
Einführung in die Programmierung

Prof. Dr. Peter Thiemann Universität Freiburg
Marius Weidner Institut für Informatik
Simon Dorer, Timpe Hörig Wintersemester 2025

Übungsblatt 11
Abgabe: Montag, 12.01.2026, 09:00 Uhr

Anmerkung zur Vorlesung: InitVar und private Attribute
In der Vorlesung wurde die Verwendung von InitVar und privaten Attributen wie
folgt erklärt:

@dataclass
class Example:

__attr: InitVar[int]

def __post_init__(self, attr: int) -> None:
self.__attr = attr

Dieses Verhalten ist an sich korrekt, liefert in Python jedoch folgenden Typfehler:

Dataclass field cannot use private name

Um dieses Problem zu umgehen, können wir die InitVar-Attribute ohne die füh-
renden Unterstriche definieren und diese dann in der __post_init__-Methode den
privaten Attributen zuweisen:

@dataclass
class Example:

attr: InitVar[int]
__attr: int = field(init=False)

def __post_init__(self, attr: int) -> None:
self.__attr = attr

Auf diese Weise können wir sowohl die Vorteile von InitVar als auch von privaten
Attributen nutzen, ohne auf Typfehler zu stoßen. Verwenden Sie dies in der fol-
genden Aufgabe, wenn Sie private Attribute in Kombination mit InitVar
benötigen.

Aufgabe 11.1 (Bankaccount; 8 Punkte; Datei: money.py)

(a) (4 Punkte) Implementieren Sie eine Datenklasse BankAccount, die einen Namen
eines Kontoinhabers __name, eine IBAN-Adresse __iban und einen Kontostand
__balance als private Attribute besitzt.

Dabei ist der Name ein nicht-leerer String, die IBAN ein String der Länge 22,
der mit zwei beliebigen Großbuchstaben beginnt, gefolgt von 20 Ziffern und
der Kontostand eine Gleitkommazahl, die den Kontostand in Euro angibt.



Einführung in die Programmierung Wintersemester 2025

Nur der Name und die IBAN sollen beim Erstellen eines Objekts der Klasse
BankAccount im Konstruktor übergeben werden. Da unsere Bank großzügig
ist, werden neue Konten immer mit einem Startguthaben von 42.0 Euro initia-
lisiert.

Implementieren sie zusätzlich für jedes Attribut eine Getter-Methode, die den
Wert des jeweiligen Attributs zurückgibt. Nennen Sie die Methoden get_name,
get_iban und get_balance.

Implementieren Sie außerdem eine Setter-Methode set_name für das Attribut
name.

Stellen Sie sicher, dass die Validierung der Attribute sowohl im Kon-
struktor als auch in den Setter-Methoden durchgeführt wird. Ver-
meiden Sie Code-Duplikation. Falls die Validierung fehlschlägt, soll
ein AssertionError ausgelöst werden.

Beispiele:

>>> account = BankAccount("Alice", "DE89370400440532013000")
>>> account.get_name()
'Alice'
>>> account.get_iban()
'DE89370400440532013000'
>>> account.get_balance()
42.0
>>> account.set_name("Alice Smith")
>>> account.get_name()
'Alice Smith'

(b) (2 Punkte) Um den Kontostand zu verändern, wollen wir die inplace-Addition
(+=) und die inplace-Subtraktion (-=) überladen. Implementieren Sie hierzu die
Methoden __iadd__ und __isub__, die jeweils eine Gleitkommazahl amount als
Argument erhalten. Die Funktionen sollen den Kontostand entsprechend um
amount erhöhen oder verringern und das veränderte Objekt (self) zurückge-
ben.

Stellen Sie dabei sicher, dass amount immer positiv ist, dass der Kontostand
bei einer Subtraktion nicht negativ wird und dass höchstens 1337 Euro auf
einmal hinzugefügt werden können. Falls eine dieser Bedingungen nicht erfüllt
ist, soll ein AssertionError ausgelöst werden.

Beispiele:

>>> account += 37.5
>>> account.get_balance()
79.5
>>> account -= 50.0
>>> account.get_balance()
29.5



Einführung in die Programmierung Wintersemester 2025

(c) (1 Punkt) Implementieren Sie die Dunder-Methode __eq__, die zwei Bankkon-
ten als gleich betrachtet, wenn sie dieselbe IBAN besitzen.

Zum Beispiel:

>>> account1 = BankAccount("Bob", "DE89370400440532013000")
>>> account2 = BankAccount("Charlie", "DE89370400440532013000")
>>> account3 = BankAccount("Bob", "FR76300060000112345678")
>>> account1 == account2
True
>>> account1 == account3
False
>>> account2 == account3
False

(d) (1 Punkt) Implementieren Sie Dunder-Methode __str__, die eine lesbare String-
Repräsentation des Bankkontos in der Form <name> - <iban>: <balance> EUR
zurückgibt.

Zum Beispiel:

>>> str(account)
'Alice Smith - DE89370400440532013000: 29.5 EUR'

Aufgabe 11.2 (Rekursion; 6 Punkte; Datei: tail.py)
Das Collatz-Problem, auch als (3n+1)-Vermutung bezeichnet, ist ein ungelöstes ma-
thematisches Problem. Es besagt, dass die folgende Folge, für jede nicht negative
natürliche Zahl n, immer die Zahl 1 erreicht:

ci+1 =

{
ci
2 , wenn ci gerade ist
3ci + 1, wenn ci ungerade ist

wobei c0 = n.

(a) (2 Punkte) Schreiben Sie eine rekursive, aber nicht endrekursive, Funktion
collatz_steps_rec, die eine natürliche Zahl n als Argument erhält und die
Anzahl der Schritte zurückgibt, die benötigt werden, um von n zur Zahl 1 zu
gelangen, indem die obige Vorschrift angewendet wird.

(b) (2 Punkte) Schreiben Sie ein endrekursive Funktion collatz_steps_tail, die
sich wie collatz_steps_rec verhält, aber endrekursiv implementiert ist. Ge-
hen Sie hierbei so vor, wie in der Vorlesung gezeigt.

(c) (2 Punkte) Schreiben Sie eine nicht-rekursive Funktion collatz_steps_iter,
die sich wie collatz_steps_tail verhält, aber iterativ implementiert ist. Ge-
hen Sie hierbei so vor, wie in der Vorlesung gezeigt.

>>> collatz_steps_rec(1)
0
>>> collatz_steps_rec(1) == collatz_steps_tail(1) == collatz_steps_iter(1)



Einführung in die Programmierung Wintersemester 2025

True

>>> collatz_steps_rec(6)
8
>>> collatz_steps_rec(6) == collatz_steps_tail(6) == collatz_steps_iter(6)
True

Aufgabe 11.3 (Dictionaries; 6 Punkte; Datei: dicts.py)
In dieser Aufgabe definieren Sie zwei generische Funktionen über Dictionaries.

(a) (3 Punkte) Implementieren Sie eine Funktion reverse_dict, die ein beliebiges
Dictionary als Eingabe erhält und ein neues Dictionary zurückgibt, in dem
die Schlüssel und Werte vertauscht sind. Beachten Sie, dass Dictionaries nicht
injektiv sind. Deshalb sollen die Werte im neuen Dictionary Sets sein, die alle
ursprünglichen Schlüssel enthalten, die auf diesen Wert gezeigt haben.

>>> reverse_dict({'a': 1, 'b': 2, 'c': 1})
{1: {'c', 'a'}, 2: {'b'}}
>>> reverse_dict({True: "yes", False: "no"})
{'yes': {True}, 'no': {False}}

(b) (3 Punkte) Implementieren Sie die Funktion filter_dict, die ein Dictionary
und zwei Listen als Eingabe erhält: eine Liste von Schlüsseln und eine Liste
von Werten. Die Funktion soll ein neues Dictionary zurückgeben, der nur die
Schlüssel-Wert-Paare aus dem ursprünglichen Dictionary enthält, deren Schlüs-
sel nicht in der Schlüssel-Liste und deren Werte nicht in der Werte-Liste ent-
halten sind.

>>> filter_dict({'a': 1, 'b': 2, 'c': 3}, ['a'], [1, 3])
{'b': 2}
>>> filter_dict({True: "yes", False: "no"}, [False], [])
{True: 'yes'}

Aufgabe 11.4 (Erfahrungen; 0 Punkte; Datei: NOTES.md)
Notieren Sie Ihre Erfahrungen mit diesem Übungsblatt (benötigter Zeitaufwand,
Probleme, Bezug zur Vorlesung, Interessantes, etc.).

Editieren Sie hierzu die Datei NOTES.md im Abgabeordner dieses Übungsblattes auf
unserer Webplattform. Halten Sie sich an das dort vorgegebene Format, da wir den
Zeitbedarf mit einem Python-Skript automatisch statistisch auswerten. Die Zeitan-
gabe 7.5 h steht dabei für 7 Stunden 30 Minuten.


