
Informatik I: Einführung in die Programmierung
15. Rekursion, Endrekursion, Iteration

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann
7. Januar 2026

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion

7. Januar 2026 P. Thiemann – Info I 2 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Funktionen

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthält.

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:

if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Bäumen: rekursive Aufrufe nur auf Teilbaum⇒ Termination.
Allgemein müssen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion⇒ Termination.

7. Januar 2026 P. Thiemann – Info I 4 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Funktionen

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthält.

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:

if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Bäumen: rekursive Aufrufe nur auf Teilbaum⇒ Termination.
Allgemein müssen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion⇒ Termination.

7. Januar 2026 P. Thiemann – Info I 4 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Funktionen

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthält.

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:

if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)

Bekannt von Funktionen auf Bäumen: rekursive Aufrufe nur auf Teilbaum⇒ Termination.
Allgemein müssen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion⇒ Termination.

7. Januar 2026 P. Thiemann – Info I 4 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Funktionen

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthält.

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:

if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Bäumen: rekursive Aufrufe nur auf Teilbaum⇒ Termination.

Allgemein müssen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion⇒ Termination.

7. Januar 2026 P. Thiemann – Info I 4 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Funktionen

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthält.

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:

if n < 2:
return 1

else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Bäumen: rekursive Aufrufe nur auf Teilbaum⇒ Termination.
Allgemein müssen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion⇒ Termination.

7. Januar 2026 P. Thiemann – Info I 4 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion und Bäume
Erinnerung

Bäume sind induktiv definiert:
Ein Baum ist entweder leer □ oder
ein Knoten mit einer Markierung und einer Liste von Teilbäumen.

Schema für Funktionen F auf Bäumen, die natürlich rekursiv sind:
F (□) = A

F



mark

tn−1. . .t0


= B(mark,F (t0), . . . ,F (tn−1))

B ist ein Programmstück, das die Markierung der Wurzel, sowie die Ergebnisse
der Funktionsaufrufe von F auf den Teilbäumen verwenden darf.

7. Januar 2026 P. Thiemann – Info I 5 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion und Bäume
Erinnerung

Bäume sind induktiv definiert:
Ein Baum ist entweder leer □ oder
ein Knoten mit einer Markierung und einer Liste von Teilbäumen.

Schema für Funktionen F auf Bäumen, die natürlich rekursiv sind:
F (□) = A

F



mark

tn−1. . .t0


= B(mark,F (t0), . . . ,F (tn−1))

B ist ein Programmstück, das die Markierung der Wurzel, sowie die Ergebnisse
der Funktionsaufrufe von F auf den Teilbäumen verwenden darf.

7. Januar 2026 P. Thiemann – Info I 5 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion und Bäume
Codegerüst

@dataclass
class Node:

mark : Any
children : list['Tree']

type Tree = Optional[Node]
def tree_skeleton (tree : Tree) -> Any:

match tree:
case None:

return "A" # result for empty tree
case Node (mark, children):

compute B from
- mark
- tree_skeleton(children[0])
- ...
- tree_skeleton(children[n-1])
where n = len (childen)
return "B"

7. Januar 2026 P. Thiemann – Info I 6 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche

7. Januar 2026 P. Thiemann – Info I 7 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Jede Rekursion folgt einer Baumstruktur

Binäre Suche — Spezifikation
Eingabe

lst : list[T] streng aufsteigend sortierte Liste
key : T Suchbegriff

Ausgabe
i sodass lst[i] == key, falls key in lst
andernfalls: None

Idee
Betrachte die Liste wie einen binären Suchbaum
Wähle ein beliebiges Element als Wurzel und vergleiche mit key:
alle Elemente links davon sind kleiner, rechts davon größer
Suche weiter im rechten oder linken Listensegment
Optimiere die Effizienz durch geschickte Wahl der Wurzel (in der Mitte)

7. Januar 2026 P. Thiemann – Info I 9 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Jede Rekursion folgt einer Baumstruktur

Binäre Suche — Spezifikation
Eingabe

lst : list[T] streng aufsteigend sortierte Liste
key : T Suchbegriff

Ausgabe
i sodass lst[i] == key, falls key in lst
andernfalls: None

Idee
Betrachte die Liste wie einen binären Suchbaum
Wähle ein beliebiges Element als Wurzel und vergleiche mit key:
alle Elemente links davon sind kleiner, rechts davon größer
Suche weiter im rechten oder linken Listensegment
Optimiere die Effizienz durch geschickte Wahl der Wurzel (in der Mitte)

7. Januar 2026 P. Thiemann – Info I 9 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche

7. Januar 2026 P. Thiemann – Info I 10 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche (5) = 1

7. Januar 2026 P. Thiemann – Info I 11 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche (23) = None

7. Januar 2026 P. Thiemann – Info I 12 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche
Elementtyp int

def bsearch (lst : list[int], key : int) -> Optional[int]:
n = len (lst)
if n == 0:

return None # key not in empty list
m = n//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch (lst[:m], key)
else: # lst[m] < key

r = bsearch (lst[m+1:], key)
return None if r is None else r+m+1

7. Januar 2026 P. Thiemann – Info I 13 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Kritik

Funktioniert . . . , aber lst[:m] und lst[m+1:] erzeugen jeweils Kopien der
halben Liste (→ ineffizient!)

Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in lst
Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben
def bsearch (lst : list[int], key : int) -> Optional[int]:

return bsearch2 (lst, key, 0, len (lst))

def bsearch2 (lst : list[int], key : int,
low : int, high : int) -> Optional[int]:

""" search for key in lst between low
(inclusive) and high (exclusive)
assumes low <= high """
...

7. Januar 2026 P. Thiemann – Info I 14 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Kritik

Funktioniert . . . , aber lst[:m] und lst[m+1:] erzeugen jeweils Kopien der
halben Liste (→ ineffizient!)
Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in lst

Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben
def bsearch (lst : list[int], key : int) -> Optional[int]:

return bsearch2 (lst, key, 0, len (lst))

def bsearch2 (lst : list[int], key : int,
low : int, high : int) -> Optional[int]:

""" search for key in lst between low
(inclusive) and high (exclusive)
assumes low <= high """
...

7. Januar 2026 P. Thiemann – Info I 14 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Kritik

Funktioniert . . . , aber lst[:m] und lst[m+1:] erzeugen jeweils Kopien der
halben Liste (→ ineffizient!)
Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in lst
Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben
def bsearch (lst : list[int], key : int) -> Optional[int]:

return bsearch2 (lst, key, 0, len (lst))

def bsearch2 (lst : list[int], key : int,
low : int, high : int) -> Optional[int]:

""" search for key in lst between low
(inclusive) and high (exclusive)
assumes low <= high """
...

7. Januar 2026 P. Thiemann – Info I 14 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
n = hi - lo # length of list segment
if n == 0:

return None # key not in empty segment
m = lo + n//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen

Der Test n == 0 entspricht hi - lo == 0 und damit lo == hi

lo + (hi - lo)//2 == (lo + hi)//2

7. Januar 2026 P. Thiemann – Info I 15 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
n = hi - lo # length of list segment
if n == 0:

return None # key not in empty segment
m = lo + n//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen

Der Test n == 0 entspricht hi - lo == 0 und damit lo == hi

lo + (hi - lo)//2 == (lo + hi)//2

7. Januar 2026 P. Thiemann – Info I 15 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
n = hi - lo # length of list segment
if n == 0:

return None # key not in empty segment
m = lo + n//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen
Der Test n == 0 entspricht hi - lo == 0 und damit lo == hi

lo + (hi - lo)//2 == (lo + hi)//2

7. Januar 2026 P. Thiemann – Info I 15 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
n = hi - lo # length of list segment
if n == 0:

return None # key not in empty segment
m = lo + n//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen
Der Test n == 0 entspricht hi - lo == 0 und damit lo == hi

lo + (hi - lo)//2 == (lo + hi)//2

7. Januar 2026 P. Thiemann – Info I 15 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren, vereinfacht

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
if lo == hi:

return None # key not in empty segment
m = (lo + hi)//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen

Jeder rekursive Aufruf von bsearch2 erfolgt in einer return Anweisung.

Solche Aufrufe heißen endrekursiv.

7. Januar 2026 P. Thiemann – Info I 16 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren, vereinfacht

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
if lo == hi:

return None # key not in empty segment
m = (lo + hi)//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen

Jeder rekursive Aufruf von bsearch2 erfolgt in einer return Anweisung.

Solche Aufrufe heißen endrekursiv.

7. Januar 2026 P. Thiemann – Info I 16 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren, vereinfacht

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
if lo == hi:

return None # key not in empty segment
m = (lo + hi)//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen
Jeder rekursive Aufruf von bsearch2 erfolgt in einer return Anweisung.

Solche Aufrufe heißen endrekursiv.

7. Januar 2026 P. Thiemann – Info I 16 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren, vereinfacht

def bsearch2 (lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:
if lo == hi:

return None # key not in empty segment
m = (lo + hi)//2 # position of root
if lst[m] == key:

return m
elif lst[m] > key:

return bsearch2 (lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (lst, key, m+1, hi)

Beobachtungen
Jeder rekursive Aufruf von bsearch2 erfolgt in einer return Anweisung.

Solche Aufrufe heißen endrekursiv.

7. Januar 2026 P. Thiemann – Info I 16 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Endrekursive Funktionen

Definition
Eine Funktion heißt endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Jede endrekursive Funktion kann durch eine while-Schleife (Iteration)
implementiert werden.

Elimination von Endrekursion durch Iteration
Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.
Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.

Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.

7. Januar 2026 P. Thiemann – Info I 17 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Endrekursive Funktionen

Definition
Eine Funktion heißt endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Jede endrekursive Funktion kann durch eine while-Schleife (Iteration)
implementiert werden.

Elimination von Endrekursion durch Iteration
Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.
Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.

Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.

7. Januar 2026 P. Thiemann – Info I 17 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Endrekursive Funktionen

Definition
Eine Funktion heißt endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Jede endrekursive Funktion kann durch eine while-Schleife (Iteration)
implementiert werden.

Elimination von Endrekursion durch Iteration
Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.
Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.

Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.

7. Januar 2026 P. Thiemann – Info I 17 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Endrekursive Funktionen

Definition
Eine Funktion heißt endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Jede endrekursive Funktion kann durch eine while-Schleife (Iteration)
implementiert werden.

Elimination von Endrekursion durch Iteration
Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.
Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.

Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.
7. Januar 2026 P. Thiemann – Info I 17 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: bsearch2 ist endrekursive Funktion

Abbruchbedingung der Rekursion
if lo == hi:

return None

wird negiert zur Bedingung der while-Schleife
while lo != hi:

...
else:

return None

7. Januar 2026 P. Thiemann – Info I 18 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: bsearch2 ist endrekursive Funktion

Endrekursive Aufrufe
return bsearch2 (lst, key, lo, m)

werden zu Zuweisungen an die Parameter
lst, key, lo, hi = lst, key, lo, m

bzw. hier reicht
hi = m

7. Januar 2026 P. Thiemann – Info I 19 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Binäre Suche ohne Kopieren, iterativ

def bsearch2 (
lst : list[int], key : int, lo:int, hi:int) -> Optional[int]:

while lo != hi:
m = (lo + hi)//2
if lst[m] == key:

return m
elif lst[m] > key:

hi = m # bsearch2 (lst, key, lo, m)
else: # lst[m] < key

lo = m+1 # bsearch2 (lst, key, m+1, hi)
else:

return None

7. Januar 2026 P. Thiemann – Info I 20 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Erinnerung: Suche im binären Suchbaum
Ebenfalls endrekursiv

def search(tree : Optional[Node], item : Any) -> bool:
if tree is None:

return False
elif tree.mark == item:

return True
elif tree.mark > item:

return search(tree.left, item)
else:

return search(tree.right, item)

Gleiches Muster . . . nicht überraschend

7. Januar 2026 P. Thiemann – Info I 21 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Suche im binären Suchbaum
Iterativ, umgewandelt gemäß Schema

def search(tree : Optional[Node], item : Any) -> bool:
while tree is not None:

if tree.mark == item:
return True

elif tree.mark > item:
tree = tree.left

else:
tree = tree.right

else:
return False

7. Januar 2026 P. Thiemann – Info I 22 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Potenzieren

7. Januar 2026 P. Thiemann – Info I 23 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)

Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?

Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder

der Nachfolger 1 + (n) einer natürlichen Zahl n.
Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n

Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition: x0 = 1 xn+1 = x ·xn

Die selben Gleichungen in Python-Syntax hingeschrieben
power (x, 0) == 1
power (x, n+1) == x * power (x, n)
Wo ist da der Baum?
Erinnerung: Induktive Definition der natürlichen Zahlen

Eine natürliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natürlichen Zahl n.

Als Baum: 0 1+

n
Daraus ergibt sich das folgende Codegerüst.

7. Januar 2026 P. Thiemann – Info I 25 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Potenzfunktion rekursiv

def power (x : float, n : int) -> float:
""" x ** n for n >= 0 """
if n == 0:

return 1
else: # n = 1+n'

return x * power (x, n-1)

7. Januar 2026 P. Thiemann – Info I 26 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:

→ power(2,1) wählt else-Zweig und ruft auf:
→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:

← power(2,0) gibt 1 zurück
← power(2,1) gibt (2×1) = 2 zurück

← power(2,2) gibt (2×2) = 4 zurück
← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück

← power(2,2) gibt (2×2) = 4 zurück
← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

Was passiert genau?

Aufrufsequenz
→ power(2,3) wählt else-Zweig und ruft auf:

→ power(2,2) wählt else-Zweig und ruft auf:
→ power(2,1) wählt else-Zweig und ruft auf:

→ power(2,0) wählt if-Zweig und:
← power(2,0) gibt 1 zurück

← power(2,1) gibt (2×1) = 2 zurück
← power(2,2) gibt (2×2) = 4 zurück

← power(2,3) gibt (2×4) = 8 zurück

7. Januar 2026 P. Thiemann – Info I 27 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Power ist nicht endrekursiv

def power (x : float, n : int) -> float:
if n==0:

return 1
else:

return x * power (x, n-1)

Aber wir könnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:

return acc
else:

return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n); die Funktion power_acc ist endrekursiv . . .

7. Januar 2026 P. Thiemann – Info I 28 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Power ist nicht endrekursiv

def power (x : float, n : int) -> float:
if n==0:

return 1
else:

return x * power (x, n-1)

Aber wir könnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:

return acc
else:

return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n); die Funktion power_acc ist endrekursiv . . .

7. Januar 2026 P. Thiemann – Info I 28 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Power ist nicht endrekursiv

def power (x : float, n : int) -> float:
if n==0:

return 1
else:

return x * power (x, n-1)

Aber wir könnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:

return acc
else:

return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n); die Funktion power_acc ist endrekursiv . . .

7. Januar 2026 P. Thiemann – Info I 28 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Power ist nicht endrekursiv

def power (x : float, n : int) -> float:
if n==0:

return 1
else:

return x * power (x, n-1)

Aber wir könnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:

return acc
else:

return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n); die Funktion power_acc ist endrekursiv . . .
7. Januar 2026 P. Thiemann – Info I 28 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Iterative Power

Schematische Transformation in Iteration
def power_it (x : float, n : int, acc : float = 1):

while n != 0:
n, acc = n-1, acc*x

else:
return acc

Startwert acc = 1 im Funktionskopf definiert.

Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

7. Januar 2026 P. Thiemann – Info I 29 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Iterative Power

Schematische Transformation in Iteration
def power_it (x : float, n : int, acc : float = 1):

while n != 0:
n, acc = n-1, acc*x

else:
return acc

Startwert acc = 1 im Funktionskopf definiert.

Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

7. Januar 2026 P. Thiemann – Info I 29 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Iterative Power

Schematische Transformation in Iteration
def power_it (x : float, n : int, acc : float = 1):

while n != 0:
n, acc = n-1, acc*x

else:
return acc

Startwert acc = 1 im Funktionskopf definiert.

Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

7. Januar 2026 P. Thiemann – Info I 29 / 61

Rekursion

Binäre
Suche

Potenzieren
Rekursive
Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Iterative Power

Schematische Transformation in Iteration
def power_it (x : float, n : int, acc : float = 1):

while n != 0:
n, acc = n-1, acc*x

else:
return acc

Startwert acc = 1 im Funktionskopf definiert.

Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

7. Januar 2026 P. Thiemann – Info I 29 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schneller Potenzieren

7. Januar 2026 P. Thiemann – Info I 30 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)?

0

power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0

power (x, 1)?

1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)?

1

power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1

power (x, 2)?

2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)?

2

power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)? 2

power (x, n)?

n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)? 2
power (x, n)?

n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Efficient Power

def power_it (x : float, n : int, acc : float=1):
while n != 0:

n, acc = n-1, acc*x
else:

return acc

Wieviele Multiplikationen braucht es zur Berechnung von
power (x, 0)? 0
power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!
7. Januar 2026 P. Thiemann – Info I 32 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Alternative Definition von Power

power(x, 0) == 1
power(x, 2*n) == power(x*x, n) # n>0
power(x, 2*n+1) == x * power(x*x, n) # n>=0

Alternative Aufteilung der natürlichen Zahlen.
Jede natürliche Zahl ungleich 0 ist entweder gerade oder ungerade.
In jedem Fall können wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurückführen.

7. Januar 2026 P. Thiemann – Info I 33 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Alternative Definition von Power

power(x, 0) == 1
power(x, 2*n) == power(x*x, n) # n>0
power(x, 2*n+1) == x * power(x*x, n) # n>=0

Alternative Aufteilung der natürlichen Zahlen.

Jede natürliche Zahl ungleich 0 ist entweder gerade oder ungerade.
In jedem Fall können wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurückführen.

7. Januar 2026 P. Thiemann – Info I 33 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Alternative Definition von Power

power(x, 0) == 1
power(x, 2*n) == power(x*x, n) # n>0
power(x, 2*n+1) == x * power(x*x, n) # n>=0

Alternative Aufteilung der natürlichen Zahlen.
Jede natürliche Zahl ungleich 0 ist entweder gerade oder ungerade.

In jedem Fall können wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurückführen.

7. Januar 2026 P. Thiemann – Info I 33 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Alternative Definition von Power

power(x, 0) == 1
power(x, 2*n) == power(x*x, n) # n>0
power(x, 2*n+1) == x * power(x*x, n) # n>=0

Alternative Aufteilung der natürlichen Zahlen.
Jede natürliche Zahl ungleich 0 ist entweder gerade oder ungerade.
In jedem Fall können wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurückführen.

7. Januar 2026 P. Thiemann – Info I 33 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1?

2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1?

2

Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2

Multiplikationen für n = 2?

3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2?

3

Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3

Multiplikationen für n = 4?

4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4?

4

Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4

Multiplikationen für n = 2k?

k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k?

k+2

Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2

Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.

Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!

Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Multiplikationen für n = 1? 2
Multiplikationen für n = 2? 3
Multiplikationen für n = 4? 4
Multiplikationen für n = 2k? k+2
Multiplikationen für n < 2k : höchstens 2k ≈ 2 log2 n.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!
Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann – Info I 34 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation, iterativ?

def fast_power (x : float, n : int) -> float:
if n == 0:

return 1
elif n % 2 == 0:

return fast_power (x*x, n//2)
else: # n % 2 == 1

return x * fast_power (x*x, n//2)

Nicht endrekursiv!
Aber es kann wieder ein akkumulierender Parameter eingeführt werden, der
die äußeren Multiplikationen mit dem x durchführt.

7. Januar 2026 P. Thiemann – Info I 35 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation, endrekursiv!

def fast_power_acc (
x : float, n : int, acc : float = 1) -> float:

if n == 0:
return acc

elif n % 2 == 0:
return fast_power_acc(x*x, n//2, acc)

else: # n % 2 == 1
return fast_power_acc(x*x, n//2, acc*x)

7. Januar 2026 P. Thiemann – Info I 36 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schnelle Exponentiation, iterativ!

Schematische Transformation liefert
def fast_power_it (

x : float, n : int, acc : float = 1) -> float:
while n != 0:

if n % 2 == 0:
x, n, acc = (x*x, n//2, acc)

else: # n % 2 == 1
x, n, acc = (x*x, n//2, acc*x)

else:
return acc

7. Januar 2026 P. Thiemann – Info I 37 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Sortieren

7. Januar 2026 P. Thiemann – Info I 38 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Sortieren — Spezifikation

Sortieren
Eingabe

Liste lst : list[T]
(Ordnung <= auf den Listenelementen vom Typ T)

Ausgabe
aufsteigend sortierte Liste (gemäß <=)
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren durch Partitionieren
Quicksort
Erdacht von Sir C.A.R. Hoare um 1960
Lange Zeit einer der schnellsten Sortieralgorithmen

7. Januar 2026 P. Thiemann – Info I 40 / 61

https://en.wikipedia.org/wiki/Tony_Hoare

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Sortieren — Spezifikation

Sortieren
Eingabe

Liste lst : list[T]
(Ordnung <= auf den Listenelementen vom Typ T)

Ausgabe
aufsteigend sortierte Liste (gemäß <=)
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren durch Partitionieren
Quicksort
Erdacht von Sir C.A.R. Hoare um 1960
Lange Zeit einer der schnellsten Sortieralgorithmen

7. Januar 2026 P. Thiemann – Info I 40 / 61

https://en.wikipedia.org/wiki/Tony_Hoare

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Quicksort

Vorgehensweise
Falls lst leer ist, so ist die Ausgabe die leere Liste.
Sonst wähle und entferne ein beliebiges Element p aus lst.
Sei lst_lo die Liste der Elemente aus lst, die <= p sind.
Sei lst_hi die Liste der Elemente aus lst, die nicht <= p sind.
Sortiere lst_lo und lst_hi mit Ergebnissen sort_lo und sort_hi.
Dann ist sort_lo + [p] + sort_hi eine sortierte Version von lst.

7. Januar 2026 P. Thiemann – Info I 41 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Quicksort Beispiel

7. Januar 2026 P. Thiemann – Info I 42 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Quicksort Beispiel

7. Januar 2026 P. Thiemann – Info I 42 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Implementierung

def quicksort (lst : list[int]) -> list[int]:
if len (lst) <= 1:

return lst
else:

p, lst_lo, lst_hi = partition (lst)
return (quicksort (lst_lo) + [p] + quicksort (lst_hi))

Wunschdenken
Annahme: partition (lst) liefert für len (lst)>=1 ein 3-Tupel
(p, lst_lo, lst_hi), sodass

p ist ein Element von lst
lst_lo enthält die Elemente z von lst mit z <= p
lst_hi enthält die Elemente z von lst mit z > p

7. Januar 2026 P. Thiemann – Info I 43 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Implementierung

def quicksort (lst : list[int]) -> list[int]:
if len (lst) <= 1:

return lst
else:

p, lst_lo, lst_hi = partition (lst)
return (quicksort (lst_lo) + [p] + quicksort (lst_hi))

Wunschdenken
Annahme: partition (lst) liefert für len (lst)>=1 ein 3-Tupel
(p, lst_lo, lst_hi), sodass

p ist ein Element von lst
lst_lo enthält die Elemente z von lst mit z <= p
lst_hi enthält die Elemente z von lst mit z > p

7. Januar 2026 P. Thiemann – Info I 43 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Partition

def partition (lst : list[int]) -> tuple[int, list[int], list[int]]:
""" assume len (lst) >= 1 """
p = lst[0]
lst_lo = []
lst_hi = []
for x in lst[1:]:

if x <= p:
lst_lo += [x]

else:
lst_hi += [x]

return p, lst_lo, lst_hi

Codegerüst für Listenverarbeitung
Zwei Akkumulatoren lst_lo und lst_hi

7. Januar 2026 P. Thiemann – Info I 44 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Betrachtung von Quicksort

Der rekursive Algorithmus ist die einfachste Beschreibung von Quicksort.
Eine iterative Implementierung ist möglich.
Diese ist aber deutlich schwieriger zu verstehen.

7. Januar 2026 P. Thiemann – Info I 45 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Lindenmayer Systeme

7. Januar 2026 P. Thiemann – Info I 46 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Lindenmayer Systeme

Wikipedia
Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid
Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
vorgeschlagen wurde. In jüngerer Zeit fanden L-Systeme Anwendung in der
Computergrafik bei der Erzeugung von Fraktalen und in der realitätsnahen
Modellierung von Pflanzen.

7. Januar 2026 P. Thiemann – Info I 48 / 61

https://de.wikipedia.org/wiki/Lindenmayer-System

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Lindenmayer Systeme

Wikipedia
Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid
Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
vorgeschlagen wurde. In jüngerer Zeit fanden L-Systeme Anwendung in der
Computergrafik bei der Erzeugung von Fraktalen und in der realitätsnahen
Modellierung von Pflanzen.

7. Januar 2026 P. Thiemann – Info I 48 / 61

https://de.wikipedia.org/wiki/Lindenmayer-System

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Lindenmayer Systeme, formal

Definition
Ein 0L-System ist ein Tupel G = (V ,ω,P). Dabei ist

V eine Menge von Symbolen (Alphabet),
ω ∈ V∗ ein String von Symbolen und
P ⊆ V ×V∗ eine Menge von Produktionen, sodass zu jedem A ∈ V
mindestens eine Produktion (A,w) ∈ P existiert.

Beispiel (Lindenmayer): 0L-System für Algenwachstum
V = {A,B}
ω = A
P = {A→ BA,B→ A}

7. Januar 2026 P. Thiemann – Info I 49 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Lindenmayer Systeme, formal

Definition
Ein 0L-System ist ein Tupel G = (V ,ω,P). Dabei ist

V eine Menge von Symbolen (Alphabet),
ω ∈ V∗ ein String von Symbolen und
P ⊆ V ×V∗ eine Menge von Produktionen, sodass zu jedem A ∈ V
mindestens eine Produktion (A,w) ∈ P existiert.

Beispiel (Lindenmayer): 0L-System für Algenwachstum
V = {A,B}
ω = A
P = {A→ BA,B→ A}

7. Januar 2026 P. Thiemann – Info I 49 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Wie rechnet ein 0L-System?

Definition (Berechnungsrelation eines 0L-Systems)
Sei G = (V ,ω,P) ein 0L-System.
Sei A1A2 . . .An ein String über Symbolen aus V (also Ai ∈ V).
Ein Rechenschritt von G ersetzt jedes Symbol durch eine zugehörige rechte
Produktionsseite:

A1A2 . . .An⇒ w1w2 . . .wn

wobei (Ai ,wi) ∈ P, für 1≤ i ≤ n.
Die Sprache von G besteht aus allen Strings, die aus ω durch endlich viele
⇒-Schritte erzeugt werden können.

7. Januar 2026 P. Thiemann – Info I 50 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A

2 BA
3 ABA
4 BAABA
5 ABABAABA
6 BAABAABABAABA
7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA

3 ABA
4 BAABA
5 ABABAABA
6 BAABAABABAABA
7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA
3 ABA

4 BAABA
5 ABABAABA
6 BAABAABABAABA
7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA
3 ABA
4 BAABA

5 ABABAABA
6 BAABAABABAABA
7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA
3 ABA
4 BAABA
5 ABABAABA

6 BAABAABABAABA
7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA
3 ABA
4 BAABA
5 ABABAABA
6 BAABAABABAABA

7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA
3 ABA
4 BAABA
5 ABABAABA
6 BAABAABABAABA
7 ABABAABABAABAABABAABA

8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Algenwachstum

V = {A,B}, ω = A, P = {A→ BA,B→ A}
1 A
2 BA
3 ABA
4 BAABA
5 ABABAABA
6 BAABAABABAABA
7 ABABAABABAABAABABAABA
8 usw

7. Januar 2026 P. Thiemann – Info I 51 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel Kochkurve

Die Kochkurve ist ein Fraktal.

D.h. eine selbstähnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein 0L-System beschrieben werden.

7. Januar 2026 P. Thiemann – Info I 52 / 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel Kochkurve

Die Kochkurve ist ein Fraktal.
D.h. eine selbstähnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein 0L-System beschrieben werden.

7. Januar 2026 P. Thiemann – Info I 52 / 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel Kochkurve

Die Kochkurve ist ein Fraktal.
D.h. eine selbstähnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein 0L-System beschrieben werden.

7. Januar 2026 P. Thiemann – Info I 52 / 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel Kochkurve

Die Kochkurve ist ein Fraktal.
D.h. eine selbstähnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein 0L-System beschrieben werden.

7. Januar 2026 P. Thiemann – Info I 52 / 61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Kochkurve

0L-System für die Kochkurve
V = {F ,+,−}
ω = F
P = {F 7→ F + F −F + F} sowie + 7→ + und − 7→ −

Interpretation der Symbole als Zeichenoperationen
F Strecke vorwärts zeichnen
+ um 60° nach links abbiegen
− um 120° nach rechts abbiegen

7. Januar 2026 P. Thiemann – Info I 53 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Kochkurve

0L-System für die Kochkurve
V = {F ,+,−}
ω = F
P = {F 7→ F + F −F + F} sowie + 7→ + und − 7→ −

Interpretation der Symbole als Zeichenoperationen
F Strecke vorwärts zeichnen
+ um 60° nach links abbiegen
− um 120° nach rechts abbiegen

7. Januar 2026 P. Thiemann – Info I 53 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Zeichenmodell: Turtle-Graphics

Idee der “Schildkrötengrafik”
Eine Schildkröte sitzt auf einer Zeichenfläche. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei über den Boden schleift, hinterläßt sie einen geraden
Strich.

Befehle an die Schildkröte
from turtle import *
pencolor('black') #use the force
pendown() #let it all hang out
forward(100)
left(120)
forward(100)
left(120)
forward(100)

7. Januar 2026 P. Thiemann – Info I 54 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Zeichenmodell: Turtle-Graphics

Idee der “Schildkrötengrafik”
Eine Schildkröte sitzt auf einer Zeichenfläche. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei über den Boden schleift, hinterläßt sie einen geraden
Strich.
Befehle an die Schildkröte
from turtle import *
pencolor('black') #use the force
pendown() #let it all hang out
forward(100)
left(120)
forward(100)
left(120)
forward(100)

7. Januar 2026 P. Thiemann – Info I 54 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schildkröten-Interpretation

Die Operationen
F forward (size)

+ left (60)

− right (120)

Die Produktion F 7→ F + F −F + F
def koch(size:float, n:int):

#...
koch(size/3, n-1) #F
left(60) #+
koch(size/3, n-1) #F
right(120) #-
koch(size/3, n-1) #F
left(60) #+
koch(size/3, n-1) #F

7. Januar 2026 P. Thiemann – Info I 55 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Schildkröten-Interpretation

Die Operationen
F forward (size)

+ left (60)

− right (120)

Die Produktion F 7→ F + F −F + F
def koch(size:float, n:int):

#...
koch(size/3, n-1) #F
left(60) #+
koch(size/3, n-1) #F
right(120) #-
koch(size/3, n-1) #F
left(60) #+
koch(size/3, n-1) #F

7. Januar 2026 P. Thiemann – Info I 55 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Die letzte Generation

def koch (size:float, n:int):
if n == 0:

forward(size)
else:

koch (size/3, n-1)
left(60)
koch (size/3, n-1)
right(120)
koch (size/3, n-1)
left(60)
koch (size/3, n-1)

7. Januar 2026 P. Thiemann – Info I 56 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Fraktaler Binärbaum

0L-System für fraktale Binärbäume
V = {0,1, [,]}
ω = 0
P = {1 7→ 11,0 7→ 1[0]0}

Interpretation
0 Strecke vorwärts zeichnen mit Blatt am Ende
1 Strecke vorwärts zeichnen
[Position und Richtung merken und um 45° nach links abbiegen
] Position und Richtung von zugehöriger öffnender Klammer
wiederherstellen und um 45° nach rechts abbiegen

7. Januar 2026 P. Thiemann – Info I 57 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: Fraktaler Binärbaum

0L-System für fraktale Binärbäume
V = {0,1, [,]}
ω = 0
P = {1 7→ 11,0 7→ 1[0]0}

Interpretation
0 Strecke vorwärts zeichnen mit Blatt am Ende
1 Strecke vorwärts zeichnen
[Position und Richtung merken und um 45° nach links abbiegen
] Position und Richtung von zugehöriger öffnender Klammer
wiederherstellen und um 45° nach rechts abbiegen

7. Januar 2026 P. Thiemann – Info I 57 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Turtle-Graphics Implementierung Teil 1

def btree_1 (size:float, n:int):
if n == 0:

forward (size)
else:

n = n - 1
btree_1 (size/3, n)
btree_1 (size/3, n)

n==0: letzte Generation erreicht
Faktor 1/3 willkürlich gewählt

7. Januar 2026 P. Thiemann – Info I 58 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Turtle-Graphics Implementierung Teil 0

def btree_0 (size:float, n:int):
if n == 0:

forward(size) # line segment
dot (2, 'green') # draw leaf

else:
n = n - 1
btree_1 (size/3, n) # "1"
pos = position() # "["
ang = heading()
left(45)
btree_0 (size/3, n) # "0"
penup() # "]"
setposition (pos)
setheading (ang)
pendown()
right (45)
btree_0 (size/3, n) # "0"

7. Januar 2026 P. Thiemann – Info I 59 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann – Info I 60 / 61

Rekursion

Binäre
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Zusammenfassung

Induktion ist eine Definitionstechnik aus der Mathematik.
Funktionen auf induktiv definierten Daten (d.h. baumartigen Strukturen) sind
meist rekursiv.
Sie terminieren, weil die rekursiven Aufrufe stets auf Teilstrukturen erfolgen.
In Python ist Rekursion oft nicht die effizienteste Implementierung einer
Funktion!
Endrekursion kann schematisch in effiziente Iteration umgewandelt werden.
Jede rekursive Funktion lässt sich schematisch in eine äquivalente
endrekursive Function umzuwandeln.

7. Januar 2026 P. Thiemann – Info I 61 / 61

	Rekursion
	Binäre Suche
	Potenzieren
	Rekursive Definition

	Schneller Potenzieren
	Sortieren
	Lindenmayer Systeme

