Einfiihrung in die Programmierung

Prof. Dr. Peter Thiemann Universitédt Freiburg
Marius Weidner Institut fir Informatik
Simon Dorer, Timpe Horig Wintersemester 2025

Ubungsblatt 12
Abgabe: Montag, 19.01.2025, 9:00 Uhr

Aufgabe 12.1 (Generatoren; 10 Punkte; Datei: generators.py)

In dieser Aufgabe sollen Sie Generatoren definieren. Dabei diirfen Sie keine Generato-
ren zu Listen umwandeln, da dies gerade den Vorteil von Generatoren zunichte macht.
Beachten Sie zusétzlich, dass Generatoren kein Indexing, Slicing, Léngenabfragen,
usw. unterstiitzen! Verwenden Sie fiir Generatoren die Typannotation Iterator aus
dem Modul typing. Denken Sie daran die Typen der generierten Elemente anzuge-
ben.

(a) collatz; 2.5 Punkte
Die Collatz-Folge ist eine Folge natiirlicher Zahlen, die wie folgt definiert ist:

Ci

= falls ¢; gerade ist
Cit1 = :
3c; + 1, falls ¢; ungerade ist

Schreiben Sie eine Funktion collatz, die eine ganze Zahl n als Argument entge-
gennimmt und einen Generator zuriickgibt, der die Elemente der Collatz-Folge
beginnend bei ¢y = n erzeugt. Der Generator soll die Erzeugung weiterer Werte
beenden, sobald der Wert 1 erreicht wurde. Wird die Funktion mit einem Wert
n < 1 aufgerufen, so soll ein ValueError mit einer aussagekriftigen Fehlermel-
dung ausgelost werden.

Zum Beispiel:

>>> list(collatz(10))
[10, 5, 16, 8, 4, 2, 1]
>>> list(collatz(1))
[1]

(b) random; 2.5 Punkte
Schreiben Sie eine Funktion random, die einen Generator zuriickgibt, welcher
Pseudozufallsbitsequenzen nach der Linear-Feedback-Shift-Register-Methode
erzeugt.! Die Funktion erhilt einen String seed als Argument, der ausschliefs-
lich aus den Zeichen "0" und "1" besteht. Der String seed reprisentiert den
Anfangszustand yy des Generators.

Aus der i-ten pseudozufilligen Bitsequenz y; wird die néchste Bitsequenz ;11
wie folgt erzeugt: Es werden das erste Bit, das mittlere Bit (bei gerader Lénge
abgerundet) und das letzte Bit von y; ausgewéhlt. Diese drei Bits werden mit-
tels XOR verkniipft. Das resultierende Bit wird rechts an die Bitfolge angehéngt,

"https://de.wikipedia.org/wiki/Linear _riickgekoppeltes Schieberegister


https://de.wikipedia.org/wiki/Linear_rückgekoppeltes_Schieberegister

Einfiihrung in die Programmierung Wintersemester 2025

wahrend alle {ibrigen Bits um eine Position nach links verschoben werden und
das vorderste Bit entfernt wird. Die Gesamtldnge der Bitfolge bleibt dabei
unverandert.

Hinweis: Die X0R-Operation ist wie folgt definiert:

0 XOR 0 = 0
0XOR 1 =1
1 X0R O =1
1X0R1=0

Ein Beispiel:

Angenommen, der aktuelle Zustand des Generators ist y; = 1010111010. Dann
werden die Bits an den Positionen 0, 4 und 9 ausgewéhlt (also 1, 1 und 0). Da
1 XOR 1 XOR 0 = 0 gilt hdngen wir das Bit 0 rechts an die Bitfolge an und
verschieben alle iibrigen Bits um eine Position nach links. Somit ergibt sich fiir
den néchsten Zustand des Generators y;+1 = 0101110100.

Der Aufruf der Funktion mit dem Seed "1010111010" soll also die folgende
Bitfolge generieren:

>>> r = random("1010111010")
>>> for _ in range(10): print(next(r), end=" ")

0101110100 1011101001 0111010011 1110100111 1101001111 1010011110
— 0100111101 1001111010 0011110100 0111101001

stop_if_double; 2.5 Punkte

Schreiben Sie eine Funktion stop_if_double, die einen Iterator it als Argu-
ment entgegennimmt und einen Generator zuriickgibt, der solange Elemente
aus it erzeugt, bis ein Wert unmittelbar zweimal hintereinander auftritt. In
diesem Fall soll der entsprechende Wert nur einmal erzeugt werden.

>>> s1 = stop_if_double(iter(range(5)))

>>> list(s1)

(0, 1, 2, 3, 4]

>>> §2 = stop_if_double(iter("Hallo Welt :)"))
>>> list(s2)

['H', 'a', '1']

>>> 83 = stop_if_double(iter([]))

>>> 1ist(s3)

(]

sliding_window; 2.5 Punkte

Schreiben Sie eine Funktion sliding_window, die einen Iterator it und ein Zahl
n als Argument nimmt und einen Generator zuriickgibt, der Listen der Lange
n aus it generiert. Dabei sollen die Listen jeweils um ein Element verschoben
werden. Sind nicht geniigend Elemente vorhanden, so soll ein leerer Generator
zurilickgegeben werden.



Einfiihrung in die Programmierung Wintersemester 2025

>>> s1 = sliding_window(iter(range(5)), 3)

>>> list(sl)

(o, 1, 21, [1, 2, 3], [2, 3, 4]]

>>> 52 = sliding window(iter("Hallo Welt :)"), 19)
>>> list(s2)

(]

Aufgabe 12.2 (Graphen; 10 Punkte, Datei: graphs.py)

In dieser Aufgabe betrachten wir Dictionaries der Form dict [T, set[T]]. Ein sol-
ches Dictionary nennen wir genau dann einen Graph?, wenn jedes Element der Wer-
temengen des Dictionaries auch ein Schliissel im selben Dictionary ist.

(a) is_graph; 2.5 Punkte
Schreiben Sie eine Funktion is_graph, die ein Dictionary d der Form dict [T, set[T]]
als Argument nimmt und genau dann True zuriickgibt, wenn d ein Graph ist.

>>> example = {0: {1, 2}, 1: {2, 3}, 2: {0, 1, 2}, 4: {0}}
>>> is_graph(example)

False

>>> example_graph = example | {3: set()}

>>> is_graph(example_graph)

True

>>> is_graph({"a": {"a", "aa"}})

False

>>> is_graph({})

True

(b) to_graph; 2.5 Punkte
Schreiben Sie eine Funktion to_graph, die ein Dictionary d der Form dict [T, set[T]]
als Argument nimmt und ein neues Dictionary d zuriickgibt, das zu einem
Graph erginzt wurde. Fiigen Sie dazu jeden Wert einer Wertemenge von d, der
kein Schliissel von 4 ist, als Schliissel mit leerer Wertemenge in das Resultat
ein.

>>> to_graph(example) == to_graph(example_graph) == example_graph
True

>>> to_graph(example_graph) is not example_graph

True

>>> to_graph({"a": {"a", "aa"}})

{'aa': set(), 'a': {'a', 'aa'}}

>>> to_graph({})

{3

(c) nodes, edges; 2.5 Punkte

2Graphen sind wichtige Datenstrukturen in der Informatik. Die Definition eines Graphen ist
iiblicherweise jedoch allgemeiner als die in dieser Aufgabe. Ein ‘Graph’ in dieser Aufgabe entspricht
eher der Implementierung eines ‘gerichteten Graphs ohne Mehrfachkanten’. Mehr dazu hier: https:
//de.wikipedia.org/wiki/Graph_(Graphentheorie)


https://de.wikipedia.org/wiki/Graph_(Graphentheorie)
https://de.wikipedia.org/wiki/Graph_(Graphentheorie)

Einfiihrung in die Programmierung Wintersemester 2025

Die Schliissel in einem Graphen nennen wir Knoten. Jedes Tupel von Knoten
(a, b), bei dem b ein Element der Wertemenge von a ist, bezeichnen wir als
Kante.

Schreiben Sie eine Funktion nodes, die einen Graph graph als Argument nimmt
und einen Generator zuriickgibt, der alle Knoten von graph produziert.

Schreiben Sie eine zweite Funktion edges, die ebenso einen Graph graph als
Argument nimmt und einen Generator zuriickgibt, der alle Kanten von graph
produziert.

>>> set(nodes (example_graph))

{0, 1, 2, 3, 4}

>>> len(list(nodes(example_graph)))
5

>>> set(nodes({}))

set()

>>> set(edges (example_graph))

{0, 1), (1, 2), 4, 0, (2, 1), (2, 0), (0, 2), (2, 2), (1, 3)}
>>> len(list(edges(example_graph)))
8

>>> set(edges({}))

set()

invert_graph; 2.5 Punkte

Schreiben Sie eine Funktion invert_graph, die einen Graph graph als Argu-
ment nimmt und einen neuen Graph vom gleichen Typ zuriickgibt. Der neue
Graph soll die gleichen Knoten besitzen wie graph. Fiir jede Kante (a, b) in
graph soll der invertierte Graph die Kante (b, a) besitzen. Ansonsten sollen
keine weiteren Kanten vorkommen. Achten Sie insbesondere darauf, dass der
invertierte Graph auch wirklich ein Graph ist!

>>> invert_graph(example_graph)

{0: {2, 4}, 1: {0, 2}, 2: {0, 1, 2}, 4: set(), 3: {1}}
>>> invert_graph(invert_graph(example_graph))

{0: {1, 2}, 1: {2, 3}, 2: {0, 1, 2}, 4: {0}, 3: setO}
>>> invert_graph({"a": {"a"}})

{'a': {'a'}}
>>> invert_graph({})
{}

has_cycle; 0 Punkte (Knobelaufgabe, schwer)

Einen Zyklus der Lénge n>1 im Graph graph definieren wir als Folge von Kno-
ten 01,09,...,0, aus graph, wobei Tupel aufeinanderfolgender Knoten eine
Kante sind (also Vi € {1,...,n—1} : 0,41 in graph|o;]), und (o1 == 0,) gilt. Der
Graph example_graph besitzt z.B. die Zyklen (0,1,2,0), (1,2,1), (2,2).
Die Folge (0,2,1,0) ist hingegen kein Zyklus in example_graph. Schreiben
Sie eine Funktion has_cycle, die einen beliebigen Graph graph als Argument



Einfiihrung in die Programmierung Wintersemester 2025

nimmt und zuriickgibt, ob der Graph einen Zyklus besitzt.

Hinweis: Sie kdnnen eine rekursive Hilfsfunktion schreiben, die von einem gege-
benen Knoten ausgehend Kanten folgt, und genau dann True zuriickgibt, wenn
ein bereits besuchter Knoten erneut besucht wird.

>>> has_cycle(example_graph)
True
>>> example_graph2 = {
0: {1}, 1: {2}, 2: set(), 3: {0},
4: {1, 5}, 5: {6}, 6: {7}, 7: {3, 8},
8: set(), 9: {8}
R
>>> has_cycle(example_graph?2)
False
>>> has_cycle(example_graph2 | {3: {0, 4}})
True
>>> has_cycle({"a": {"aa", "a"}, "aa": set()})
True
>>> has_cycle({1: {3}, 2: {1, 4}, 3: {4}, 4: setO})
False
>>> has_cycle({})
False

Aufgabe 12.3 (Erfahrungen; 0 Punkte; Datei: NOTES.md)

Notieren Sie Ihre Erfahrungen mit diesem Ubungsblatt (benétigter Zeitaufwand,
Probleme, Bezug zur Vorlesung, Interessantes, etc.).

Editieren Sie hierzu die Datei NOTES.md im Abgabeordner dieses Ubungsblattes auf
unserer Webplattform. Halten Sie sich an das dort vorgegebene Format, da wir den
Zeitbedarf mit einem Python-Skript automatisch statistisch auswerten. Die Zeitan-
gabe 7.5 h steht dabei fiir 7 Stunden 30 Minuten.



