 XM = x.x" g
Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Rekursive
Definition

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

Mathematische Definition: x0 =1 XM = x.x" g

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Detoen

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

Mathematische Definition: x0 =1 XM = x.x" g

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Detoen

Erinnerung: Induktive Definition der natlirlichen Zahlen

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

Mathematische Definition: x0 =1 XM = x.x" g

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Detoen

Erinnerung: Induktive Definition der natlirlichen Zahlen
Eine naturliche Zahl ist entweder 0 oder

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

UNI

Mathematische Definition: x0 =1 XM = x.x"

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) ==
power (x, nt+l) == x * power (x, n)

Wo ist da der Baum?

Erinnerung: Induktive Definition der natlirlichen Zahlen

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Rekursive
Definition

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren

o
+4
D
m
w
[+ 4
[

UNI

Mathematische Definition: x0 =1 XM = x.x"

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) ==

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? eion
Erinnerung: Induktive Definition der natlirlichen Zahlen

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Als Baum: 0 1+

7. Januar 2026 P. Thiemann — Info | 25/61

Rekursion als Definitionstechnik: Potenzieren 9

=2
o
o

Mathematische Definition: x%=1 XM= x . x" &

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0) ==1

power (x, nt+l) == x * power (x, n)

Wo ist da der Baum? Daimion

Erinnerung: Induktive Definition der natlirlichen Zahlen

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegertist.

7. Januar 2026 P. Thiemann — Info | 25/61

Potenzfunktion rekursiv

o
+4
D
m
w
[+ 4
[

UNI

def power (x : float, n : int) -> float:
mnimn T 'S 1 n fo,r. n >= 0 nimn o
if n —— . Definition
return 1
else: #n

1+n'
return x * power (x, n-1)

7. Januar 2026 P. Thiemann — Info | 26/61

Rekursive Aufrufe

3
i

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz
— power(2,3) wahlt else-Zweig und ruft auf: v

Definition

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:

Rekursive
Definition

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:

Rekursive
Definition

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

| RE S
UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:

o
g
292
3

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

| RE S
UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick

o
g
292
3

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck

o
g
292
3

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck
+ power(2,2) gibt (2 x 2) = 4 zurlck

o
g
292
3

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck
+ power(2,2) gibt (2 x 2) = 4 zurlck
+ power(2,3) gibt (2 x 4) = 8 zurlck

o
g
292
3

7. Januar 2026 P. Thiemann — Info | 27/61

Rekursive Aufrufe

UNI
FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
+ power(2,1) gibt (2 x 1) = 2 zurlck
+ power(2,2) gibt (2 x 2) = 4 zurlck
+ power(2,3) gibt (2 x 4) = 8 zurlck

o
g
292
3

7. Januar 2026 P. Thiemann — Info | 27/61

el
=

def power (x : float, n : int) -> float:
if n==0:
return 1
else:
return x * power (x, n-1)

UNI
FREIBURG

7. Januar 2026 P. Thiemann — Info |

Rekursive
Definition

28/61

D A A A
O (j. g
o
def power (x : float, n : int) -> float: zﬂ
if n==0: = T
return 1
else:
return x * power (x, n-1)

Rekursive
Definition

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

7. Januar 2026 P. Thiemann — Info | 28/61

D A A Ja
O d § 1 hz
o
def power (x : float, n : int) -> float: zﬂ
if n==0: = JTH
return 1
else:

return x * power (x, n-1)

Rekursive
Definition

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:
return acc
else:
return power_acc (x, n-1, acc * x)

7. Januar 2026 P. Thiemann — Info | 28/61

D A A A
O d § 1 hz
o
def power (x : float, n : int) -> float: Zﬂ
if n==0: = JTH
return 1
else:

return x * power (x, n-1)

Rekursive
Definition

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:
return acc
else:
return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n);die Funktion power_acc ist endrekursiv ...

7. Januar 2026 P. Thiemann — Info | 28/61

Iterative Power

o
+4
D
m
w
[+ 4
[

UNI

Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != 0:
n, acc = n-1, acc*x
Rekursive
else: Definition
return acc

7. Januar 2026 P. Thiemann — Info | 29/61

Iterative Power

o
+4
D
m
w
[+ 4
[

UNI

Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != O:
n, acc = n-1, acc*x
Rekursive
else: Definition
return acc

Startwert acc = 1 im Funktionskopf definiert.

7. Januar 2026 P. Thiemann — Info | 29/61

Iterative Power

o
+4
D
m
w
[+ 4
[

UNI

Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != O:
n, acc = n-1, acc*x
Rekursive
else: Definition
return acc

Startwert acc = 1 im Funktionskopf definiert.

Jeder Aufruf power_it (x, n) verwendet acc=1.

7. Januar 2026 P. Thiemann — Info | 29/61

Iterative Power

Schematische Transformation in lteration

UNI

def power_it (x : float, n : int, acc : float =
while n != O:
n, acc = n-1, acc*x
else:
return acc

1:

Startwert acc = 1 im Funktionskopf definiert.
Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

7. Januar 2026 P. Thiemann — Info |

29/61

o
+4
D
m
w
[+ 4
[

Rekursive
Definition

o
+4
D
m
w
[+ 4
[

UNI

Schneller Potenzieren sl

7. Januar 2026 P. Thiemann — Info | 30/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von

power (x, 0)?

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)?

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)? 1

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1

power (x, 2)?

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1

power (x, 2)? 2

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)? 2

power (x, n)?

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

7. Januar 2026 P. Thiemann — Info | 32/61

Efficient Power

o
+4
D
m
w
[+ 4
[

UNI

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von

power (x, 0)? 0

power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann — Info | 32/61

Alternative Definition von Power

power (x, 0)
power (x, 2*n)
power(x, 2*n+1)

7. Januar 2026

=1

power (x*x, n) # n>0
x * power(x*x, n) # n>=0

P. Thiemann — Info |

33/61

UNI

o
+4
D
m
w
[+ 4
[

Schneller
Potenzieren

Alternative Definition von Power

o
+4
D
m
w
[+ 4
[

UNI

power (x, 0) == 1
power (x, 2#*n) == power (x*x, n) # n>0

power (x, 2*n+l1) == x * power(x*x, n) # n>=0
Schneller

Alternative Aufteilung der natirlichen Zahlen. Potenzieren

7. Januar 2026 P. Thiemann — Info | 33/61

Alternative Definition von Power

o
+4
D
m
w
[+ 4
[

UNI

power (x, 0) == 1
power (x, 2*n) == power(x*x, n) # n>0

power (x, 2*n+l1) == x * power(x*x, n) # n>=0
Schneller

Alternative Aufteilung der natlrlichen Zahlen. Potenzieren
Jede natlrliche Zahl ungleich 0 ist entweder gerade oder ungerade.

7. Januar 2026 P. Thiemann — Info | 33/61

Alternative Definition von Power

o
+4
D
m
w
[+ 4
[

UNI

power (x, 0) == 1
power (x, 2*n) == power(x*x, n) # n>0

power (x, 2*n+l1) == x * power(x*x, n) # n>=0
Schneller

Alternative Aufteilung der natlrlichen Zahlen. Potenzieren
Jede natlrliche Zahl ungleich 0 ist entweder gerade oder ungerade.

In jedem Fall kénnen wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurtckfuhren.

7. Januar 2026 P. Thiemann — Info | 33/61

elle Exponentiatio 9
K
. Za
def fast_power (x : float, n : int) -> float: o
. . = [T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
@ o
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1?

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2?

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4?

7. Januar 2026 P. Thiemann — Info | 34/61

el
=

def fast_power (x : float, n : int) -> float:

if n ==

return 1
elif n 7, 2 == 0O:

return fast_power (x*x, n//2)
else: #n 2 == 1

return x * fast_power (x*x, n//2)

UNI
FREIBURG

Schneller
Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4? 4

7. Januar 2026 P. Thiemann — Info |

34/61

elle ponentiatio O
-]
¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4? 4
Multiplikationen fur n = 2K?

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
¥ \:_ﬁ m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n=1? 2
Multiplikationen fir n = 2? 3
Multiplikationen fir n = 4? 4
Multiplikationen fur n = 2K? k+2

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
,‘:-g m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n =17 2

Multiplikationen fur n = 27 3

Multiplikationen fur n = 4? 4

Multiplikationen fiir n = 262 k+2
Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
,‘:-g m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n =17 2

Multiplikationen fur n = 27 3

Multiplikationen fur n = 4? 4

Multiplikationen fiir n = 262 k+2

Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.

Schneller als die power Funktion: logarithmisch viele Multiplikationen!

7. Januar 2026 P. Thiemann — Info | 34/61

elle ponentiatio O
-]
,‘:-g m
. Za
def fast_power (x : float, n : int) -> float: o
. s = T
if n ==
return 1
elif n % 2 == 0:
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren

Multiplikationen fir n =17 2

Multiplikationen fur n = 27 3

Multiplikationen fur n = 4? 4

Multiplikationen fiir n = 262 k+2

Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.

Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann — Info | 34/61

Schnelle Exponentiation, iterativ?

o
+4
D
m
w
[+ 4
[

UNI

def fast_power (x : float, n : int) -> float:
if n ==
return 1
elif n 7 2 ==
return fast_power (x*x, n//2) e
else: # n J 2 ==
return x * fast_power (x*x, n//2)

Nicht endrekursiv!

Aber es kann wieder ein akkumulierender Parameter eingeflhrt werden, der
die duBeren Multiplikationen mit dem x durchflhrt.

7. Januar 2026 P. Thiemann — Info | 35/61

Schnelle Exponentiation, endrekursiv!

o
+4
D
m
w
[+ 4
[

UNI

def fast_power_acc (
x : float, n : int, acc : float = 1) -> float:

if n ==

return acc Potararen
elif n % 2 ==

return fast_power_acc(x*x, n//2, acc)
else: #n J 2 == 1

return fast_power_acc(x*x, n//2, acc*x)

7. Januar 2026 P. Thiemann — Info | 36/61

Schnelle Exponentiation, iterativ!

Schematische Transformation |

iefert

UNI

def fast_power_it (

x : float, n : int, acc : float =

while n != O:
if nJ% 2 == 0:
X, n, acc =
else: # n J 2 ==
X, n, acc =
else:
return acc

(x*x, n//2, acc)

(x*x, n//2, acc*x)

1) -> float:

7. Januar 2026

P. Thiemann — Info |

37/61

o
+4
D
m
w
[+ 4
[

Schneller
Potenzieren

i

T

UNI
FREIBURG

Sortieren

Sortieren

7. Januar 2026 P. Thiemann — Info | 38/61

Sortieren — Spezifikation 9
2
i_0_
Zp
(Soreren T HE

Eingabe

Liste 1st : list[T]

(Ordnung <= auf den Listenelementen vom Typ T)
Ausgabe

aufsteigend sortierte Liste (geman <=)
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren

7. Januar 2026 P. Thiemann — Info | 40/61

https://en.wikipedia.org/wiki/Tony_Hoare

Sortieren — Spezifikation

UNI
FREIBURG

Sortieren
Eingabe

Liste 1st : list[T]
(Ordnung <= auf den Listenelementen vom Typ T)

Ausgabe

aufsteigend sortierte Liste (geman <=) Sortoren
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren durch Partitionieren

Quicksort
Erdacht von Sir C.A.R. Hoare um 1960
Lange Zeit einer der schnellsten Sortieralgorithmen

7. Januar 2026 P. Thiemann — Info | 40/ 61

https://en.wikipedia.org/wiki/Tony_Hoare

Quicksort

='|‘
UNI
FREIBURG

Vorgehensweise

Falls 1st leer ist, so ist die Ausgabe die leere Liste.

Sonst wahle und entferne ein beliebiges Element p aus 1st.

Sei 1st_lo die Liste der Elemente aus 1st, die <= p sind. Sortieren
Sei 1st_hi die Liste der Elemente aus 1st, die nicht <= p sind.

Sortiere 1st_lo und 1st_hi mit Ergebnissen sort_lo und sort_hi.

Dannist sort_lo + [p] + sort_hi eine sortierte Version von 1st.

7. Januar 2026 P. Thiemann — Info | 41/61

Quicksort Beispiel

|69|64I91|89I69|5DI2|84I93|64I

Pl 2 e [&4 | | e | P | a0 [[ot o |

N CEER. v e

2 [o [[0 [o [o [o4 [0 | o0 | |

7. Januar 2026 P. Thiemann — Info | 42/61

UNI

o
+4
D
m
w
[+ 4
[

Sortieren

Quicksort Beispiel

69
64
50 2
2 50
2

7. Januar 2026

64 [91 [89 [69 [50 [2 [84 [93 [64
69 | 50 2 | 64 | 69 S99 e 3
64 64 69 89 | 84 { 91 ‘ 93
64 84 | 89
‘. a : Ll ; r 1 ; ¥
50 | 64 | 64 | 69 | 69 | 84 | 89 | 91 | o3

P. Thiemann — Info |

42/61

7
:

UNI

FREIBURG

Sortieren

Implementierung 9
=2
~8_
def quick . Tist[i > 1istlint]: 4~
ef quicksort (1st : list[int]) -> list[int]: o
if len (1st) <= 1: Su
return 1lst
else:
p, 1lst_lo, 1lst_hi = partition (1st)
return (quicksort (1lst_lo) + [p] + quicksort (lst_hi))
Sortieren

7. Januar 2026 P. Thiemann — Info | 43/61

Implementierung

UNI
FREIBURG

def quicksort (lst : list[int]) -> list[int]:
if len (1st) <= 1:
return lst
else:
p, 1lst_lo, 1lst_hi = partition (1st)
return (quicksort (lst_lo) + [p] + quicksort (1st_hi))

Wunschdenken Sortieren

Annahme: partition (1st) liefertfur len (1st)>=1 ein 3-Tupel
(p, 1st_lo, 1lst_hi), sodass

p ist ein Element von 1st
1st_lo enthalt die Elemente z von 1st mitz <= p
1st_hi enthalt die Elemente z von 1st mitz > p

7. Januar 2026 P. Thiemann — Info | 43/61

Partition

mnn gssume len (lst) >= 1 """

[}
]
ld‘
=2
e
]
—/
L

1st_lo += [x]

1st_hi += [x]
return p, 1lst_lo, 1lst_hi

def partition (1st : list[int]) -> tuplelint, list([int], list[int]]:

Codegerdist flr Listenverarbeitung
Zwei Akkumulatoren 1st_lound 1st_hi

7. Januar 2026 P. Thiemann — Info |

44 /61

o
+4
D
m
w
[+ 4
[

UNI

Sortieren

Betrachtung von Quicksort

o
+4
D
m
w
[+ 4
[

UNI

Der rekursive Algorithmus ist die einfachste Beschreibung von Quicksort.
Eine iterative Implementierung ist méglich.

Sortieren

Diese ist aber deutlich schwieriger zu verstehen.

7. Januar 2026 P. Thiemann — Info | 45/ 61

o
+4
D
m
w
[+ 4
[

UNI

Lindenmayer Systeme

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 46/ 61

Lindenmayer Systeme

| RE S
UNI
FREIBURG

Wikipedia

Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid

Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
vorgeschlagen wurde. In jingerer Zeit fanden L-Systeme Anwendung in der Lindenmayer
Computergrafik bei der Erzeugung von Fraktalen und in der realitatsnahen Systeme
Modellierung von Pflanzen.

7. Januar 2026 P. Thiemann — Info | 48/ 61

https://de.wikipedia.org/wiki/Lindenmayer-System

Lindenmayer Systeme

FREIBURG

Wikipedia

Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid
Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
vorgeschlagen wurde. In jlingerer Zeit fanden L-Systeme Anwendung in der Lindenmayer
Computergrafik bei der Erzeugung von Fraktalen und in der realitatsnahen Systeme
Modellierung von Pflanzen.

7. Januar 2026 P. Thiemann — Info | 48/ 61

https://de.wikipedia.org/wiki/Lindenmayer-System

Lindenmayer Systeme, formal

o
+4
D
m
w
[+ 4
[

Definition

Ein OL-System ist ein Tupel G = (V, @, P). Dabei ist
V eine Menge von Symbolen (Alphabet),
® € V* ein String von Symbolen und

P C V x V* eine Menge von Produktionen, sodass zu jedem A € V
mindestens eine Produktion (A,w) € P existiert.

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 49/61

Lindenmayer Systeme, formal

Prgfs s
UNI
FREIBURG

Definition
Ein OL-System ist ein Tupel G = (V, @, P). Dabei ist
V eine Menge von Symbolen (Alphabet),
® € V* ein String von Symbolen und
P C V x V* eine Menge von Produktionen, sodass zu jedem A € V
mindestens eine Produktion (A,w) € P existiert.

Lindenmayer
Systeme

Beispiel (Lindenmayer): OL-System flr Algenwachstum
V = {A,B}
w=A
P={A—BAB— A}

7. Januar 2026 P. Thiemann — Info | 49/61

Wie rechnet ein OL-System?

UNI
FREIBURG

Definition (Berechnungsrelation eines 0L-Systems)

Sei G = (V, @, P) ein OL-System.

Sei A4A, ... A, ein String Uber Symbolen aus V (also A; € V).

Ein Rechenschritt von G ersetzt jedes Symbol durch eine zugehdrige rechte
Produktionsseite:

Lindenmayer

A1A2...An = WiWso...Wp Systeme

wobei (Aj,w;) € P, fir1 <i<n.
Die Sprache von G besteht aus allen Strings, die aus @ durch endlich viele
=--Schritte erzeugt werden kénnen.

7. Januar 2026 P. Thiemann — Info | 50/ 61

Beispiel: Algenwachstum

FREIBURG

V={AB}, w=A, P={A—BAB—A}

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum

FREIBURG

V={AB}, w=A, P={A—BAB—A}

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum

Prgfs s
UNI
FREIBURG

V={AB}, w=A, P={A—BAB—A}

ABA

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum

Prgfs s
UNI
FREIBURG

w=A, P={A—BAB—A}

ABA
BAABA

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum

[
UNI
FREIBURG

V={AB}, w=A, P={A—BAB—A}
A

BA

ABA

BAABA

ABABAABA Lindenmayer

Systeme

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum

Prgfs s
UNI
FREIBURG

V={AB}, w=A, P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA Lo
BAABAABABAABA

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum 9
D
§_0_
2 L
=1
V={AB}, w=A P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA ;i;ﬂgzrr\nrgayer
BAABAABABAABA

ABABAABABAABAABABAABA

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel: Algenwachstum 9
D
§_0_
2 L
=1
V={AB}, w=A P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA ;i;ﬂgzrr\nrgayer
BAABAABABAABA

ABABAABABAABAABABAABA
usw

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel Kochkurve

o
+4
D
m
w
[+ 4
[

UNI

Die Kochkurve ist ein Fraktal.

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 52/ 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Beispiel Kochkurve

o
+4
D
m
w
[+ 4
[

UNI

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 52/ 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Beispiel Kochkurve

UNI
FREIBURG

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme

https://commons.wikimedia.org/wiki/File:Kochkurve.png

7. Januar 2026 P. Thiemann — Info | 52/ 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Beispiel Kochkurve

UNI
FREIBURG

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein OL-System beschrieben werden.

7. Januar 2026 P. Thiemann — Info | 52/ 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Kochkurve O
=2
=8_
zl.u
=1
OL-System fur die Kochkurve
V={F+—}
o=F

P={F— F+F—F+F} sowie ++— +und — — —

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 53/61

Kochkurve i Y
=
OL-System fur die Kochkurve
V={F+—}
w=F

P={F— F+F—F+F} sowie ++— +und — — —

Lindenmayer
Systeme

Interpretation der Symbole als Zeichenoperationen
F Strecke vorwarts zeichnen
+ um 60° nach links abbiegen
— um 120° nach rechts abbiegen

7. Januar 2026 P. Thiemann — Info | 53/61

Zeichenmodell: Turtle-Graphics

o
+4
D
m
w
[+ 4
[

ldee der “Schildkrétengrafik”

Eine Schildkrote sitzt auf einer Zeichenflache. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei Uber den Boden schleift, hinterlaBt sie einen geraden
Strich.

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 54 /61

Zeichenmodell: Turtle-Graphics

3
i

UNI
FREIBURG

ldee der “Schildkrétengrafik”

Eine Schildkrote sitzt auf einer Zeichenflache. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei Uber den Boden schleift, hinterlaBt sie einen geraden
Strich.

Befehle an die Schildkrote

from turtle import *)
pencolor('black') #use the force g‘;gz:;gayer
pendown () #let it all hang out

forward(100)

left(120)

forward(100)

left (120)

forward(100)

7. Januar 2026 P. Thiemann — Info | 54 /61

Schildkroten-Interpretation

Die Operationen

o
+4
D
m
w
[+ 4
[

UNI

F forward (size)
+ left (60)
- right (120)

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 55/61

Schildkroten-Interpretation

Die Operationen

UNI
FREIBURG

F forward (size)
+ left (60)
- right (120)
Die Produktion F — F+F —F + F

def koch(size:float, n:int):

#...

koch(size/3, n-1) #F ;‘;jtzpnrgayer
left (60) #+

koch(size/3, n-1) #F

right (120) #-

koch(size/3, n-1) #F

left (60) #t

koch(size/3, n-1) #F

7. Januar 2026 P. Thiemann — Info | 55/61

Die letzte Generation

def koch (size:float, n:int):
if n ==
forward(size)
else:
koch (size/3, n-1)
left (60)
koch (size/3, n-1)
right (120)
koch (size/3, n-1)
left(60)
koch (size/3, n-1)

o
+4
D
m
w
[+ 4
[

UNI

Lindenmayer
Systeme

7. Januar 2026

P. Thiemann — Info | 56 /61

Beispiel: Fraktaler Bindrbaum

o
+4
D
m
w
[+ 4
[

UNI

OL-System fir fraktale Binarbdume

V={0,1,[.1}
®w=0
P={1+— 11,0~ 1[0]0}

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 57 /61

Beispiel: Fraktaler Bindrbaum

UNI
FREIBURG

OL-System fur fraktale Binarbaume

V={0,1,[.1}
®w=0
P={1+— 11,0~ 1[0]0}

Interpretation
0 Strecke vorwérts zeichnen mit Blatt am Ende i
1 Strecke vorwarts zeichnen
[Position und Richtung merken und um 45° nach links abbiegen

] Position und Richtung von zugehériger 6ffnender Klammer
wiederherstellen und um 45° nach rechts abbiegen

7. Januar 2026 P. Thiemann — Info | 57 /61

Turtle-Graphics Implementierung Teil 1

o
+4
D
m
w
[+ 4
[

UNI

def btree_1 (size:float, n:int):
if n ==
forward (size)
else:
n=n-1
btree_1 (size/3, n)
btree_1 (size/3, n)

Lindenmayer
Systeme

==0: letzte Generation erreicht
Faktor 1/3 willkiirlich gewahlt

7. Januar 2026 P. Thiemann — Info |

58/ 61

Turtle-Graphics Implementierung Teil O

def btree_0 (size:float, n:int):

if n ==
forward(size)
dot (2, 'green')
else:
n=n-1
btree_1 (size/3, n)
pos = position()
ang = heading()
left (45)
btree_0 (size/3, n)
penup ()
setposition (pos)
setheading (ang)
pendown ()
right (45)
btree_0 (size/3, n)

7. Januar 2026

line segment

draw leaf
Hl n
#@# " [H
non
IIJ "
HO "

P. Thiemann — Info |

59/61

UNI
FREIBURG

Lindenmayer
Systeme

7. Januar 2026

P. Thiemann — Info |

60/61

o
+4
D
m
w
[+ 4
[

UNI

Lindenmayer
Systeme

Zusammenfassung

o
+4
D
m
w
[+ 4
[

UNI

Induktion ist eine Definitionstechnik aus der Mathematik.

Funktionen auf induktiv definierten Daten (d.h. baumartigen Strukturen) sind
meist rekursiv.

Sie terminieren, weil die rekursiven Aufrufe stets auf Teilstrukturen erfolgen.

In Python ist Rekursion oft nicht die effizienteste Implementierung einer
Funkt|0n' Lindenmayer

Systeme
Endrekursion kann schematisch in effiziente lteration umgewandelt werden.

Jede rekursive Funktion lasst sich schematisch in eine aquivalente
endrekursive Function umzuwandeln.

7. Januar 2026 P. Thiemann — Info | 61/61

	Rekursion
	Binäre Suche
	Potenzieren
	Rekursive Definition

	Schneller Potenzieren
	Sortieren
	Lindenmayer Systeme

