Informatik I: Einfiihrung in die Programmierung
15. Rekursion, Endrekursion, lteration

Albert-Ludwigs-Universitit Freiburg

Prof. Dr. Peter Thiemann
7. Januar 2026

FREIBURG

1 Rekursion

FREIBURG

Rekursion

Binére
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 3/61

Rekursive Funktionen

UNI
FREIBURG

Definition
Eine Funktion f ist rekursiv, wenn der Funktionsrumpf einen Aufruf von f enthélt. Fekursion

Beispiel (Fibonacci, naiv)
def fib (n : int) -> int:
if n < 2:
return 1
else:
return fib (n-2) + fib (n-1)

Problem: Termination (vgl. while Schleife)
Bekannt von Funktionen auf Baumen: rekursive Aufrufe nur auf Teilbaum = Termination.

Allgemein missen die Argumente eines rekursiven Aufrufs “kleiner” sein als die Argumente
der Funktion = Termination.

7. Januar 2026 P. Thiemann — Info | 4/61

Rekursion und Baume
Erinnerung

UNI
FREIBURG

Baume sind induktiv definiert:

Ein Baum ist entweder leer [J oder Rekursion
ein Knoten mit einer Markierung und einer Liste von Teilbdumen.

Schema fur Funktionen F auf Badumen, die natirlich rekursiv sind:
F(O)=A
mark

1 | _ B(mark,F(ty),...,F(t, 1))

B ist ein Programmstlick, das die Markierung der Wurzel, sowie die Ergebnisse
der Funktionsaufrufe von F auf den Teilbaumen verwenden darf.

7. Januar 2026 P. Thiemann — Info | 5/61

Rekursion und Baume
Codegerist

@dataclass
class Node:
mark : Any
children : list['Tree']
type Tree = Optional [Node]
def tree_skeleton (tree : Tree) -> Any:
match tree:
case None:
return "A" # result for empty tree
case Node (mark, children):
compute B from
- mark
- tree_skeleton(children[0])
- tree_skeleton(children[n-1])
where n = len (childen)
return "B"

#
#
#
#
#
#

7. Januar 2026 P. Thiemann — Info |

6/61

Rekursion

Binére
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

2 Binare Suche

Rekursion

Binare
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 8/61

Jede Rekursion folgt einer Baumstruktur 9
=2
— =_0_
Bindre Suche — Spezifikation 2y
Eingabe ow
1st : list[T] streng aufsteigend sortierte Liste Binire
key : T Suchbegriff Suche
Ausgabe
i sodass 1st[i] == key, fallskey in 1lst

andernfalls: None
Idee
Betrachte die Liste wie einen bindren Suchbaum

Wabhle ein beliebiges Element als Wurzel und vergleiche mit key:
alle Elemente links davon sind kleiner, rechts davon gréBer

Suche weiter im rechten oder linken Listensegment

Optimiere die Effizienz durch geschickte Wahl der Wurzel (in der Mitte)

7. Januar 2026 P. Thiemann — Info | 9/61

Binire Suche

Rekursion

Binare
Suche

Potenzieren

‘ ‘ 21 | 22 ‘ 25 ‘ Schneller
Potenzieren

Sortieren

‘ ‘ 21 | ‘ 25 ‘ Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 10/61

Binire Suche (5) =1

Rekursion

‘ 1 ‘ 5 | 7 ‘ 8 ‘ 10 ‘ 21 | 22 ‘ 25 ‘ -

| Binare

Suche
Potenzieren

‘ ! ‘ 9 | 4 ‘ 8 ‘ ‘ 2 | 22 ‘ 25 ‘ Schneller
Potenzieren
Sortieren

‘ 8 ‘ ‘ 21 | ‘ 25 ‘ Lindenmayer

Systeme

7. Januar 2026 P. Thiemann — Info | 11/61

Binire Suche (23) = None

FREIBURG

Rekursion

‘ Binare
Suche

Potenzieren

‘ Schneller
Potenzieren

Sortieren

‘ Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 12/61

Binare Suche
Elementtyp int

UNI
FREIBURG

def bsearch (1st : list[int], key : int) -> Optionall[int]:
n = len (1st) Binare
if n == 0: Suche
return None # key not in empty list
m=n//2 # position of root
if 1st[m] == key:
return m
elif 1st[m] > key:
return bsearch (lst[:m], key)
else: # lst[m] < key
r = bsearch (lst[m+1:], key)
return None if r is None else r+m+1

7. Januar 2026 P. Thiemann — Info | 13/61

Kritik 9
=2
ok _@_
Zo
Funktioniert ..., aber 1st[:m] und 1st [m+1:] erzeugen jeweils Kopien der =&
halben Liste (— ineffizient!)
Alternative: Suche jeweils zwischen Startpunkt und Endpunkt in 1st Suehe

Der rekursive Aufruf muss nur den Start- bzw. Endpunkt verschieben

def bsearch (lst : list[int], key : int) -> Optionall[int]:
return bsearch2 (1st, key, 0, len (1lst))

def bsearch2 (lst : list[int], key : int,
low : int, high : int) -> Optiomnall[int]:
"-search for key in lst between low
(inclusive) and high (exclusive)
assumes low <= high """

7. Januar 2026 P. Thiemann — Info | 14 /61

Binére Suche ohne Kopieren 9
=2
%k @
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE_
n = hi - lo # length of list segment = T
if n ==
return None # key not in empty segment Binare
m = lo + n//2 # position of root Suche
if 1lst[m] == key:
return m

elif 1st[m] > key:

return bsearch? (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1lst, key, m+1, hi)

Beobachtungen
Der Testn == 0O entsprichthi - 1o == O unddamitlo == hi
lo + (hi - lo)//2==(lo + hi)//2

7. Januar 2026 P. Thiemann — Info | 15/61

Binire Suche ohne Kopieren, vereinfacht 9
B 2
Sk B_
i
def bsearch2 (1st : list[int], key : int, lo:int, hi:int) -> Dptional[intEE
if lo == hi:
return None # key not in empty segment -
m = (lo + hi)//2 # position of root ?ﬁﬁ
if 1st[m] == key:
return m

elif 1st[m] > key:

return bsearch2 (1lst, key, lo, m)
else: # lst[m] < key

return bsearch2 (1st, key, m+1, hi)

Beobachtungen
Jeder rekursive Aufruf von bsearch? erfolgt in einer return Anweisung.
Solche Aufrufe hei3en endrekursiv.

7. Januar 2026 P. Thiemann — Info | 16/61

Endrekursive Funktionen

FREIBURG

Definition
Eine Funktion hei3t endrekursiv, falls alle rekursiven Aufrufe endrekursiv sind.

Binére
Jede endrekursive Funktion kann durch eine while-Schleife (lteration) Suche
implementiert werden.

Elimination von Endrekursion durch lteration

Die Abbruchbedingung der Rekursion wird negiert zur Bedingung der
while-Schleife.

Der Rest des Funktionsrumpfs wird zum Rumpf der while-Schleife.
Die endrekursiven Aufrufe werden zu Zuweisungen an die Parameter.
Warum? In Python sind while-Schleifen effizienter als rekursive Funktionen.

7. Januar 2026 P. Thiemann — Info | 17/61

Beispiel: bsearch?2 ist endrekursive Funktion

Abbruchbedingung der Rekursion
if lo == hi:
return None

wird negiert zur Bedingung der while-Schleife
while lo != hi:

else:
return None

7. Januar 2026 P. Thiemann — Info |

18/61

UNI
FREIBURG

Rekursion

Binare
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Beispiel: bsearch? ist endrekursive Funktion

Endrekursive Aufrufe
return bsearch2 (1st, key, lo, m)
werden zu Zuweisungen an die Parameter
1st, key, lo, hi = 1st, key, lo, m
bzw. hier reicht

hi = m

7. Januar 2026 P. Thiemann — Info |

UNI
FREIBURG

Binare
Suche

19/61

Binére Suche ohne Kopieren, iterativ

def bsearch2 (Rekursion
1st : list[int], key : int, lo:int, hi:int) -> Optionall[int]: Bindre
while lo != hi: Suche
m = (10 + hl)//2 Potenzieren
if 1st[m] == key: Schneller
Potenzieren
return m o
oSortieren
elif 1st[m] > key:

Lindenmayer

hi =m # bsearch2 (lst, key, lo, m) Systeme
else: # lst[m] < key
lo = m+l # bsearch2 (lst, key, m+l, hi)
else:
return None

7. Januar 2026 P. Thiemann — Info | 20/61

Erinnerung: Suche im bindren Suchbaum
Ebenfalls endrekursiv

def search(tree : Optional[Node], item : Any) -> bool:

if tree is None:
return False
elif tree.mark == item:
return True
elif tree.mark > item:
return search(tree.left, item)
else:
return search(tree.right, item)

Gleiches Muster ... nicht Uberraschend

7. Januar 2026 P. Thiemann — Info |

UNI
FREIBURG

Binare
Suche

21/61

Suche im bindren Suchbaum
Iterativ, umgewandelt gemaB Schema

def search(tree : Optional[Node], item :

while tree is not None:
if tree.mark == item:
return True
elif tree.mark > item:
tree = tree.left
else:
tree = tree.right
else:
return False

7. Januar 2026 P. Thiemann — Info |

Any) -> bool:

22/61

3 Potenzieren

Rekursive Definition

Potenzieren

7. Januar 2026 P. Thiemann — Info | 24 /61

Rekursion als Definitionstechnik: Potenzieren

Mathematische Definition:

Die selben Gleichungen in Python-Syntax hingeschrieben

power (x, 0)

power (x, n+1)
Wo ist da der Baum?

Erinnerung: Induktive Definition der natlirlichen Zahlen

x0 =1 XM = x.x"

x * power (x, n)

Eine naturliche Zahl ist entweder 0 oder
der Nachfolger 1 + (n) einer natlrlichen Zahl n.

Als Baum:

0

1+

n

Daraus ergibt sich das folgende Codegertist.

7. Januar 2026

P. Thiemann — Info |

UNI
FREIBURG

Rekursive
Definition

25/61

Potenzfunktion rekursiv

def power (x : float, n : int) -> float:

nmnn T 'S 1 n fOT. n >= 0 nmnn
if n == 0:
return 1

else: # n = 1+n'
return x * power (x, n-1)

7. Januar 2026 P. Thiemann — Info |

26/61

Rekursion

Binére

Suche

Potenzieren
Rekursive

Definition

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

Rekursive Aufrufe

FREIBURG

Was passiert genau?

Aufrufsequenz

— power(2,3) wahlt else-Zweig und ruft auf:
— power(2,2) wahlt else-Zweig und ruft auf:
— power(2,1) wahlt else-Zweig und ruft auf:
— power(2,0) wahlt if-Zweig und:
< power(2,0) gibt 1 zuriick
< power(2,1) gibt (2 x 1) = 2 zurlck
+ power(2,2) gibt (2 x 2) = 4 zurlck
+ power(2,3) gibt (2 x 4) = 8 zurlck

o
g
2%

7. Januar 2026 P. Thiemann — Info | 27/61

Power ist nicht endrekursiv

def power (x : float, n : int) -> float:
if n==0:
return 1
else:
return x * power (x, n-1)

Aber wir kénnten das Ergebnis auch in einem akkumulierenden Argument berechnen.

def power_acc (x : float, n : int, acc : float = 1) -> float:
if n==0:
return acc
else:
return power_acc (x, n-1, acc * x)

Aufruf mit power_acc (x, n);die Funktion power_acc ist endrekursiv ...

7. Januar 2026 P. Thiemann — Info | 28/61

Rekursive
Definition

Iterative Power

UNI
FREIBURG

Schematische Transformation in lteration

def power_it (x : float, n : int, acc : float = 1):
while n != O:
n, acc = n-1, acc*x
Rekursive
else: Definiton
return acc

Startwert acc = 1 im Funktionskopf definiert.
Jeder Aufruf power_it (x, n) verwendet acc=1.

Ein Aufruf (z.B.) power_it (x, n, 42) startet mit acc=42.

7. Januar 2026 P. Thiemann — Info | 29/61

4 Schneller Potenzieren

Rekursion

Binére
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 31/61

Efficient Power

FREIBURG

def power_it (x : float, n : int, acc : float=1):
while n != O:
n, acc = n-1, acc*x
else:
return acc

Schneller
Potenzieren

Wieviele Multiplikationen braucht es zur Berechnung von

power (x, 0)? 0

power (x, 1)? 1
power (x, 2)? 2
power (x, n)? n

Mehr Multiplikationen als unbedingt notwendig!

7. Januar 2026 P. Thiemann — Info | 32/61

Alternative Definition von Power 9
=

~90_

z [11]

=1
power (x, 0) == 1
power (x, 2*n) == power (x*x, n) # n>0
power (x, 2*n+l1) == x * power(x*x, n) # n>=0

Schneller
Alternative Aufteilung der natlrlichen Zahlen. Potenzieren

Jede natlrliche Zahl ungleich 0 ist entweder gerade oder ungerade.

In jedem Fall kénnen wir die Berechnung von power entweder sofort
abbrechen oder auf die power mit einem echt kleineren Exponenten n
zurtckfuhren.

7. Januar 2026 P. Thiemann — Info | 33/61

Schnelle Exponentiation

FREIBURG

def fast_power (x : float, n : int) -> float: 2
. S 2
if n ==
return 1
elif n %, 2 ==
return fast_power (x*x, n//2)
else: #n J 2 == 1
Schneller
return x * fast_power (x*x, n//2) Potenzieren
Multiplikationen fir n =17 2
Multiplikationen fur n = 27 3
Multiplikationen fur n = 4? 4
Multiplikationen fiir n = 262 k+2

Multiplikationen fir n < 2K: héchstens 2k ~ 2logsn.
Schneller als die power Funktion: logarithmisch viele Multiplikationen!

Berechnung von n//2 und n%2 ist billig. Warum?

7. Januar 2026 P. Thiemann — Info | 34 /61

Schnelle Exponentiation, iterativ?

FREIBURG

£
) 2
def fast_power (x : float, n : int) -> float:
if n ==
return 1
elif n 7 2 ==
return fast_power (x*x, n//2) e

else: # n J 2 ==
return x * fast_power (x*x, n//2)

Nicht endrekursiv!

Aber es kann wieder ein akkumulierender Parameter eingeflhrt werden, der
die duBeren Multiplikationen mit dem x durchflhrt.

7. Januar 2026 P. Thiemann — Info | 35/61

Schnelle Exponentiation, endrekursiv!)
cE D
K ,:_{E__
2
S
def fast_power_acc (
x : float, n : int, acc : float = 1) -> float:
if n ==
Schneller
return acc Potenzieren
elif n % 2 ==

return fast_power_acc(x*x, n//2, acc)
else: # n 7 2 == 1
return fast_power_acc(x*x, n//2, acc*x)

7. Januar 2026 P. Thiemann — Info | 36/61

Schnelle Exponentiation, iterativ!

UNI
FREIBURG

Schematische Transformation liefert

def fast_power_it (
x : float, n : int, acc : float = 1) -> float:
while n != O: Serneller
if n % 2 == . Potenzieren
x, n, acc = (x*x, n//2, acc)
else: # n J 2 ==
x, n, acc = (x*x, n//2, acc*x)

else:
return acc

7. Januar 2026 P. Thiemann — Info | 37/61

5 Sortieren

FREIBURG

Rekursion

Binére
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 39/61

Sortieren — Spezifikation

UNI
FREIBURG

Sortieren
Eingabe
Liste 1st : 1list[T]
(Ordnung <= auf den Listenelementen vom Typ T)

Ausgabe

aufsteigend sortierte Liste (geman <=) Sortieren
jedes Element muss in der Ausgabe genauso oft vorkommen wie in der Eingabe

Sortieren durch Partitionieren
Quicksort
Erdacht von Sir C.A.R. Hoare um 1960
Lange Zeit einer der schnellsten Sortieralgorithmen

7. Januar 2026 P. Thiemann — Info | 40/61

https://en.wikipedia.org/wiki/Tony_Hoare

Quicksort

FREIBURG

Vorgehensweise
Falls 1st leer ist, so ist die Ausgabe die leere Liste.
Sonst wahle und entferne ein beliebiges Element p aus 1st.
Sei 1st_lo die Liste der Elemente aus 1st, die <= p sind. Sortieren
Sei 1st_hi die Liste der Elemente aus 1st, die nicht <= p sind.
Sortiere 1st_lo und 1st_hi mit Ergebnissen sort_lo und sort_hi.
Dannist sort_lo + [p] + sort_hi eine sortierte Version von 1st.

7. Januar 2026 P. Thiemann — Info | 41/61

Quicksort Beispiel

7. Januar 2026

FREIBURG

|69|64|91|89|69|

50 | 2 | 84 | 93 | 64 | Rekursion

Binare
Suche

Potenzieren

Schneller

[z || =~ |

1 b

Potenzieren

Sortieren

Lindenmayer
Systeme

ERE

| & |

64|69|69|84|89|91|93|

P. Thiemann — Info |

42/61

Implementierung

if len (1st) <= 1:
return lst
else:

def quicksort (lst : list[int]) -> list[int]:

p, 1lst_lo, 1lst_hi = partition (1st)
return (quicksort (lst_lo) + [p] + quicksort (1st_hi))

UNI
FREIBURG

Wunschdenken

Annahme: partition (1st) liefertfur len (1st)>=1 ein 3-Tupel

(p, lst_lo, 1lst_hi), sodass
p ist ein Element von 1st

1st_lo enthalt die Elemente z von 1st mitz <= p
1st_hi enthalt die Elemente z von 1st mitz > p

7. Januar 2026

P. Thiemann — Info |

Sortieren

43/61

Partition

FREIBURG

def partition (1st : list[int]) -> tuplelint, list[int], list[int]]:
mnn gssume len (lst) >= 1 """
p = 1lst[0]
1st_lo = []
1st_hi
for x in 1st([1:]:
if x <= p:
1st_lo += [x]
else:
1st_hi += [x]
return p, 1lst_lo, 1lst_hi

I
]
—

Sortieren

Codegerust fur Listenverarbeitung
Zwei Akkumulatoren 1st_lound 1st_hi

7. Januar 2026 P. Thiemann — Info | 44 /61

Betrachtung von Quicksort

UNI
FREIBURG

Der rekursive Algorithmus ist die einfachste Beschreibung von Quicksort.
Eine iterative Implementierung ist méglich.
Diese ist aber deutlich schwieriger zu verstehen.

Sortieren

7. Januar 2026 P. Thiemann — Info | 45/61

6 Lindenmayer Systeme

Rekursion

Binére
Suche

Potenzieren

Schneller
Potenzieren

Sortieren

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 47761

Lindenmayer Systeme

FREIBURG

Wikipedia

Bei den Lindenmayer- oder L-Systemen handelt es sich um einen mathematischen
Formalismus, der 1968 von dem ungarischen theoretischen Biologen Aristid

Lindenmayer als Grundlage einer axiomatischen Theorie biologischer Entwicklung
vorgeschlagen wurde. In jlingerer Zeit fanden L-Systeme Anwendung in der Lindenmayer
Computergrafik bei der Erzeugung von Fraktalen und in der realitatsnahen Systeme
Modellierung von Pflanzen.

7. Januar 2026 P. Thiemann — Info | 48 /61

https://de.wikipedia.org/wiki/Lindenmayer-System

Lindenmayer Systeme, formal

FREIBURG

Definition

Ein OL-System ist ein Tupel G = (V, @, P). Dabei ist
V eine Menge von Symbolen (Alphabet),
® € V* ein String von Symbolen und

P C V x V* eine Menge von Produktionen, sodass zu jedem A € V
mindestens eine Produktion (A,w) € P existiert.

Lindenmayer
Systeme

Beispiel (Lindenmayer): OL-System flr Algenwachstum
V = {A,B}
w=A
P={A—BAB— A}

7. Januar 2026 P. Thiemann — Info | 49/61

Wie rechnet ein OL-System?

UNI
FREIBURG

Definition (Berechnungsrelation eines 0L-Systems)

Sei G = (V,w, P) ein OL-System.

Sei A1As... A, ein String Gber Symbolen aus V (also A; € V).

Ein Rechenschritt von G ersetzt jedes Symbol durch eine zugehdrige rechte
Produktionsseite:

Lindenmayer

A1A2...An = WiWso...Wp Systeme

wobei (Aj,w;) € P, fir1 <i<n.
Die Sprache von G besteht aus allen Strings, die aus @ durch endlich viele
=--Schritte erzeugt werden kénnen.

7. Januar 2026 P. Thiemann — Info | 50/ 61

Beispiel: Algenwachstum

V={AB}, w=A P={A—BAB—A}
A
BA
ABA
BAABA
ABABAABA Syeteme
BAABAABABAABA
ABABAABABAABAABABAABA

usw

7. Januar 2026 P. Thiemann — Info | 51/61

Beispiel Kochkurve

UNI
FREIBURG

Die Kochkurve ist ein Fraktal.

D.h. eine selbstahnliche Kurve mit rekursiver Beschreibung und weiteren
spannenden Eigenschaften.

Lindenmayer
Systeme

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Sie kann durch ein OL-System beschrieben werden.

7. Januar 2026 P. Thiemann — Info | 52 /61

https://commons.wikimedia.org/wiki/File:Kochkurve.png

Kochkurve

OL-System fur die Kochkurve
V={F+-}
o=F
P={F~ F+F—F+F} sowie ++— +und — — —

Interpretation der Symbole als Zeichenoperationen
F Strecke vorwarts zeichnen
+ um 60° nach links abbiegen
— um 120° nach rechts abbiegen

7. Januar 2026 P. Thiemann — Info |

UNI
FREIBURG

Lindenmayer
Systeme

53/61

Zeichenmodell: Turtle-Graphics

FREIBURG

ldee der “Schildkrétengrafik”

Eine Schildkrote sitzt auf einer Zeichenflache. Sie kann eine bestimmte Strecke
geradeaus gehen oder abbiegen. Sie kann den Hintern heben und absenken.
Wenn ihr Hintern dabei Uber den Boden schleift, hinterlai3t sie einen geraden
Strich.

Befehle an die Schildkrote

from turtle import *)
pencolor('black') #use the force g‘;f@:;gayer
pendown () #let 4t all hang out

forward(100)

left (120)

forward(100)

left (120)

forward(100)

7. Januar 2026 P. Thiemann — Info | 54 /61

Schildkroten-Interpretation

— Die Operationen
F forward (size)
+ left (60)
- right (120)
Die Produktion F— F+F —F +F

def koch(size:float, n:int):

FREIBURG

#...

koch(size/3, n-1) #F g'yngzpn”jye'
left (60) #+

koch(size/3, n-1) #F

right (120) #-

koch(size/3, n-1) #F

left (60) #t

koch(size/3, n-1) #F

7. Januar 2026 P. Thiemann — Info | 55/61

Die letzte Generation

def koch (size:float, n:int):
if n ==
forward(size)
else:
koch (size/3, n-1)
left (60)
koch (size/3, n-1)
right (120)
koch (size/3, n-1)
left(60)
koch (size/3, n-1)

7. Januar 2026 P. Thiemann — Info |

56 / 61

UNI
FREIBURG

Lindenmayer
Systeme

Beispiel: Fraktaler Bindrbaum 9
i -
i _
Zo
OL-System fir fraktale Binarb&aume Du
V={0,1[.]}
w=0
P={1+— 11,0~ 1[0]0}
Interpretation
0 Strecke vorwérts zeichnen mit Blatt am Ende i
1 Strecke vorwérts zeichnen
[Position und Richtung merken und um 45° nach links abbiegen
] Position und Richtung von zugehériger 6ffnender Klammer

wiederherstellen und um 45° nach rechts abbiegen

7. Januar 2026 P. Thiemann — Info | 57 /61

Turtle-Graphics Implementierung Teil 1

def btree_1 (size:float, n:int):
if n ==
forward (size)
else:
n=n-1
btree_1 (size/3, n)
btree_1 (size/3, n) i

n==0: letzte Generation erreicht
Faktor 1/3 willkiirlich gewahlt

7. Januar 2026 P. Thiemann — Info | 58 /61

Turtle-Graphics Implementierung Teil O

def btree_0 (size:float, n:int):

if n ==
forward(size)
dot (2, 'green')
else:
n=n-1
btree_1 (size/3, n)
pos = position()
ang = heading()
left (45)
btree_0 (size/3, n)
penup ()
setposition (pos)
setheading (ang)
pendown ()
right (45)
btree_0 (size/3, n)
7. Januar 2026

line segment

draw leaf
Hl n
#@# " [H
non
IIJ "
HO "

P. Thiemann — Info |

59 /61

Lindenmayer
Systeme

FREIBURG

Lindenmayer
Systeme

7. Januar 2026 P. Thiemann — Info | 60 /61

Zusammenfassung

UNI
FREIBURG

Induktion ist eine Definitionstechnik aus der Mathematik.

Funktionen auf induktiv definierten Daten (d.h. baumartigen Strukturen) sind

meist rekursiv.

Sie terminieren, weil die rekursiven Aufrufe stets auf Teilstrukturen erfolgen.

In Python ist Rekursion oft nicht die effizienteste Implementierung einer

Funktion! éi;ﬁz:nn;ayer
Endrekursion kann schematisch in effiziente lteration umgewandelt werden.

Jede rekursive Funktion lasst sich schematisch in eine aquivalente
endrekursive Function umzuwandeln.

7. Januar 2026 P. Thiemann — Info | 61/61

	Rekursion
	Binäre Suche
	Potenzieren
	Rekursive Definition

	Schneller Potenzieren
	Sortieren
	Lindenmayer Systeme

