Einfiihrung in die Programmierung

Prof. Dr. Peter Thiemann Universitédt Freiburg
Marius Weidner Institut fir Informatik
Simon Dorer, Timpe Horig Wintersemester 2025

Ubungsblatt 11
Abgabe: Montag, 12.01.2026, 09:00 Uhr

Anmerkung zur Vorlesung: InitVar und private Attribute
In der Vorlesung wurde die Verwendung von InitVar und privaten Attributen wie
folgt erklért:

@dataclass
class Example:
__attr: InitVar[int]

def __post_init__(self, attr: int) -> None:
self.__attr = attr

Dieses Verhalten ist an sich korrekt, liefert in Python jedoch folgenden Typfehler:
Dataclass field cannot use private name

Um dieses Problem zu umgehen, koénnen wir die InitVar-Attribute ohne die fiih-
renden Unterstriche definieren und diese dann in der __post_init__-Methode den
privaten Attributen zuweisen:

@dataclass
class Example:
attr: InitVarl[int]
__attr: int = field(init=False)

def __post_init__(self, attr: int) -> None:
self.__attr = attr

Auf diese Weise kénnen wir sowohl die Vorteile von InitVar als auch von privaten
Attributen nutzen, ohne auf Typfehler zu stofen. Verwenden Sie dies in der fol-
genden Aufgabe, wenn Sie private Attribute in Kombination mit InitVar
bendstigen.

Aufgabe 11.1 (Bankaccount; 8 Punkte; Datei: money . py)

(a) (4 Punkte) Implementieren Sie eine Datenklasse BankAccount, die einen Namen
eines Kontoinhabers __name, eine IBAN-Adresse __iban und einen Kontostand
__balance als private Attribute besitzt.

Dabei ist der Name ein nicht-leerer String, die IBAN ein String der Lénge 22,
der mit zwei beliebigen Grofbuchstaben beginnt, gefolgt von 20 Ziffern und
der Kontostand eine Gleitkommazahl, die den Kontostand in Euro angibt.



Einfiihrung in die Programmierung Wintersemester 2025

Nur der Name und die IBAN sollen beim Erstellen eines Objekts der Klasse
BankAccount im Konstruktor {ibergeben werden. Da unsere Bank grofziigig
ist, werden neue Konten immer mit einem Startguthaben von 42.0 Euro initia-
lisiert.

Implementieren sie zusétzlich fiir jedes Attribut eine Getter-Methode, die den
Wert des jeweiligen Attributs zuriickgibt. Nennen Sie die Methoden get_name,
get_iban und get_balance.

Implementieren Sie aukerdem eine Setter-Methode set_name fiir das Attribut
name.

Stellen Sie sicher, dass die Validierung der Attribute sowohl im Kon-
struktor als auch in den Setter-Methoden durchgefiihrt wird. Ver-
meiden Sie Code-Duplikation. Falls die Validierung fehlschligt, soll
ein AssertionError ausgel6st werden.

Beispiele:

>>> account = BankAccount("Alice", "DE89370400440532013000")
>>> account.get_name ()

"Alice'

>>> account.get_iban()

'DE89370400440532013000"

>>> account.get_balance()

42.0

>>> account.set_name("Alice Smith")

>>> account.get_name ()

'Alice Smith'

(2 Punkte) Um den Kontostand zu verdndern, wollen wir die inplace-Addition
(+=) und die inplace-Subtraktion (-=) iiberladen. Implementieren Sie hierzu die
Methoden __iadd__ und __isub__, die jeweils eine Gleitkommazahl amount als
Argument erhalten. Die Funktionen sollen den Kontostand entsprechend um
amount erhdhen oder verringern und das verénderte Objekt (self) zuriickge-
ben.

Stellen Sie dabei sicher, dass amount immer positiv ist, dass der Kontostand
bei einer Subtraktion nicht negativ wird und dass héchstens 1337 Euro auf
einmal hinzugefiigt werden kénnen. Falls eine dieser Bedingungen nicht erfillt
ist, soll ein AssertionError ausgelost werden.

Beispiele:

>>> account += 37.5

>>> account.get_balance()
79.5

>>> account -= 50.0

>>> account.get_balance()
29.5



Einfiihrung in die Programmierung Wintersemester 2025

(¢) (1 Punkt) Implementieren Sie die Dunder-Methode __eq__, die zwei Bankkon-
ten als gleich betrachtet, wenn sie dieselbe IBAN besitzen.

Zum Beispiel:

>>> accountl = BankAccount("Bob", "DE89370400440532013000")
>>> account?2 = BankAccount("Charlie'", "DE89370400440532013000")
>>> account3 BankAccount ("Bob", "FR76300060000112345678")

>>> accountl == account2
True
>>> accountl == account3
False
>>> account2 == account3
False

(d) (1 Punkt) Implementieren Sie Dunder-Methode __str__, die eine lesbare String-
Représentation des Bankkontos in der Form <name> - <iban>: <balance> EUR
zuriickgibt.

Zum Beispiel:

>>> str(account)
'"Alice Smith - DE89370400440532013000: 29.5 EUR'

Aufgabe 11.2 (Rekursion; 6 Punkte; Datei: tail.py)

Das Collatz-Problem, auch als (3n+1)-Vermutung bezeichnet, ist ein ungelostes ma-
thematisches Problem. Es besagt, dass die folgende Folge, fiir jede nicht negative
natiirliche Zahl n, immer die Zahl 1 erreicht:

- 5, wenn c¢; gerade ist
+1 — .
3c¢; + 1, wenn ¢; ungerade ist

wobeil ¢y = n.

(a) (2 Punkte) Schreiben Sie eine rekursive, aber nicht endrekursive, Funktion
collatz_steps_rec, die eine natiirliche Zahl n als Argument erhélt und die
Anzahl der Schritte zuriickgibt, die ben6tigt werden, um von n zur Zahl 1 zu
gelangen, indem die obige Vorschrift angewendet wird.

(b) (2 Punkte) Schreiben Sie ein endrekursive Funktion collatz_steps_tail, die
sich wie collatz_steps_rec verhilt, aber endrekursiv implementiert ist. Ge-
hen Sie hierbei so vor, wie in der Vorlesung gezeigt.

(c) (2 Punkte) Schreiben Sie eine nicht-rekursive Funktion collatz_steps_iter,
die sich wie collatz_steps_tail verhélt, aber iterativ implementiert ist. Ge-
hen Sie hierbei so vor, wie in der Vorlesung gezeigt.

>>> collatz_steps_rec(1)
0
>>> collatz_steps_rec(1l) == collatz_steps_tail(l) == collatz_steps_iter(1)



Einfiihrung in die Programmierung Wintersemester 2025

True

>>> collatz_steps_rec(6)

8

>>> collatz_steps_rec(6) == collatz_steps_tail(6) == collatz_steps_iter(6)
True

Aufgabe 11.3 (Dictionaries; 6 Punkte; Datei: dicts.py)

In dieser Aufgabe definieren Sie zwei generische Funktionen iiber Dictionaries.

(a) (3 Punkte) Implementieren Sie eine Funktion reverse_dict, die ein beliebiges
Dictionary als Eingabe erhélt und ein neues Dictionary zuriickgibt, in dem
die Schliissel und Werte vertauscht sind. Beachten Sie, dass Dictionaries nicht
injektiv sind. Deshalb sollen die Werte im neuen Dictionary Sets sein, die alle
urspriinglichen Schliissel enthalten, die auf diesen Wert gezeigt haben.

>>> reverse_dict({'a': 1, 'b': 2, 'c¢': 1})
{1: {'c', 'a'}, 2: {'b'}}

>>> reverse_dict ({True: "yes", False: "no"})
{'yes': {True}, 'no': {Falsel}}

(b) (3 Punkte) Implementieren Sie die Funktion filter_dict, die ein Dictionary
und zwei Listen als Eingabe erhélt: eine Liste von Schliisseln und eine Liste
von Werten. Die Funktion soll ein neues Dictionary zuriickgeben, der nur die
Schliissel-Wert-Paare aus dem urspriinglichen Dictionary enthélt, deren Schliis-
sel nicht in der Schliissel-Liste und deren Werte nicht in der Werte-Liste ent-
halten sind.

>>> filter_dict({'a': 1, 'b': 2, 'c': 3}, ['a'l, [1, 31)
{'b': 2}

>>> filter_dict({True: "yes", False: "no"}, [Falsel, [])
{True: 'yes'}

Aufgabe 11.4 (Erfahrungen; 0 Punkte; Datei: NOTES.md)

Notieren Sie Ihre Erfahrungen mit diesem Ubungsblatt (benétigter Zeitaufwand,
Probleme, Bezug zur Vorlesung, Interessantes, etc.).

Editieren Sie hierzu die Datei NOTES.md im Abgabeordner dieses Ubungsblattes auf
unserer Webplattform. Halten Sie sich an das dort vorgegebene Format, da wir den
Zeitbedarf mit einem Python-Skript automatisch statistisch auswerten. Die Zeitan-
gabe 7.5 h steht dabei fiir 7 Stunden 30 Minuten.



