
Einführung in die Programmierung

Prof. Dr. Peter Thiemann Universität Freiburg
Marius Weidner Institut für Informatik
Simon Dorer, Timpe Hörig Wintersemester 2025

Übungsblatt 13
Abgabe: Montag, 26.01.2026, 9:00 Uhr

Hinweis: Da die Vorlesung in dieser Woche nicht so weit vorangekommen
ist wie geplant, haben wir die Aufgabe zu Komprehensionen entfernt. Die
beiden verbleibenden Aufgaben geben dafür jetzt mehr Punkte.

Hinweis: Funktionen mit nur einem Ausdruck
In einigen Aufgaben auf diesem Blatt müssen Sie Funktionen definieren, deren Rumpf
aus nur einem einzigen Ausdruck bestehen. Zum Beispiel:

def inc(x: int) -> int:
return x + 1

def prepend[T](xs: list[T], x: T) -> list[T]:
return [x] + xs

Für Funktionen höherer Ordnung verwendet man meist lambda-Funktionen innerhalb
des Funktionsrumpfes, da diese in vielen Fällen besser zu lesen sind:

def add(x: int) -> Callable[[int], int]:
return lambda y: x + y

Alternativ dürfen Sie aber auch normale Funktionen verwenden:

def add(x: int) -> Callable[[int], int]:
def add_inner(y: int) -> int:

return x + y
return add_inner

Hinweis: Variablen und lambda-Funktionen
Wie in der Vorlesung erläutert, werden lambda-Funktionen typischerweise ohne Na-
men verwendet. Vermeiden Sie es daher Variablen eine anonyme Funktion zuzuwei-
sen. Wenn Sie Funktionen mit einem Namen benötigen, greifen Sie stattdessen auf
die übliche def-Syntax zurück.

# Nicht erlaubt:
inc: Callable[[int], int] = lambda x: x + 1

# Erlaubt:
def inc(x: int) -> int:

return x + 1



Einführung in die Programmierung Wintersemester 2025

# Auch erlaubt:
def add(x: int) -> Callable[[int], int]:

return lambda y: x + y

Hinweis: n-stellige Funktionen
Eine n-stellige Funktion ist eine Funktion, die n Argumente entgegen nimmt. In den
Beispielen oben ist inc eine einstellige und prepend zweistellige Funktion.

Reminder: Typannotationen
Denken Sie daran, den Typen immer so genau wie möglich anzugeben:

# Unvollständig:
def get_age(persons: dict, name: str) -> int:

return persons[name]

# Vollständig:
def get_age(persons: dict[str, int], name: str) -> int:

return persons[name]

# Unvollständig:
def flip(t: tuple) -> tuple:

return (t[1], t[0])

# Vollständig:
def flip[T, U](t: tuple[T, U]) -> tuple[U, T]:

return (t[1], t[0])

Aufgabe 13.1 (Funktionale Programmierung; 9 Punkte; Datei: functional.py)
In dieser Aufgabe sollen alle Ihre Funktionsdefinitionen nur einen Ausdruck enthal-
ten. Zudem dürfen Sie keine Komprehensionen benutzen.

(a) sum_even_squares; 3 Punkte
Schreiben Sie eine Funktion sum_even_squares, die eine Liste xs von ganzen
Zahlen als Argument nimmt und die Summe der Quadratzahlen von jedem
geraden Element zurückgibt.

>>> sum_even_squares([])
0
>>> sum_even_squares([2, 3])
4
>>> sum_even_squares([1, 2, 3, 4, 5, 6])
56

(b) is_additive; 3 Punkte
Schreiben Sie eine Funktion is_additive, die zwei Listen von ganzen Zahlen xs
= [x0, . . . , xn] und ys = [y0, . . . , yn] als Argumente nimmt. Zurückgegeben wer-



Einführung in die Programmierung Wintersemester 2025

den soll eine Funktion, die eine beliebige einstellige Funktion auf ganzen Zahlen
als Argument nimmt und zurückgibt, ob diese Funktion die additive Cauchy-
Funktionalgleichung für alle Paare (xi, yi) mit i = 0, . . . , n erfüllt. Eine Funk-
tion erfüllt genau dann die additive Cauchy-Funktionalgleichung, wenn gilt:
f(x + y) == f(x) + f(y). Sie dürfen davon ausgehen, dass len(xs) == len(ys).

>>> check = is_additive([1, 2, 3], [2, 3, 5])
>>> check(lambda x: x**2)
False
>>> check(lambda x: x * 2)
True

(c) inverse; 3 Punkte
Schreiben Sie eine Funktion inverse, die eine einstellige Funktion f und eine
Liste domain_space als Argumente nimmt. Sie dürfen dabei annehmen, dass
f bijektiv mit Domain domain_space ist. Zurückgeben soll inverse das in-
verse von f, also eine Funktion die für jedes y ∈ Codomain, ein x ∈ Domain
zurückgibt, sodass f(x) == y.

>>> to_int = lambda x: 1 if x is True else 0
>>> domain = [False, True]
>>> codomain = [0, 1]
>>> [to_int(x) for x in domain]
[0, 1]
>>> to_bool = inverse(to_int, domain)
>>> [to_bool(y) for y in codomain]
[False, True]

Aufgabe 13.2 (Fold; 11 Punkte; Datei: fold.py)
Sie haben Funktionen wie sum oder all kennengelernt. Diese Funktionen haben eins
gemeinsam: Sie nehmen ein iterierbares Objekt, wie zum Beispiel eine Liste und
falten dieses zu einem einzelnen Wert zusammen. Wie die Werte zusammengefaltet
werden, unterscheidet sich bei sum und all natürlich. Bei beiden kann man aber
gleich vorgehen: Man wählt einen Startwert bzw. einen Zählwert und eine zweistellige
Funktion. Solange es noch ein Element in der Liste gibt, wird die Funktion auf diesem
Element und dem Zählwert angewandt und das Ergebnis im Zählwert gemerkt. Gibt
es keine Elemente mehr, wird der Zählwert zurückgegeben.

Abhängig vom Startwert und der Funktion, kann es einen Unterschied1 machen, ob
man die Liste von links nach rechts (foldl2) oder von rechts nach links (foldr)
zusammenfaltet.

Betrachten wir nun ein Beispiel für die Faltung über Listen mit folgenden Werten:

>>> f = lambda x, y: x - y

1Falls f eine assoziative und kommutative Operation ist und start ein neutrales Element bzgl.
dieser Operation ist, berechnen diese Funktionen den gleichen Wert.

2wie reduce aus dem Modul functools



Einführung in die Programmierung Wintersemester 2025

>>> start = 0
>>> xs = [1, 2, 3]

Die Faltungen von links nach rechts und von rechts nach links lassen sich dann wie
folgt berechnen:

>>> foldr(f, start, xs) == f(1, f(2, f(3, start))) == (1 - (2 - (3 -
0))) == 2↪→

True
>>> foldl(f, start, xs) == f(f(f(start, 1), 2), 3) == (((0 - 1) - 2) -

3) == -6↪→

True

(a) foldr; 3 Punkte
Implementieren Sie die Funktion foldr, die eine zweistellige Funktion f, einen
Startwert start und eine Liste xs als Argumente nimmt, die Liste xs von
rechts nach links mithilfe von f zusammenfaltet und das Ergebnis zurückgibt.
Ein halber Punkt wird für die richtige Typannotation mit Typvariablen verge-
ben. Sie dürfen keine for- oder while-Schleifen sowie if-Statements benutzen.
Lösen Sie die Aufgabe stattdessen mithilfe von Pattern-Matching
und Rekursion.

>>> foldr(lambda x, _: x, 0, xs)
1
>>> foldr(lambda _, y: y, 0, xs)
0
>>> foldr(lambda x, y: x + y / 2, 0, xs)
2.75
>>> foldr(lambda x, y: [x] + y, [5], xs)
[1, 2, 3, 5]

(b) foldl; 3 Punkte
Implementieren Sie die Funktion foldl, die eine zweistellige Funktion f, einen
Startwert start und eine Liste xs als Argumente nimmt, die Liste xs von links
nach rechts mithilfe von f zusammenfaltet und das Ergebnis zurückgibt. Ein
halber Punkt wird für die richtige Typannotation mit Typvariablen vergeben.
Sie dürfen keine for- oder while-Schleifen sowie if-Statements benutzen. Lö-
sen Sie die Aufgabe stattdessen mithilfe von Pattern-Matching und
Rekursion.

>>> foldl(lambda x, _: x, 0, xs)
0
>>> foldl(lambda _, y: y, 0, xs)
3
>>> foldl(lambda x, y: x + y / 2, 0, xs)
3.0
>>> foldl(lambda x, y: x + [y], [5], xs)
[5, 1, 2, 3]



Einführung in die Programmierung Wintersemester 2025

(c) all; 2 Punkte
Implementieren Sie die Funktion all, die eine Liste xs von Wahrheitswerten als
Argument nimmt und mithilfe von foldl oder foldr berechnet und zurückgibt,
ob alle Wahrheitswerte der Liste wahr (True) sind. Ihre Funktionsdefinition soll
dabei aus nur einem Ausdruck bestehen (siehe Hinweis oben).

>>> all([])
True
>>> all([True, True, False, True])
False
>>> all(10 * [True])
True

(d) pot; 3 Punkte
Implementieren Sie die Funktion pot, die eine Liste xs = [x0, x1, x2, . . . , xn]
von ganzen Zahlen als Argument nimmt und mithilfe von foldl oder foldr die
rechts assoziativ Potenz x0 ∗ ∗(x1 ∗ ∗(x2 ∗ ∗ . . . ∗ ∗xn)) dieser Zahlen berechnet
und zurückgibt. Ihre Funktionsdefinition soll dabei aus nur einem Ausdruck
bestehen (siehe Hinweis oben).

Hinweis: Komplexe Zahlen werden in Python als n+mj dargestellt, wobei n
∈ R der reale, m ∈ R der imaginäre Teil und j die imaginäre Einheit ist. Ein
solcher Ausdruck hat den Typ complex, wobei float ein Subtyp von complex
ist.

>>> pot([])
1
>>> pot([2, 3, 4])
2417851639229258349412352
>>> pot([1, 10, 2, 3, 1, 20])
1
>>> pot([-2, 2, -1])
(8.659560562354934e-17+1.4142135623730951j)

(e) map, filter; 0 Punkte (Knobelaufgabe)
Die Funktionen map und filter können wir nun auch analog mit unseren
selbst definierten Faltungs-Funktionen implementieren. Diese nehmen jeweils
eine einstellige Funktion f und eine Liste xs als Argumente. map gibt eine
neue Liste mit den von f abgebildeten Werten zurück. filter gibt eine neue
Liste mit den Werten von xs zurück, für die f wahr ist. Schaffen Sie es, die
Funktionen jeweils mit einem einzigen Aufruf von foldl oder foldr und ohne
Rekursion zu schreiben?

>>> map(lambda x: -x, xs)
[-1, -2, -3]
>>> map(lambda x: -x, [])
[]
>>> filter(lambda x: x > 2, xs)



Einführung in die Programmierung Wintersemester 2025

[3]
>>> filter(lambda x: x < 0, xs)
[]
>>> filter(lambda x: x < 0, [])
[]

Aufgabe 13.3 (Erfahrungen; 0 Punkte; Datei: NOTES.md)
Notieren Sie Ihre Erfahrungen mit diesem Übungsblatt (benötigter Zeitaufwand,
Probleme, Bezug zur Vorlesung, Interessantes, etc.).

Editieren Sie hierzu die Datei NOTES.md im Abgabeordner dieses Übungsblattes auf
unserer Webplatform. Halten Sie sich an das dort vorgegebene Format, da wir den
Zeitbedarf mit einem Python-Skript automatisch statistisch auswerten. Die Zeitan-
gabe 7.5 h steht dabei für 7 Stunden 30 Minuten.


