Einfiihrung in die Programmierung

Prof. Dr. Peter Thiemann Universitédt Freiburg
Marius Weidner Institut fir Informatik
Simon Dorer, Timpe Horig Wintersemester 2025

Ubungsblatt 13
Abgabe: Montag, 26.01.2026, 9:00 Uhr

Hinweis: Da die Vorlesung in dieser Woche nicht so weit vorangekommen
ist wie geplant, haben wir die Aufgabe zu Komprehensionen entfernt. Die
beiden verbleibenden Aufgaben geben dafiir jetzt mehr Punkte.

Hinweis: Funktionen mit nur einem Ausdruck

In einigen Aufgaben auf diesem Blatt miissen Sie Funktionen definieren, deren Rumpf
aus nur einem einzigen Ausdruck bestehen. Zum Beispiel:

def inc(x: int) -> int:
return x + 1

def prepend[T] (xs: 1list[T], x: T) -> 1list[T]:
return [x] + xs

Fiir Funktionen héherer Ordnung verwendet man meist lambda-Funktionen innerhalb
des Funktionsrumpfes, da diese in vielen Fallen besser zu lesen sind:

def add(x: int) -> Callablel[[int], int]:
return lambda y: x + y

Alternativ durfen Sie aber auch normale Funktionen verwenden:

def add(x: int) -> Callable[[int], int]:
def add_inner(y: int) -> int:
return x + y
return add_inner

Hinweis: Variablen und lambda-Funktionen

Wie in der Vorlesung erléautert, werden lambda-Funktionen typischerweise ohne Na-
men verwendet. Vermeiden Sie es daher Variablen eine anonyme Funktion zuzuwei-
sen. Wenn Sie Funktionen mit einem Namen bendétigen, greifen Sie stattdessen auf
die {ibliche def-Syntax zuriick.

Nicht erlaubt:
inc: Callable[[int], int] = lambda x: x + 1

Erlaubt:
def inc(x: int) -> int:
return x + 1

Einfiihrung in die Programmierung Wintersemester 2025

Auch erlaubt:
def add(x: int) -> Callable[[int], int]:
return lambda y: x + y

Hinweis: n-stellige Funktionen

Eine n-stellige Funktion ist eine Funktion, die n Argumente entgegen nimmt. In den
Beispielen oben ist inc eine einstellige und prepend zweistellige Funktion.

Reminder: Typannotationen

Denken Sie daran, den Typen immer so genau wie méglich anzugeben:

Unvollstdndig:
def get_age(persons: dict, name: str) -> int:
return persons[name]

Vollstdandig:
def get_age(persons: dict[str, int], name: str) -> int:
return persons[name]

Unvollstandig:
def flip(t: tuple) -> tuple:
return (t[1], t[0])

Vollstdandig:
def flip[T, UJ(t: tuplelT, U]) -> tuplel[U, TI:
return (t[1], t[0])

Aufgabe 13.1 (Funktionale Programmierung; 9 Punkte; Datei: functional.py)

In dieser Aufgabe sollen alle Ihre Funktionsdefinitionen nur einen Ausdruck enthal-
ten. Zudem diirfen Sie keine Komprehensionen benutzen.

(a) sum_even_squares; 3 Punkte
Schreiben Sie eine Funktion sum_even_squares, die eine Liste xs von ganzen
Zahlen als Argument nimmt und die Summe der Quadratzahlen von jedem
geraden Element zuriickgibt.

>>> sum_even_squares ([])

0

>>> sum_even_squares ([2, 3])

4

>>> sum_even_squares([1, 2, 3, 4, 5, 6])
56

(b) is_additive; 3 Punkte
Schreiben Sie eine Funktion is_additive, die zwei Listen von ganzen Zahlen xs
= [z, ..., 2n] und ys = [yo, . .., Y] als Argumente nimmt. Zuriickgegeben wer-

Einfiihrung in die Programmierung Wintersemester 2025

den soll eine Funktion, die eine beliebige einstellige Funktion auf ganzen Zahlen
als Argument nimmt und zuriickgibt, ob diese Funktion die additive Cauchy-
Funktionalgleichung fiir alle Paare (z;,y;) mit i = 0,...,n erfiillt. Eine Funk-
tion erfiillt genau dann die additive Cauchy-Funktionalgleichung, wenn gilt:
f(x + y) == £(x) + £(y). Siediirfen davon ausgehen, dass len(xs) == len(ys).

>>> check = is_additive([1, 2, 3], [2, 3, 5])
>>> check(lambda x: x**2)

False

>>> check(lambda x: x * 2)

True

(c) inverse; 3 Punkte
Schreiben Sie eine Funktion inverse, die eine einstellige Funktion £ und eine
Liste domain_space als Argumente nimmt. Sie diirfen dabei annehmen, dass
f bijektiv mit Domain domain_space ist. Zurilickgeben soll inverse das in-
verse von f, also eine Funktion die fiir jedes y € Codomain, ein x € Domain
zuriickgibt, sodass f(x) == y.

>>> to_int lambda x: 1 if x is True else O
>>> domain [False, True]

>>> codomain = [0, 1]

>>> [to_int(x) for x in domain]

[0, 1]

>>> to_bool = inverse(to_int, domain)

>>> [to_bool(y) for y in codomain]

[False, Truel

Aufgabe 13.2 (Fold; 11 Punkte; Datei: fold.py)

Sie haben Funktionen wie sum oder all kennengelernt. Diese Funktionen haben eins
gemeinsam: Sie nehmen ein iterierbares Objekt, wie zum Beispiel eine Liste und
falten dieses zu einem einzelnen Wert zusammen. Wie die Werte zusammengefaltet
werden, unterscheidet sich bei sum und all natiirlich. Bei beiden kann man aber
gleich vorgehen: Man wihlt einen Startwert bzw. einen Zahlwert und eine zweistellige
Funktion. Solange es noch ein Element in der Liste gibt, wird die Funktion auf diesem
Element und dem Z&hlwert angewandt und das Ergebnis im Z&hlwert gemerkt. Gibt
es keine Elemente mehr, wird der Zahlwert zuriickgegeben.

Abhingig vom Startwert und der Funktion, kann es einen Unterschied! machen, ob
man die Liste von links nach rechts (fold1?) oder von rechts nach links (foldr)
zusammenfaltet.

Betrachten wir nun ein Beispiel fiir die Faltung iiber Listen mit folgenden Werten:

>>> f = lambda x, y: x - ¥

'Falls f eine assoziative und kommutative Operation ist und start ein neutrales Element bzgl.
dieser Operation ist, berechnen diese Funktionen den gleichen Wert.
2wie reduce aus dem Modul functools

Einfiihrung in die Programmierung Wintersemester 2025

>>>
>>>

start = 0
xs = [1, 2, 3]

Die Faltungen von links nach rechts und von rechts nach links lassen sich dann wie

folgt

>>>
—

True

>>>

—

True

(a)

berechnen:

foldr (f, start, xs) == f(1, £(2, £(3, start))) == (1 - (2 - (3 -
0))) ==

foldl(f, start, xs) == f(f(f(start, 1), 2), 3) == (((0 - 1) - 2) -
3) == -

foldr; 3 Punkte

Implementieren Sie die Funktion foldr, die eine zweistellige Funktion f, einen
Startwert start und eine Liste xs als Argumente nimmt, die Liste xs von
rechts nach links mithilfe von £ zusammenfaltet und das Ergebnis zuriickgibt.
Ein halber Punkt wird fir die richtige Typannotation mit Typvariablen verge-
ben. Sie diirfen keine for- oder while-Schleifen sowie if-Statements benutzen.
Losen Sie die Aufgabe stattdessen mithilfe von Pattern-Matching
und Rekursion.

>>> foldr(lambda x, _: x, 0, xs)

1

>>> foldr(lambda _, y: y, 0, xs)

0

>>> foldr(lambda x, y: x +y / 2, 0, xs)
2.75

>>> foldr(lambda x, y: [x] + y, [5], xs)
[1, 2, 3, 5]

foldl; 3 Punkte

Implementieren Sie die Funktion foldl, die eine zweistellige Funktion £, einen
Startwert start und eine Liste xs als Argumente nimmt, die Liste xs von links
nach rechts mithilfe von £ zusammenfaltet und das Ergebnis zuriickgibt. Ein
halber Punkt wird fiir die richtige Typannotation mit Typvariablen vergeben.
Sie diirfen keine for- oder while-Schleifen sowie if-Statements benutzen. L6-
sen Sie die Aufgabe stattdessen mithilfe von Pattern-Matching und
Rekursion.

>>> foldl(lambda x, _: x, 0, xs)

0

>>> foldl(lambda _, y: y, 0, xs)

3

>>> foldl(lambda x, y: x +y / 2, 0, xs)
3.0

>>> foldl(lambda x, y: x + [yl, [5], xs)
[5’ 1; 2’ 3]

Einfiihrung in die Programmierung Wintersemester 2025

(c)

(e)

all; 2 Punkte

Implementieren Sie die Funktion all, die eine Liste xs von Wahrheitswerten als
Argument nimmt und mithilfe von f01d1 oder foldr berechnet und zuriickgibt,
ob alle Wahrheitswerte der Liste wahr (True) sind. Thre Funktionsdefinition soll
dabei aus nur einem Ausdruck bestehen (siche Hinweis oben).

>>> all([])

True

>>> all([True, True, False, Truel)
False

>>> all(10 * [Truel)

True

pot; 3 Punkte

Implementieren Sie die Funktion pot, die eine Liste xs = [zg, 21,22, ..., Ty]
von ganzen Zahlen als Argument nimmt und mithilfe von f01dl oder foldr die
rechts assoziativ Potenz xg * x(x1 * *(zg % * ... % *xxy)) dieser Zahlen berechnet
und zuriickgibt. Thre Funktionsdefinition soll dabei aus nur einem Ausdruck
bestehen (siehe Hinweis oben).

Hinweis: Komplexe Zahlen werden in Python als n+mj dargestellt, wobei n
€ R der reale, m € R der imagindre Teil und j die imaginidre Einheit ist. Ein
solcher Ausdruck hat den Typ complex, wobei float ein Subtyp von complex
ist.

>>> pot ([])
1

>>> pot([2, 3, 41)
2417851639229258349412352

>>> pot([l, 10, 2, 3, 1, 20])

1

>>> pot([-2, 2, -1]1)
(8.659560562354934e-17+1.41421356237309513)

map, filter; 0 Punkte (Knobelaufgabe)

Die Funktionen map und filter konnen wir nun auch analog mit unseren
selbst definierten Faltungs-Funktionen implementieren. Diese nehmen jeweils
eine einstellige Funktion f und eine Liste xs als Argumente. map gibt eine
neue Liste mit den von f abgebildeten Werten zuriick. filter gibt eine neue
Liste mit den Werten von xs zuriick, fiir die £ wahr ist. Schaffen Sie es, die
Funktionen jeweils mit einem einzigen Aufruf von foldl oder foldr und ohne
Rekursion zu schreiben?

>>> map(lambda x: -x, Xs)

[—1; —2; —3]
>>> map(lambda x: -x, [J])
(]

>>> filter(lambda x: x > 2, xs)

Einfiihrung in die Programmierung Wintersemester 2025

[3]
>>> filter(lambda x: x < 0, xs)
(]
>>> filter(lambda x: x < 0, []1)
]

Aufgabe 13.3 (Erfahrungen; 0 Punkte; Datei: NOTES.md)
Notieren Sie Ihre Erfahrungen mit diesem Ubungsblatt (benétigter Zeitaufwand,
Probleme, Bezug zur Vorlesung, Interessantes, etc.).

Editieren Sie hierzu die Datei NOTES.md im Abgabeordner dieses Ubungsblattes auf
unserer Webplatform. Halten Sie sich an das dort vorgegebene Format, da wir den
Zeitbedarf mit einem Python-Skript automatisch statistisch auswerten. Die Zeitan-
gabe 7.5 h steht dabei fiir 7 Stunden 30 Minuten.

