
Einführung in die Programmierung

Prof. Dr. Peter Thiemann Universität Freiburg
Marius Weidner Institut für Informatik
Simon Dorer, Timpe Hörig Wintersemester 2025

Übungsblatt 12
Abgabe: Montag, 19.01.2025, 9:00 Uhr

Aufgabe 12.1 (Generatoren; 10 Punkte; Datei: generators.py)
In dieser Aufgabe sollen Sie Generatoren definieren. Dabei dürfen Sie keine Generato-
ren zu Listen umwandeln, da dies gerade den Vorteil von Generatoren zunichte macht.
Beachten Sie zusätzlich, dass Generatoren kein Indexing, Slicing, Längenabfragen,
usw. unterstützen! Verwenden Sie für Generatoren die Typannotation Iterator aus
dem Modul typing. Denken Sie daran die Typen der generierten Elemente anzuge-
ben.

(a) collatz; 2.5 Punkte
Die Collatz-Folge ist eine Folge natürlicher Zahlen, die wie folgt definiert ist:

ci+1 =

{
ci
2 , falls ci gerade ist
3ci + 1, falls ci ungerade ist

Schreiben Sie eine Funktion collatz, die eine ganze Zahl n als Argument entge-
gennimmt und einen Generator zurückgibt, der die Elemente der Collatz-Folge
beginnend bei c0 = n erzeugt. Der Generator soll die Erzeugung weiterer Werte
beenden, sobald der Wert 1 erreicht wurde. Wird die Funktion mit einem Wert
n < 1 aufgerufen, so soll ein ValueError mit einer aussagekräftigen Fehlermel-
dung ausgelöst werden.

Zum Beispiel:

>>> list(collatz(10))
[10, 5, 16, 8, 4, 2, 1]
>>> list(collatz(1))
[1]

(b) random; 2.5 Punkte
Schreiben Sie eine Funktion random, die einen Generator zurückgibt, welcher
Pseudozufallsbitsequenzen nach der Linear-Feedback-Shift-Register-Methode
erzeugt.1 Die Funktion erhält einen String seed als Argument, der ausschließ-
lich aus den Zeichen "0" und "1" besteht. Der String seed repräsentiert den
Anfangszustand y0 des Generators.

Aus der i-ten pseudozufälligen Bitsequenz yi wird die nächste Bitsequenz yi+1

wie folgt erzeugt: Es werden das erste Bit, das mittlere Bit (bei gerader Länge
abgerundet) und das letzte Bit von yi ausgewählt. Diese drei Bits werden mit-
tels XOR verknüpft. Das resultierende Bit wird rechts an die Bitfolge angehängt,

1https://de.wikipedia.org/wiki/Linear_rückgekoppeltes_Schieberegister

https://de.wikipedia.org/wiki/Linear_rückgekoppeltes_Schieberegister


Einführung in die Programmierung Wintersemester 2025

während alle übrigen Bits um eine Position nach links verschoben werden und
das vorderste Bit entfernt wird. Die Gesamtlänge der Bitfolge bleibt dabei
unverändert.

Hinweis: Die XOR-Operation ist wie folgt definiert:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

Ein Beispiel:
Angenommen, der aktuelle Zustand des Generators ist yi = 1010111010. Dann
werden die Bits an den Positionen 0, 4 und 9 ausgewählt (also 1, 1 und 0). Da
1 XOR 1 XOR 0 = 0 gilt hängen wir das Bit 0 rechts an die Bitfolge an und
verschieben alle übrigen Bits um eine Position nach links. Somit ergibt sich für
den nächsten Zustand des Generators yi+1 = 0101110100.

Der Aufruf der Funktion mit dem Seed "1010111010" soll also die folgende
Bitfolge generieren:

>>> r = random("1010111010")
>>> for _ in range(10): print(next(r), end=" ")
...
0101110100 1011101001 0111010011 1110100111 1101001111 1010011110

0100111101 1001111010 0011110100 0111101001↪→

(c) stop_if_double; 2.5 Punkte
Schreiben Sie eine Funktion stop_if_double, die einen Iterator it als Argu-
ment entgegennimmt und einen Generator zurückgibt, der solange Elemente
aus it erzeugt, bis ein Wert unmittelbar zweimal hintereinander auftritt. In
diesem Fall soll der entsprechende Wert nur einmal erzeugt werden.

>>> s1 = stop_if_double(iter(range(5)))
>>> list(s1)
[0, 1, 2, 3, 4]
>>> s2 = stop_if_double(iter("Hallo Welt :)"))
>>> list(s2)
['H', 'a', 'l']
>>> s3 = stop_if_double(iter([]))
>>> list(s3)
[]

(d) sliding_window; 2.5 Punkte
Schreiben Sie eine Funktion sliding_window, die einen Iterator it und ein Zahl
n als Argument nimmt und einen Generator zurückgibt, der Listen der Länge
n aus it generiert. Dabei sollen die Listen jeweils um ein Element verschoben
werden. Sind nicht genügend Elemente vorhanden, so soll ein leerer Generator
zurückgegeben werden.



Einführung in die Programmierung Wintersemester 2025

>>> s1 = sliding_window(iter(range(5)), 3)
>>> list(s1)
[[0, 1, 2], [1, 2, 3], [2, 3, 4]]
>>> s2 = sliding_window(iter("Hallo Welt :)"), 19)
>>> list(s2)
[]

Aufgabe 12.2 (Graphen; 10 Punkte, Datei: graphs.py)
In dieser Aufgabe betrachten wir Dictionaries der Form dict[T, set[T]]. Ein sol-
ches Dictionary nennen wir genau dann einen Graph2, wenn jedes Element der Wer-
temengen des Dictionaries auch ein Schlüssel im selben Dictionary ist.

(a) is_graph; 2.5 Punkte
Schreiben Sie eine Funktion is_graph, die ein Dictionary d der Form dict[T, set[T]]
als Argument nimmt und genau dann True zurückgibt, wenn d ein Graph ist.

>>> example = {0: {1, 2}, 1: {2, 3}, 2: {0, 1, 2}, 4: {0}}
>>> is_graph(example)
False
>>> example_graph = example | {3: set()}
>>> is_graph(example_graph)
True
>>> is_graph({"a": {"a", "aa"}})
False
>>> is_graph({})
True

(b) to_graph; 2.5 Punkte
Schreiben Sie eine Funktion to_graph, die ein Dictionary d der Form dict[T, set[T]]
als Argument nimmt und ein neues Dictionary d zurückgibt, das zu einem
Graph ergänzt wurde. Fügen Sie dazu jeden Wert einer Wertemenge von d, der
kein Schlüssel von d ist, als Schlüssel mit leerer Wertemenge in das Resultat
ein.

>>> to_graph(example) == to_graph(example_graph) == example_graph
True
>>> to_graph(example_graph) is not example_graph
True
>>> to_graph({"a": {"a", "aa"}})
{'aa': set(), 'a': {'a', 'aa'}}
>>> to_graph({})
{}

(c) nodes, edges; 2.5 Punkte
2Graphen sind wichtige Datenstrukturen in der Informatik. Die Definition eines Graphen ist

üblicherweise jedoch allgemeiner als die in dieser Aufgabe. Ein ‘Graph’ in dieser Aufgabe entspricht
eher der Implementierung eines ‘gerichteten Graphs ohne Mehrfachkanten’. Mehr dazu hier: https:
//de.wikipedia.org/wiki/Graph_(Graphentheorie)

https://de.wikipedia.org/wiki/Graph_(Graphentheorie)
https://de.wikipedia.org/wiki/Graph_(Graphentheorie)


Einführung in die Programmierung Wintersemester 2025

Die Schlüssel in einem Graphen nennen wir Knoten. Jedes Tupel von Knoten
(a, b), bei dem b ein Element der Wertemenge von a ist, bezeichnen wir als
Kante.

Schreiben Sie eine Funktion nodes, die einen Graph graph als Argument nimmt
und einen Generator zurückgibt, der alle Knoten von graph produziert.

Schreiben Sie eine zweite Funktion edges, die ebenso einen Graph graph als
Argument nimmt und einen Generator zurückgibt, der alle Kanten von graph
produziert.

>>> set(nodes(example_graph))
{0, 1, 2, 3, 4}
>>> len(list(nodes(example_graph)))
5
>>> set(nodes({}))
set()
>>> set(edges(example_graph))
{(0, 1), (1, 2), (4, 0), (2, 1), (2, 0), (0, 2), (2, 2), (1, 3)}
>>> len(list(edges(example_graph)))
8
>>> set(edges({}))
set()

(d) invert_graph; 2.5 Punkte
Schreiben Sie eine Funktion invert_graph, die einen Graph graph als Argu-
ment nimmt und einen neuen Graph vom gleichen Typ zurückgibt. Der neue
Graph soll die gleichen Knoten besitzen wie graph. Für jede Kante (a, b) in
graph soll der invertierte Graph die Kante (b, a) besitzen. Ansonsten sollen
keine weiteren Kanten vorkommen. Achten Sie insbesondere darauf, dass der
invertierte Graph auch wirklich ein Graph ist!

>>> invert_graph(example_graph)
{0: {2, 4}, 1: {0, 2}, 2: {0, 1, 2}, 4: set(), 3: {1}}
>>> invert_graph(invert_graph(example_graph))
{0: {1, 2}, 1: {2, 3}, 2: {0, 1, 2}, 4: {0}, 3: set()}
>>> invert_graph({"a": {"a"}})
{'a': {'a'}}
>>> invert_graph({})
{}

(e) has_cycle; 0 Punkte (Knobelaufgabe, schwer)
Einen Zyklus der Länge n>1 im Graph graph definieren wir als Folge von Kno-
ten o1, o2, . . . , on aus graph, wobei Tupel aufeinanderfolgender Knoten eine
Kante sind (also ∀i ∈ {1, . . . , n−1} : oi+1 in graph[oi]), und (o1 == on) gilt. Der
Graph example_graph besitzt z.B. die Zyklen (0,1,2,0), (1,2,1), (2,2).
Die Folge (0,2,1,0) ist hingegen kein Zyklus in example_graph. Schreiben
Sie eine Funktion has_cycle, die einen beliebigen Graph graph als Argument



Einführung in die Programmierung Wintersemester 2025

nimmt und zurückgibt, ob der Graph einen Zyklus besitzt.
Hinweis: Sie können eine rekursive Hilfsfunktion schreiben, die von einem gege-
benen Knoten ausgehend Kanten folgt, und genau dann True zurückgibt, wenn
ein bereits besuchter Knoten erneut besucht wird.

>>> has_cycle(example_graph)
True
>>> example_graph2 = {
... 0: {1}, 1: {2}, 2: set(), 3: {0},
... 4: {1, 5}, 5: {6}, 6: {7}, 7: {3, 8},
... 8: set(), 9: {8}
... }
>>> has_cycle(example_graph2)
False
>>> has_cycle(example_graph2 | {3: {0, 4}})
True
>>> has_cycle({"a": {"aa", "a"}, "aa": set()})
True
>>> has_cycle({1: {3}, 2: {1, 4}, 3: {4}, 4: set()})
False
>>> has_cycle({})
False

Aufgabe 12.3 (Erfahrungen; 0 Punkte; Datei: NOTES.md)
Notieren Sie Ihre Erfahrungen mit diesem Übungsblatt (benötigter Zeitaufwand,
Probleme, Bezug zur Vorlesung, Interessantes, etc.).

Editieren Sie hierzu die Datei NOTES.md im Abgabeordner dieses Übungsblattes auf
unserer Webplattform. Halten Sie sich an das dort vorgegebene Format, da wir den
Zeitbedarf mit einem Python-Skript automatisch statistisch auswerten. Die Zeitan-
gabe 7.5 h steht dabei für 7 Stunden 30 Minuten.


