Informatik I: Einführung in die Programmierung

7. Entwurf von Schleifen, While-Schleifen, Hilfsfunktionen und Akkumulatoren

Z

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Peter Thiemann

5. November 2025

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- **Ableitung**
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von Schleifen

Fallstudie:

Lexikographische

while-

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- Ableitung
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikat

. .

uswertung

ntegration

inäre Operation

ddition

ultiplikation

erbesserte

erbesserte ypannotationen

Lexikographische Ordnung

while-Schleifen

Polynome

Definition

Ein *Polvnom vom Grad n* ist eine Folge von Zahlen $[a_0, a_1, \dots, a_n]$, den Koeffizienten. Dabei ist $n \ge 0$ und der Leitkoeffizient $a_n \ne 0$.

Andere Schreibweise: $\sum_{i=0}^{n} a_i x^i$

Beispiele

[]
$$\approx 0$$

[1] ≈ 1
[3,2,1] $\approx 3+2x+x^2$

Anwendungen

Kryptographie, fehlerkorrigierende Codes.

Entwurf von

Falletudio: Rechnen mit Polynomen

while-

Darstellung von Polynomen in Python

Liste von Gleitkommazahlen

```
type polynom = list[float]
```

- Diese Typdefinition definiert einen neuen Typ mit Namen polynom.
- Der Typ polynom ist gleichwertig zum Typ list[float].
- Konvention für ein Polynom p (Erinnerung):

```
len(p) == 0 \text{ or } p[-1] != 0
```

Entwurf von

Falletudio: Rechnen mit Polynomen

while-

Rechenoperationen auf Polynomen

(Skalar) Multiplikation mit einer Zahl c

$$c \cdot [a_0, a_1, \dots, a_n] = [c \cdot a_0, c \cdot a_1, \dots, c \cdot a_n]$$

Auswertung an der Stelle x_0

$$[a_0,a_1,\ldots,a_n](x_0)=\sum_{i=0}^n a_i\cdot x_0^i$$

Ableitung

$$[a_0, a_1, \ldots, a_n]' = [1 \cdot a_1, 2 \cdot a_2, \ldots, n \cdot a_n]$$

Integration

$$\int [a_0, a_1, \dots, a_n] = [0, a_0, a_1/2, a_2/3, \dots, a_n/(n+1)]$$

Entwurf von

Falletudio: Rechnen mit Polynomen

Skalarmultiplikation

Lexikographische

while-

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- **Ableitung**
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von

Fallstudie:

Skalarmultiplikation

Lexikographische

while-

$$c \cdot [a_0, a_1, \ldots, a_n] = [c \cdot a_0, c \cdot a_1, \ldots, c \cdot a_n]$$

Schritt 1: Bezeichner und Datentypen

Die Funktion scalar mult nimmt als Eingabe

c: float, den Faktor.

p: polynom, ein Polynom.

Der Grad des Polynoms ergibt sich aus der Länge der Sequenz.

Entwurf von

Fallstudie:

Skalarmultiplikation

Lexikographische

while-

Schritt 2: Funktionsgerüst

```
def scalar_mult(
        c : float.
        p : polynom
        ) -> polynom:
    # fill in, initialization
    for ai in p:
        pass # fill in action for each element
    return ...
```

Entwurf von

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Multiplikation

Lexikographische

while-

Schritt 3: Beispiele

```
assert(scalar mult(42, []) == [])
assert(scalar mult(42, [1,2,3]) == [42,84,126])
assert(scalar_mult(-0.1, [1,2,4]) == [-0.1,-0.2,-0.4])
```

Entwurf von

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Ableitung

Integration

Multiplikation

Lexikographische

while-

Schritt 4: Funktionsdefinition

```
def scalar_mult(
        c : float.
        p : polynom
        ) -> polynom:
    result = \Pi
    for ai in p:
        result = result + [c * ai]
    return result.
```

Entwurf von

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Auswertung

Ableitung

Multiplikation

Lexikographische

while-

Muster: Akkumulator

Rumpf der Skalarmultiplikation

```
result = []  # initialization
for ai in p:
    result = result + [c * ai]  # update
return result
```

Variable result ist Akkumulator

- In result wird das Ergebnis aufgesammelt (akkumuliert).
- result wird vor der Schleife initialisiert auf das Ergebnis für die leere Liste.
- Jede Schleifeniteration aktualisiert das Ergebnis in result, indem das Ergebnis um das aktuelle Element ai erweitert wird.

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Auswertung

bloitung

oleitung

egration

näre Operatione

ldition

ultiplikation

erbesserte

Typannotationer

.exikographische Ordnung

while-Schleifen

Begründung

- $p = [a_0, a_1, ..., a_n]$
- r = []
- \blacksquare r = []
- for ai in p:
- r = r + [c * ai]
- nach dem i-ten Durchlauf der Schleife:

$$r = [c \cdot a_0, \ldots, c \cdot a_{i-1}]$$

 \blacksquare nach dem n+1-ten Durchlauf (letzter Durchlauf der Schleife):

$$r = [c \cdot a_0, \dots, c \cdot a_n]$$

Entwurf von

Fallstudie:

Skalarmultiplikation

Multiplikation

Lexikographische

while-

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

Auswertung

Allelele

Ableitung

-toleitung

Integration

Binäre Operationen

Addition

ition

Multiplikation

Verbesserte

Typannotationen

.exikographische Ordnung

while-Schleifen

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- **Ableitung**
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von

Fallstudie:

Auswertung

Lexikographische

while-

$$[a_0,a_1,\ldots,a_n](x_0)=\sum_{i=0}^n a_i\cdot x_0^i$$

Schritt 1: Bezeichner und Datentypen

Die Funktion poly eval nimmt als Eingabe

p: polynom, ein Polynom,

x: float, das Argument.

Der Grad des Polynoms ergibt sich aus der Länge der Sequenz.

Entwurf von

Fallstudie:

Auswertung

Lexikographische

while-

Schritt 2: Funktionsgerüst

```
def poly_eval(
        p : polynom,
        x : float
        ) -> float:
    # fill in
    for a in p:
        pass # fill in action for each element
    return ...
```

Entwurf von

Fallstudie: Rechnen mit

Polynomen Skalarmultiplikation

Auswertung

Ableitung

Binäre Operationen

Multiplikation

Lexikographische

while-


```
Schritt 3: Beispiele
```

```
assert(poly_eval([], 2) == 0)
assert(poly_eval([1,2,3], 2) == 17)
assert(poly_eval([1,2,3], -0.1) == 0.83)
```

Entwurf von

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Auswertung

Ableitung

Multiplikation

Lexikographische

while-

Schritt 4: Funktionsdefinition

```
def poly_eval(
        p : polynom,
        x : float
        ) -> float:
    result = 0
    i = 0
    for a in p:
        result = result + a * x ** i
        i = i + 1
    return result
```

Entwurf von

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Auswertung

Ableitung Integration

Binäre Operationen

Addition

Multiplikation

Lexikographische

while-

Schritt 4: Alternative Funktionsdefinition

```
def poly_eval(
        p : polynom,
        x : float
        ) -> float:
    result = 0
    for i, a in enumerate(p):
        result = result + a * x ** i
    return result
```

- enumerate(seg) liefert Paare aus (Laufindex, Element)
- Beispiel list (enumerate([8, 8, 8])) == [(0, 8), (1, 8), (2, 8)]

Entwurf von

Auswertung

while-

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- Ableitung
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen

Skalarmultiplika

uswertung

Ableitung

Integration

Binäre Operation

ddition

ultiplikation

erbesserte

ypannotationen

Lexikographische Ordnung

while-Schleifen

$$[a_0, a_1, \ldots, a_n]' = [1 \cdot a_1, 2 \cdot a_2, \ldots, n \cdot a_n]$$

Schritt 1: Bezeichner und Datentypen

Die Funktion derivative nimmt als Eingabe

p: polynom, ein Polynom.

Der Grad des Polynoms ergibt sich aus der Länge der Sequenz.

Entwurf von

Fallstudie: Polynomen

Skalarmultiplikation

Ableituna

Multiplikation

Lexikographische

while-

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

Auswertung

Ableitung

Integration

Binäre Operatio

dition

Addition Multiplikation

erbesserte

ypannotationen

Lexikographische Ordnung

while-Schleifen


```
Schritt 3: Beispiele
```

```
assert derivative([])
assert derivative([42]) == []
assert derivative([1,2,3]) == [2,6]
```

Entwurf von

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

Auswertung

Ableitung

Integration

Binäre Operationen

Addition

Multiplikation

Lexikographische

while-

Schritt 4: Funktionsdefinition

```
def derivative(
    p : polynom
    ) -> polynom:
    result = []
    for i, a in enumerate(p):
        if i > 0:
            result = result + [i * a]
    return result
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

Auswertung

Ableitung

Integration

năre Operatio

dition

Multiplikation

rbesserte

rbesserte pannotationen

Lexikographische

while-Schleifen

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- **Ableitung**
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von

Fallstudie:

Integration

Lexikographische

while-

Integration

$$\int [a_0, a_1, \dots, a_n] = [0, a_0, a_1/2, a_2/3, \dots, a_n/(n+1)]$$

Schritt 1: Bezeichner und Datentypen

Die Funktion integral nimmt als Eingabe

p: polynom, ein Polynom.

Der Grad des Polynoms ergibt sich aus der Länge der Sequenz.

Weitere Schritte

selbst

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplik

Auswertung

Ableitung

Integration

ntegration

linäre Operation

ldition

ltiplikation

erbesserte voannotationer

ypannotationen

Lexikographische Ordnung

while-Schleifen

- Entwurf von
 - Fallstudie:

 - Binäre Operationen

 - Lexikographische
 - while-
 - Zusammen-

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- **Ableitung**
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Operationen mit zwei Polynomen

Addition (falls n < m)

$$[a_0, a_1, \dots, a_n] + [b_0, b_1, \dots, b_m]$$

= $[a_0 + b_0, a_1 + b_1, \dots, a_n + b_n, b_{n+1}, \dots, b_m]$

Multiplikation von Polynomen

$$[a_0, a_1, \dots, a_n] \cdot [b_0, b_1, \dots, b_m]$$

$$= [a_0 \cdot b_0, a_0 \cdot b_1 + a_1 \cdot b_0, \dots, \sum_{i=0}^k a_i \cdot b_{k-i}, \dots, a_n \cdot b_m]$$

Entwurf von

Fallstudie:

Binäre Operationer

while-

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- Ableitung
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen

Skalarmultiplikation

isweitung

ntegration

sinare Opera

Addition

Multiplikation

erbesserte

ypannotationen

Lexikographische Ordnung

while-Schleifen

$$(a_0, a_1, \dots, a_n) + (b_0, b_1, \dots, b_m)$$

= $(a_0 + b_0, a_1 + b_1, \dots, a_n + b_n, b_{n+1}, \dots, b_m)$

Schritt 1: Bezeichner und Datentypen

Die Funktion poly_add nimmt als Eingabe

p: polynom, ein Polynom.

q : polynom, ein Polynom.

Die Grade der Polynome ergeben sich aus der Länge der Sequenzen.

Achtung

Die Grade der Polynome können unterschiedlich sein!

Entwurf von

Addition

while-


```
Schritt 2: Funktionsgerüst
```

```
def poly_add(
    p : polynom,
    q : polynom
    ) -> polynom:
    # fill in
    for i in range(...): # <<----
        pass # fill in action for each element
    return ...</pre>
```

Frage

Was ist das Argument ... von range?

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikatio

Auswertung

oleitung

tegration

äre Operatio

Addition

Multiplikation

erbesserte ypannotationen

Lexikographische Ordnung

while-Schleifen

Schritt 3: Beispiele

```
assert(poly_add([], []) == [])
assert(poly_add([42], []) == [42])
assert(poly_add([], [11]) == [11])
assert(poly_add([1,2,3], [4,3,2,5]) == [5,5,5,5])
```

Antwort: Argument von range

```
maxlen = max (len (p), len (q))
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplika

uswertung

hleituna

tearation

iăre Operatio

Addition

Addition Multiplikation

erbesserte

erbesserte /pannotationer

Lexikographische Ordnung

while-Schleifen


```
Schritt 4: Funktionsdefinition, erster Versuch
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

uswertung

awertung

aration

iära Onaratir

Addition

ddition

Multiplikation

rbesserte

Typannotationen Lexikographische

Ordnung

while-Schleifen

Problem

Eine Assertion schlägt fehl!

```
assert(poly_add([], []) == [])
assert(poly_add([42], []) == [42])
```

Analyse

```
Zweite Assertion schlägt fehl für i=0!
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikatio

swertung

eitung

gration

are Operation

Addition

fultiplikation

rbesserte

besserte annotationen

xikographische

while-Schleifen

Addition — Wunschdenken

Neuer Entwurfsschritt: Wunschdenken

Abstrahiere die gewünschte Funktionalität in einer Hilfsfunktion.

Schritt 1: Bezeichner und Datentypen

Die Funktion safeindex nimmt als Eingabe

p : list[float] eine Sequenz

■ i : int einen Index (positiv)

■ d : float einen Ersatzwert für ein Element von p

und liefert das Element p[i] (falls definiert) oder den Ersatzwert.

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplika

uswertung

oleitung

egration

iăre Operatio

Addition

ddition

∕lultiplikation

erbesserte

Typannotationen Lexikographische

while-

Zusammen-

fassung

Sichere Indizierung | Addition


```
Schritt 2: Funktionsgerüst
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

Auswertung

Ableitung

bleitung

ntegration

sinare Operation

Addition

Multiplikation

erbesserte

Lexikographische

Ordnung

while-Schleifen

Sichere Indizierung | Addition

Schritt 3: Beispiele

```
assert safe index([1,2,3], 0, 0) == 1
assert safe_index([1,2,3], 2, 0) == 3
assert safe index([1,2,3], 4, 0) == 0
assert safe_index([1,2,3], 4, 42) == 42
assert safe index([], 0, 42) == 42
```

Entwurf von

Polynomen

Skalarmultiplikation

Addition

Multiplikation

Lexikographische

while-

Sichere Indizierung | Addition


```
Schritt 4: Funktionsdefinition
```

```
def safe index(
        p : list[float],
        i : int. # assume >= 0
        d : float
        ) -> float:
    return p[i] if i < len(p) else d
oder (alternative Implementierung des Funktionsrumpfes)
    if i < len(p):
        return p[i]
    else:
        return d
```

Entwurf von

Polynomen

Addition

Multiplikation

Lexikographische

while-

Neuer Ausdruck

Bedingter Ausdruck (Conditional Expression)

expr_true if expr_cond else expr_false

- Werte zuerst expr_cond aus
- Falls Ergebnis kein Nullwert, dann werte *expr*_true als Ergebnis aus
- Sonst werte expr_false als Ergebnis aus

Beispiele

- \blacksquare 17 if True else 4 == 17
- "abc"[i] if i<3 else " "</pre>

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen Skalarmultinlikat

iewortuna

wertung

tegration

ăre Operatio

Addition

Addition

ultiplikation

erbesserte pannotationer

exikographische

while-Schleifer

Addition

Schritt 4: Funktionsdefinition mit Hilfsfunktion

```
def poly_add(
        p : polynom,
        q : polynom
        ) -> polynom:
    maxlen = max (len (p), len (q))
    result = []
    for i in range(maxlen):
        result = result + \Gamma
            safe_index(p,i,0) + safe_index (q,i,0)]
    return result
```

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen Skalarmultiplikation

laituna

tegration

ăre Operatio

Addition

ddition

Multiplikation

erbesserte /pannotationer

Lexikographische

while-Schleifen

1 Entwurf von Schleifen

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- Ableitung
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen

Skalarmultiplikatio

uswertung

ntegration

are Operation

ddition

Addition Multiplikation

erbesserte

Lexikographische

while-Schleifen

$$[p_0, p_1, \dots, p_n] \cdot [q_0, q_1, \dots, q_m]$$

$$= [p_0 \cdot q_0, p_0 \cdot q_1 + p_1 \cdot q_0, \dots, \sum_{i=0}^{k} p_i \cdot q_{k-i}, \dots, p_n \cdot q_m]$$

Woher kommt diese Definition?

$$(\sum_{i=0}^{n} p_{i} x^{i}) \cdot (\sum_{j=0}^{m} q_{j} x^{j}) = \sum_{i=0}^{n} \sum_{j=0}^{m} p_{i} x^{i} \cdot q_{j} x^{j}$$

$$= \sum_{k=0}^{n+m} \sum_{i+j=k}^{m} p_{i} \cdot q_{j} \cdot x^{k}$$

$$= \sum_{k=0}^{n+m} \sum_{i=0}^{k} p_{i} \cdot q_{k-i} \cdot x^{k}$$

Entwurf von

Multiplikation

while-

Schritt 1: Bezeichner und Datentypen

Die Funktion poly mult nimmt als Eingabe

p: polynom ein Polynom

q: polynom ein Polynom

und liefert als Ergebnis das Produkt der Eingaben.

Entwurf von

Fallstudie:

Polynomen

Skalarmultiplikation

Multiplikation

Lexikographische

while-


```
Schritt 2: Funktionsgerüst
```

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen

Skalarmultiplikation

uswertung

Ableitung

ntegration

lition

Multiplikation

erbesserte

Lexikographische

while-

Zusammen-

fassung

Schritt 3: Beispiele

```
assert poly_mult([], []) == []
assert poly_mult([42], []) == []
assert poly_mult([], [11]) == []
assert poly_mult([1,2,3], [1]) == [1,2,3]
assert poly_mult([1,2,3], [0,1]) == [0,1,2,3]
assert poly_mult([1,2,3], [1,1]) == [1,3,5,3]
```

Beobachtungen

```
■ Range maxlen = len (p) + len (q) - 1
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikation

uswertung

leitung

gration

äre Operation

ddition

Multiplikation

Verbesserte

Lexikographische Ordnung

while-Schleifen

Schritt 4: Funktionsdefinition

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen

Skalarmultiplikation

uswertung

bleitung

ntegration

lition

Multiplikation

erbesserte

Lexikographische

while-

Das k-te Flement

$$r_k = \sum_{i=0}^k p_i \cdot q_{k-i}$$

noch eine Schleife!

Berechnung

```
rk = 0
for i in range(k+1):
    rk = rk + safe_index(p,i,0) * safe_index(q,k-i,0)
```

Entwurf von

Fallstudie: Polynomen

Skalarmultiplikation

Ableitung

Multiplikation

Lexikographische

while-


```
Schritt 4: Funktionsdefinition, final
```

```
def poly_mult(
        p : polynom,
        q : polynom
        ) -> polynom:
    result = []
    for k in range(len(p) + len(q) - 1):
        rk = 0
        for i in range(k+1):
            rk = rk + safe_index(p,i,0) * safe_index(q,k-i,0)
        result = result + [rk]
    return result
```

Entwurf von

Multiplikation

while-

1 Entwurf von Schleifen

100 CH | 100

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- Ableitung
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen

Skalarmultiplikation

iswertung

ntegration

inäre Operation

ddition

Aultiplikation

Verbesserte Typannotationen

Lexikographische Ordnung

while-

Zusammen-

- Laut Typannotation muss das Argument p immer list[float], das Argumentd: float und demzufolge das Ergebnis float sein.
- Am Code sehen wir aber, dass keine arithmetischen Operationen auf d oder die Elemente von p angewendet werden, sondern dass diese einfach durchgereicht werden!
- Eine solche Funktion heißt *parametrisch polymorph*, weil statt float ein beliebiger Typ verwendet werden darf.

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

uswertung

eitung gration

näre Operatione

sinare Operation Addition

Addition

Verbesserte

Lexikographische

while-Schleifen

Verbesserte Typannotationen

Typvariable

Schreibweise für einen genaueren generischen Typ:

```
def safe_index[T](
    p : list[T],
    i : int, # assume >= 0
    d : T
    ) -> T:
```

- T ist eine Typvariable, die für einen beliebigen Typ steht.
- Sie wird durch [T] eingeführt und darf in den Typannotationen der Kopfzeile verwendet werden.
- Bei Verwendung von safeindex setzt der Typchecker einen passenden Typein, der konsistent verwendet werden muss.

Entwurf von Schleifen

> Fallstudie: Rechnen mit

Polynomen

kalarmultiplikatio

swertung

tegration

näre Operatione

talitan

ddition

heeserte

Verbesserte Typannotationen

exikographische

while-

Generischer Typ

- Ein generischer Typ enthält eine oder mehrere Typvariablen (wie list [T]).
- Er steht als "Abkürzung" für alle Typen, die man durch Einsetzen von erlaubten konkreten Typen für die Typvariablen herstellen kann.
- Ohne weitere Beschränkung sind **alle** konkreten Typen erlaubt.

Entwurf von

Verbesserte

Typannotationen

while-

1 Entwurf von Schleifen

- Fallstudie: Rechnen mit Polynomen
- Skalarmultiplikation
- Auswertung
- **Ableitung**
- Integration
- Binäre Operationen
- Addition
- Multiplikation
- Verbesserte Typannotationen
- Lexikographische Ordnung

Entwurf von

Fallstudie:

Lexikographische Ordnuna

while-

Die lexikographische Ordnung

FREBUT

Gegeben

Zwei Sequenzen der Längen $m, n \ge 0$:

$$\vec{a} = a_1 a_2 \dots a_m$$

$$\vec{b} = "b_1 b_2 \dots b_n"$$

$\vec{a} \leq \vec{b}$ in der lexikographischen Ordnung, falls

Es gibt $0 \le k \le \min(m, n)$, so dass

$$\blacksquare a_1 = b_1, \ldots, a_k = b_k \text{ und}$$

$$\vec{a} = a_1 a_2 \dots a_k a_{k+1} \dots a_m$$

$$\vec{b} = "a_1 a_2 \dots a_k b_{k+1} \dots b_n"$$

$$\blacksquare k = m$$

$$\vec{a} = a_1 a_2 \dots a_m$$

$$\vec{b} = a_1 a_2 \dots a_m b_{m+1} \dots b_n$$

$$\blacksquare$$
 oder $k < m$ und $a_{k+1} < b_{k+1}$.

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikati

wertung

itung

gration

ire Operatione

ition

tiplikation

rbesserte pannotationen

Lexikographische

while-

Zusammen-

fassung

Lexikographische Ordnung

Schritt 1: Bezeichner und Datentypen

Die Funktion leq nimmt als Eingabe

```
a : list[int] eine Sequenz von Zahlen
```

```
b : list[int] eine Sequenz von Zahlen
```

und liefert als Ergebnis True, falls a \leq b, sonst False.

```
Schritt 2: Funktionsgerüst
```

```
def lex_leq(a : list[int], b : list[int]) -> bool:
    # fill in
    for k in range(...):
        pass # fill in
    return ...
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen

Luewortuna

oituna

aration

äre Oneration

näre Operatione

dition

Itiplikation

rbesserte pannotationen

Typannotationen Lexikographische

Ordnung while-

Schlellen

Lexikographische Ordnung

Schritt 3: Beispiele

```
assert lex_leq([], []) == True
assert lex_leq([42], []) == False
assert lex_leq([], [11]) == True
assert lex_leq([1,2,3], [1]) == False
assert lex_leq([1], [1,2,3]) == True
assert lex_leq([1,2,3], [0,1]) == False
assert lex_leq([1,2,3], [1,3]) == True
assert lex_leq([1,2,3], [1,2,3]) == True
```

Beobachtungen

```
Range minlen = min (len (a), len (b))
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikati

swertung

eltung

gration

näre Operatione

ddition

Itiplikation

rbesserte pannotationen

Typannotationen Lexikographische Ordnung

while-

Lexikographische Ordnung

Schritt 4: Funktionsdefinition

```
N
```

```
def lex_leq(
        a : list[int].
        b : list[int]
        ) -> bool:
    minlen = min (len (a), len (b))
    for k in range(minlen):
        if a[k] < b[k]:
            return True
        if a[k] > b[k]:
            return False
    # a is prefix of b or vice versa
    return len(a) <= len(b)
```

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Polynomen Skalarmultiplikation

iswertung

eitung

gration

näre Operatione

ddition

ultiplikation

rbesserte pannotationen

Typannotationen Lexikographische

Ordnung

while-Schleifen

Typannotation für lexleq (1)

Problem

- Der Typ list[int] charakterisiert Listen von Zahlen.
- Aber der Code funktioniert viel allgemeiner, wenn nur die Elemente vergleichbar vom gleichen Typ sind!

 Beispiel: lex leg ("abc", [1,2,3]) liefert Fehler!
- Wir müssen sicherstellen:
 - die Elemente haben den gleichen Typ und
 - 2 dieser Typ unterstützt Ordnungen.

Entwurf von Schleifen

Fallstudie: Rechnen mit

Polynomen

Auguertung

iswertung

oleitung

egration

inäre Operationer

fultiplikation

tuitipiikation 'erbesserte

/erbesserte Гураппоtationen

Lexikographische Ordnung

while-Schleifen

Verbesserung

```
def lex_leq[B : (int, float, str)](
   a : list[B], b : list[B]) -> bool:
```

B ist eine Typvariable, aber jetzt ist bekannt, dass sie für einen der aufgelisteten Typen int, float oder str steht.

D.h.: a und b sind beides Listen, deren Elemente entweder int oder float oder str sind und daher vergleichbar!

Bewertung: Noch nicht optimal...

ok, aber was ist mit list[int], list[list[int]] usw? Alle diese Typen sind auch vergleichbar...

Bessere Konzepte in Rust, Haskell, Scala, ...

Entwurf von Schleifen

Fallstudie: Rechnen mit Polynomen

Skalarmultiplikati

uswertung

leituna

egration

Binäre Operationen

ddition

ltiplikation

rbesserte

Typannotationen

Lexikographische

Ordnung

while-

Schlellen

- Einlesen einer Liste
- Das Newton-Verfahren
- Das Collatz-Problem
- Abschließende Bemerkungen

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Einlesen einer

Das

Das Newton-Verfahren

Das Collatz-Problem Abschließende

Abschließende Bemerkungen

Wiederholen eines Schleifenrumpfs, ohne dass vorher klar ist, wie oft.

Beispiele

- Einlesen von mehreren Eingaben
- Das Newton-Verfahren zum Auffinden von Nullstellen
- Das Collatz-Problem

Die while-Schleife

Syntax:

while Bedingung:

Block # Schleifenrumpf

■ Semantik: Die Anweisungen im *Block* werden wiederholt, solange die *Bedingung* keinen Nullwert (z.B. True) liefert.

Entwurf von Schleifen

while-Schleifen

Einlesen einer

iste

as

wton-Verfahren

is Ilatz-Problen schließende

Abschließende Bemerkungen

usammen assung

- Einlesen einer Liste
- Das Newton-Verfahren
- Das Collatz-Problem
- Abschließende Bemerkungen

Entwurf von

while-

Einlesen einer

Liste

Dae

Newton-Verfahren

Das Collatz-Problem

Abschließende Bemerkungen

Beispiel: Einlesen einer Liste

Schritt 1: Bezeichner und Datentypen

Die Funktion input list nimmt keine Parameter, erwartet eine beliebig lange Folge von Eingaben, die mit einer leeren Zeile abgeschlossen ist, und liefert als Ergebnis die Liste dieser Eingaben als Strings. Entwurf von

while-

Einlesen einer

Schritt 2: Funktionsgerüst

```
def input_list() -> list[str]:
    # fill in, initialization
    while expr_cond:
        pass # fill in
    return ...
```

Warum while?

- Die Anzahl der Eingaben ist nicht von vorne herein klar.
- Dafür ist eine while-Schleife erforderlich.
- Die while-Schleife führt ihren Rumpf solange aus, bis eine leere Eingabe erfolgt.

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Liste

Das Newton-Verfahrer

as ollatz-Problem

Abschließende Bemerkungen

Einlesen einer Liste

Beispiele

Eingabe:

```
>>> input_list()
Г٦
>>> input_list()
Bring
mal
das
WI.AN-Kabel!
['Bring', 'mal', 'das', 'WLAN-Kabel!']
```

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Liste

Das Newton-Verfahren

Collatz-Problem
Abschließende

bschließende emerkungen

Einlesen einer Liste

Schritt 4: Funktionsdefinition

```
def input_list() -> list[str]:
    result = []
    line = input()
    while line:
        result = result + [line]
        line = input()
    return result
```

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Liste

Das Newton-Verfahren

> is illatz-Problem ischließende

oschließende emerkungen

- Einlesen einer Liste
- Das Newton-Verfahren
- Das Collatz-Problem
- Abschließende Bemerkungen

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Liste

Das Newton-Verfahren

Das Collatz-Problem

Abschließende Bemerkungen

Das Newton-Verfahren

Suche Nullstellen von stetig differenzierbaren Funktionen

Verfahren

 $f: \mathbb{R} \to \mathbb{R}$ sei stetig differenzierbar

■ Wähle
$$x_0 \in \mathbb{R}$$
, $n = 0$

2 Setze
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Berechne nacheinander $x_1, x_2, \dots x_k$ bis $f(x_k)$ nah genug an 0.
- 4 Ergebnis ist x_k

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Das

Newton-Verfahren

as ollatz-Problem

Abschließende Bemerkungen

Das Newton-Verfahren

Präzisierung

... für Polynomfunktionen

- Erfüllen die Voraussetzung
- Ableitung mit derivative

Was heißt hier "nah genug"?

- Eine überraschend schwierige Frage ...
- Wir sagen: x ist nah genug an x', falls $\frac{|x-x'|}{|x|+|x'|} < \varepsilon$
- arepsilon > 0 ist eine Konstante, die von der Repräsentation von float, dem Verfahren und der gewünschten Genauigkeit abhängt. Dazu kommen noch Sonderfälle.
- Wir wählen: $\varepsilon = 2^{-20} \approx 10^{-6}$
- Genug für eine Hilfsfunktion!

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Liste

Newton-Verfahrer

Das Collatz-Proble Abschließende

Hilfsfunktion

Die freundlichen Pythonistas waren schon für uns aktiv. pytest ist ein Modul, das die Erstellung von Tests unterstützt.¹ Darin ist eine passende Hilfsfunktion definiert:

from pytest import approx

Die Funktion pytest. approx erzeugt eine approximative Zahl, bei der Operator == ähnlich wie "nah genug" implementiert ist.

Es reicht, wenn ein Argument approximativ ist.

Alternative: verwende math.isclose() ...

Entwurf von Schleifen

while-Schleifen

> Einlesen einer Liste

> Liste

Newton-Verfahrer

Das Collatz-Problen Abschließende

Abschließende Bemerkungen

¹ Falls nicht vorhanden: pip3 install pytest

Newton-Verfahren

Schritt 1: Bezeichner und Datentypen

Die Funktion newton nimmt als Eingabe

■ f : polynom ein Polynom

■ x0 : float einen Startwert

und verwendet das Newton-Verfahren zur Berechnung einer Zahl x, sodass f(x) "nah genug" an 0 ist.

Entwurf von Schleifen

while-Schleifen

> Einlesen einer Liste

Liste

Newton-Verfahren

Das

Collatz-Problem

Collatz-Problem Abschließende Bemerkungen

Schritt 2: Funktionsgerüst

```
def newton(
    f : polynom,
    x0 : float
    ) -> float:
    # fill in
    while expr_cond:
        pass # fill in
    return ...
```

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Das Newton-Verfahren

Das Collatz-Problem Abschließende

Warum while?

- Das Newton-Verfahren verwendet eine Folge x_n , ohne dass von vorne herein klar ist, wieviele Elemente benötigt werden.
- Zur Verarbeitung dieser Folge ist eine while-Schleife erforderlich.
- Diese while-Schleife terminiert aufgrund der mathematischen / numerischen Eigenschaften des Newton-Verfahrens. Siehe Vorlesung Mathe I.

Entwurf von Schleifen

while-Schleifen

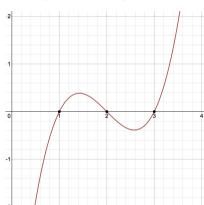
Einlesen eine

Liste

Das Newton-Verfahrer

Das Collatz-Problem Abschließende

Beispielfunktion: $f(x) = x^3 - 6x^2 + 11x - 6$



Entwurf von Schleifen

while-Schleifen

Einlesen einer Liste

Das Newton-Verfahren

Das Collatz-Problem Abschließende Bemerkungen

Schritt 3: Beispiele

```
p = [-6, 11, -6, 1]
assert newton (p, 0) == approx(1)
assert newton (p, 1.1) == approx(1)
assert newton (p, 1.7) == approx(2)
assert newton (p, 2.5) == approx(1)
assert newton (p, 2.7) == approx(3)
assert newton (p, 10) == approx(3)
```

Entwurf von Schleifen

while-Schleifen

Einlesen einer

iniesen einer iste

Das

Newton-Verfahren

Das Collatz-Problem

bschließende emerkungen

Schritt 4: Funktionsdefinition

```
def newton(
        f : polynom,
        x0 : float
        ) -> float:
    deriv f = derivative(f)
    xn = x0
    while poly_eval (f, xn) != approx(0):
        xn = xn - (poly_eval (f, xn))
                  / poly eval (deriv f, xn))
    return xn
```

Entwurf von Schleifen

while-Schleifen

Einlesen einer

Das

Newton-Verfahren

Collatz-Problem Abschließende Bemerkungen

2 while-Schleifen

- Einlesen einer Liste
- Das Newton-Verfahren
- Das Collatz-Problem
- Abschließende Bemerkungen

Entwurf von

while-

Liste

Dae

Newton-Verfahren

Das

Collatz-Problem

Abschließende Bemerkungen

Das Collatz-Problem

Verfahren (Collatz 1937)

Starte mit einer positiven ganzen Zahl n und definiere eine Folge $n = a_0, a_1, a_2, \dots$

$$a_{i+1} = \begin{cases} a_i/2 & a_i \text{ gerade} \\ 3a_i + 1 & a_i \text{ ungerade} \end{cases}$$

Offene Frage

Für welche Startwerte *n* gibt es ein *i* mit $a_i = 1$?

Beispiele (Folge der durchlaufenen Zahlen)

- **1** [3, 10, 5, 16, 8, 4, 2, 1]
- **[7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]**

Entwurf von

while-

Das Collatz-Problem

Entwurf von Schleifen

while-Schleifen

Schleifen Einlagen einer

ste

Das Newton-Verfahren

Das Collatz-Problem

Abschließende Bemerkungen

Warum while?

- Es ist nicht bekannt, ob collatz(n) für jede Eingabe terminiert.
- Aber validiert für alle $n < 20 \cdot 2^{58} \approx 5.7646 \cdot 10^{18}$ (Oliveira e Silva).

Entwurf von Schleifen

while-Schleifen

Schleiten Einlesen einer

Liste

Das Newton-Verfahren

Das

Collatz-Problem

Abschließend Bemerkungen

2 while-Schleifen

- Einlesen einer Liste
- Das Newton-Verfahren
- Das Collatz-Problem
- Abschließende Bemerkungen

Entwurf von

while-

Liste

Dae

Newton-Verfahren

Das

Collatz-Problem Abschließende

Bemerkungen

Termination einer Schleife

- Die Anzahl der Durchläufe einer for-Schleife ist stets durch den Schleifenkopf vorgegeben:
 - for element in seq:

 Anzahl der Elemente in der Sequenz seq
 - for i in range(...): Größe des Range
- Daher terminiert die Ausführung einer for-Schleife i.a.
- Bei einer while-Schleife ist die Anzahl der Durchläufe nicht a-priori klar.
- Daher ist stets eine Überlegung erforderlich, ob eine while-Schleife terminiert (Terminationsbedingung).
- Die Terminationsbedingung muss im Programm z.B. als Kommentar dokumentiert werden.

Entwurf von Schleifen

while-Schleifen

> Einlesen einer Iste

ste

as

iewton-verianre

atz-Problem

Abschließende Bemerkungen

Beispiel Zweierlogarithmus (Terminationsbedingung)

Zweierlogarithmus

$$\log_2 a = b$$
$$2^b = a$$

 \blacksquare für a > 0

für ganze Zahlen

12 (n) =
$$m$$

 $m = \lfloor \log_2 n \rfloor$

 \blacksquare für n > 0

Entwurf von Schleifen

while-Schleifen

Einlesen eine

iste Ias

Newton-Verfahren Das

ollatz-Problem

Abschließende Bemerkungen

```
Entwurf von
```

```
while-
```

Abschließende Remerkungen

```
return m
```

def 12 (n : int) -> int:

m = m + 1n = n // 2

m = -1while n>0:

Terminationsbedingung

- Die while-Schleife terminiert, weil für alle n>0 gilt, dass n > n//2 und jede absteigende Folge von positiven ganzen Zahlen n1 > n2 > ... abbricht.
- Die Anzahl der Schleifendurchläufe ist durch log₂ n beschränkt.

Entwurf von Schleifen

while-Schleifen

Zusammenfassung

- Funktionen über Sequenzen verwenden for-in-Schleifen.
- Ergebnisse werden meist in einer Akkumulator Variable berechnet.
- Funktionen über mehreren Sequenzen verwenden for-range-Schleifen.
- Der verwendete Range hängt von der Problemstellung ab.
- Teilprobleme werden in Hilfsfunktionen ausgelagert.
- while-Schleifen werden verwendet, wenn die Anzahl der Schleifendurchläufe nicht von vorne herein bestimmt werden kann oder soll. Typischerweise
 - zur Verarbeitung von Eingaben
 - zur Berechnung von Approximationen
- Jede while-Schleife muss eine dokumentierte Terminationsbedingung haben.

Entwurf von

while-

Zugammen.

fassung