Concurrency Theory
Winter 2025/26

Lecture 17: Petri Net Semantics of CCS

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 17

0 Introduction

Thomas Noll, Peter Thiemann Winter 2025/26 2/21

Goal: Define true concurrency semantics for (a subset of) CCS
@ Distinguish between -+ and ||

e a.b.nil + b.a.nil: N

b

—0-(9-0
7 S

B—0-8-0
LTS Net

e anil || b.nil: _»

O— (-0
LTS Net

o

Q

@ Enable analysis of CCS processes by Petri net algorithms

Thomas Noll, Peter Thiemann Winter 2025/26 3/21

Non-Determinism and Unboundedness

Observations:

@ Also without interleaving, parallel composition || can still induce non-determinism (due to

conflicts), e.g., a.nil || a.nil:

N

7@

o

Ll

0

Thomas Noll, Peter Thiemann

Winter 2025/26

4/21

Non-Determinism and Unboundedness

Observations:

@ Also without interleaving, parallel composition || can still induce non-determinism (due to

conflicts), e.g., a.nil || a.nil:
O~ O

&0

@ Recursive process calls can entail unboundedness, e.g., C = up.(C || down.nil)
(counter; cf. Example 2.6):

O=-0O—E-0

Thomas Noll, Peter Thiemann

Winter 2025/26 4/21

The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri nets.

Thomas Noll, Peter Thiemann Winter 2025/26 5/21

The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri nets.

Requirements:
(1) Cover as much of CCS as possible (problem: CCS is Turing complete and finite
Petri nets are not).
(2) To support inductive verification proofs, nets should be constructed inductively
by means of composition operators (as in CCS).

Thomas Noll, Peter Thiemann Winter 2025/26 5/21

The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri nets.

Requirements:
(1) Cover as much of CCS as possible (problem: CCS is Turing complete and finite
Petri nets are not).
(2) To support inductive verification proofs, nets should be constructed inductively
by means of composition operators (as in CCS).
Method:
(1) Consider only guarded processes and omit restriction and relabelling operators.
(2) Specify translation |.| : CCS — Petri in a compositional way, e.g.,
[Qr + Q] =[] @[]
N———

operation on Petri nets

Thomas Noll, Peter Thiemann Winter 2025/26 5/21

CCS Reuvisited

Definition 17.1 (Syntax of Guarded CCS; cf. Definition - 1)

@ Let A, A:={a|ac A}and Act := AU AU {7} be the sets of (action) names, co-names, and
actions, and let Pid be a set of process identifiers.
@ The set Prc' of guarded process expressions is defined by the following syntax:
n

QZZ:Z(\,‘.Q[‘ Q1 H Qg ‘ C
i=1
where n € N, «; € Act and C € Pid.
@ Also, every process call C must be guarded, i.e., occur in an expression of the form . Q.
@ A guarded process definition is an equation system of the form
(Ci=Q|1<i<k)
where k > 1, C; ¢ Pid (pairwise distinct), and @; © Prc! (with identifiers from {Cq, ..., Ck})-)

Thomas Noll, Peter Thiemann Winter 2025/26 6/21

CCS Reuvisited

Definition 17.1 (Syntax of Guarded CCS; cf. Definition - 1)

@ Let A, A:={a|ac A}and Act := AU AU {7} be the sets of (action) names, co-names, and
actions, and let Pid be a set of process identifiers.
@ The set Prc' of guarded process expressions is defined by the following syntax:
n

QZZ:Z(\,‘.Q[‘ Q1 H Qg ‘ C
i=1
where n € N, «; € Act and C € Pid.
@ Also, every process call C must be guarded, i.e., occur in an expression of the form . Q.
@ A guarded process definition is an equation system of the form
(Ci=Q|1<i<k)
where k > 1, C; ¢ Pid (pairwise distinct), and @; © Prc! (with identifiers from {Cq, ..., Ck})-)

Notes:
@ Restriction and relabelling are not used any longer.
@ The guardedness condition excludes, e.g., definitions of the form C — C.
@ Since Prc’ C Pre (Definition 2.1), Definition 2.4 of the semantics still applies.

Thomas Noll, Peter Thiemann Winter 2025/26 6/21

Petri Nets Revisited

In order to connect transitions to actions and to support the handling of process identifiers, we
introduce labels for transitions and places.

Definition 17.2 (Labelled Petri net; cf. Definition

A labelled Petri net V is a quintuple (P, 7. F, [, m) where:
@ P is afinite set of places,
@ 7 is a finite set of transitions with # 1 7 = (),
@ FC (PxT)U(T x P) are the arcs,
@ /: T — Act is the transition labelling, and
@ m: P -—» Pidis the (partial) place labelling.
Adding an initial marking M, : P — N yields a labelled elementary system net (P, T. F./, m, My).

v

Thomas Noll, Peter Thiemann Winter 2025/26 7121

Interleaving Semantics Revisited

Definition 17.3 (Marking graph; cf. Definition
Let N = (P, T.F.l.m, M) be alabelled elementary system netand \/ : P — I\

@ Marking)/ enables a transition t < T if M(p) > 1 for each place p < °1.

@ lts firing leads to marking //, denoted by the step relation // ﬂ V" and defined for each

place p € P by
M'(p) := M(p) — F(p,t) + F(t,p)
where we represent /~ by its characteristic function.

@ The marking graph of N has as nodes the reachable markings of /V and as edges the
corresponding steps of V.2

#Due to transition labels, marking graphs are generally no longer deterministic LTSs.

Thomas Noll, Peter Thiemann Winter 2025/26 8/21

Outline of Lecture 17

9 The Translation

Thomas Noll, Peter Thiemann Winter 2025/26 9/21

Guarded Choice |

(Reminder: Q= > . 0,0, | Q| x| C < Prc)

Approach: Implement non-determinism by conflicting transitions (one for each choice) and branch

to outset of respective subnet.’

3 bd O

Translating guarded choice

LetQ=>",.Q € Prc' and [Q]] = N; = (P;, T;, F, ;, m;) for
1 < /< n. Then

Q] =(PUP , TUT FUF IUI' m)

where
Pi= U,:,1 P, P :={p}
T=U_, T T :={t,..., tn}
n 7 . n o
Fi=U_Ffi F={(pt)[1<i<ntulU_{t} x°N
=UL == a|1<i<n]
n
m:= Ui*1 mi
'Reminder: °N = {pc P | °p=(}.

Thomas Noll, Peter Thiemann

Qq

t

tn

Winter 2025/26

°N,

10/21

Guarded Choice I

Example 17.4

(1) @=nil (=3 p0iQ):

Thomas Noll, Peter Thiemann Winter 2025/26 11/21

Guarded Choice I

Example 17.4

(1) @=nil (=3 p0iQ):

O—1:—0O

(2) Q= anil:

Thomas Noll, Peter Thiemann Winter 2025/26 11/21

Guarded Choice I

Example 17.4

(1) @=nil (=3 p0iQ):

O—1:—0O

(2) Q= anil:

(3) Q = a.b.nil + b.a.nil:

Thomas Noll, Peter Thiemann Winter 2025/26 11/21

Parallel Composition |

Approach:
@ Model concurrency by disjoint union of subnets, enlarged by 7-transitions for all possible
synchronisation operations.
@ The latter are enabled by transitions in both subnets with complementary action labels.

Translating parallel composition

Let Q= Q; | @2 € Prct and [Q] = N; = (P;, T;, Fi, I;, m;) for i € {1,2} (all P; and T; disjoint).
Then

[[Qﬂ ::(P1UP2.T1UTQUT,_,HUFQUFT./1U/2U/,_,m1Um2)

where
T.:={(ti,) | ty € Ty, () € AUA, (new T-transitions)
b € To, /Q(fg) = /1(f1)}>
Fr:={(p1,(t1, 1)), (p2, (t1, 1)), ((t1, &), 0}), ((t1, &), P5) | (corresponding arcs)
(f1,f2) eT.,p € 'f1,p2 € .fg,pq € Tf.pé € f;}
L=[(t,) — 7| (t,) € T;] (7-labels for transitions)

— = = — >yt

Thomas Noll, Peter Thiemann Winter 2025/26 12/21

Parallel Composition Il

(1) Q= a.nil || b.nil:

Ol ®
Ol ®)

Thomas Noll, Peter Thiemann Winter 2025/26 13/21

Parallel Composition Il

(1) Q = a.nil || b.nil: (2) Q = a.nil || a.nil:

Ol ® C=0

O30 ><

Thomas Noll, Peter Thiemann Winter 2025/26

Parallel Composition Il

(1) Q= a.nil || b.nil:

Ol ®
Ol ®)

(2) Q = a.nil || a.nil:
9: ¢
OnEln®

(3) Q = b.(a.nil || a.nil) + c.nil:

ONEy®

oL TS

TR0
O

Thomas Noll, Peter Thiemann

Winter 2025/26

Parallel Composition Il

(1) Q= a.nil || b.nil:

Ol ®
Ol ®)

(4) Q= a.b.nil || b.a.nil:

(2) Q = a.nil || a.nil:
9: ¢
OnEln®

(3) Q = b.(a.nil || a.nil) + c.nil:

ONEy®

oL TS

TR0
O

Thomas Noll, Peter Thiemann

Winter 2025/26

Recursive Process Calls |

Approach: Introduce labelled places for process calls (using mapping m), replace each of them by
arcs to all initial places of the corresponding process expression (convert tail recursion to loop).

Translating recursive process calls

@ For aprocess call C © Prc! (C < Pid), we let

[c] := ({p}, 0, 0,0, [p — CJ).

@ For a guarded process definition D — (C; — @, | 1 </ < k) (C; © Pid, Q; ¢ Prc') with

[Q] = N; = (P, T;, Fi, i, mi) for 1 < i < k, we let
[Q] :==(P\P,T,F\(T x PYUF,1,0)

where
P:=UL,P
P =L P
Pl=m'({C}) (={peP|m(p)=C})
T:=UrTi
F:= U7:1 Fi

F-={(t,p) e TxP|Jie{l,...k}:t* NP #0,pe°N}

(all places)
(process calls)
(calls of C;)
(all transitions)
(all flows)
(arcs for process calls)

Thomas Noll, Peter Thiemann

v

Winter 2025/26 14/21

Recursive Process Calls I

(1) Call a.C:
©O—{}—©

Thomas Noll, Peter Thiemann Winter 2025/26 15/21

Recursive Process Calls I

Example 17.6

(2) Definition C = a.C + b.nil:

OO0 S
q@{)

(1) Call a.C:

Thomas Noll, Peter Thiemann Winter 2025/26 15/21

Recursive Process Calls I

Example 17.6

(2) Definition C = a.C + b.nil:

(1) Call a.C:

O—{:—0©

Thomas Noll, Peter Thiemann Winter 2025/26 15/21

Recursive Process Calls I

Example 17.6
(1) Call a.C:
(4) Definition C = a. (D | b. nil) = b.D:

\

Lo

@_>

(2) Definition C = a.C + b.nil:

(3) Definition C = a.(C || b.C):

Thomas Noll, Peter Thiemann

Winter 2025/26

15/21

Outline of Lecture 17

e Correctness

Thomas Noll, Peter Thiemann Winter 2025/26 16/21

Correctness of Translation |

Let O « Prc' be a guarded process expression, and let

[Q] = N=(P,T,F,I,m, M)

be its labelled elementary system net with initial marking My = °N.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

Thomas Noll, Peter Thiemann Winter 2025/26 17/21

https://doi.org/10.1007/BFb0017157

Correctness of Translation |

Let O « Prc' be a guarded process expression, and let

[Q] =N=(P,T,F,I,m, M)

be its labelled elementary system net with initial marking My = °N.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

see Ursula Goltz: On representing CCS programs by finite Petri nets, MFCS 1988

Thomas Noll, Peter Thiemann Winter 2025/26 17/21

https://doi.org/10.1007/BFb0017157

Correctness of Translation |

Let O « Prc' be a guarded process expression, and let
Q] =N= (P, T,F,I,m, M)

be its labelled elementary system net with initial marking My — V.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

see Ursula Goltz: , MFCS 1988

N is bounded iff L7S(Q) is finite.

Thomas Noll, Peter Thiemann Winter 2025/26 17/21

https://doi.org/10.1007/BFb0017157

Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))

Process definition:
C=al(D| B.nil). D= b.D

Thomas Noll, Peter Thiemann Winter 2025/26 18/21

Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))
Net (one-bounded):

O=n

N
©
L

Process definition: 5
C=al(D| B.nil). D= b.D @_,

Thomas Noll, Peter Thiemann Winter 2025/26 18/21

Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))

Net (one-bounded):
Process definition: , @i\lzl
C=a(D| b.nil), D= b.D (O— ©)
LTS of C (finiteh @Z,
a
b b
u’ < t(b)b

Thomas Noll, Peter Thiemann Winter 2025/26 18/21

Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))
Net (one-bounded):

O=n

Process definition: ,
C=al(D| B.nil). D= b.D @_,

> o
LTS of C (finiteh @_,

Marking graph:

b . b . b
: G T
we) WOl SO
[D N

Thomas Noll, Peter Thiemann Winter 2025/26 18/21

Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example =)
Definition of counter process :

C = up.(C || down.nil)

Thomas Noll, Peter Thiemann Winter 2025/26 19/21

Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example =)
Definition of counter process : N

et:
C = up.(C || down.nil) @O_>O

Thomas Noll, Peter Thiemann Winter 2025/26 19/21

Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example =)
Definition of counter process : N

et:
C = up.(C || down.nil) @O_>O

Reachable states:
C % C || (down.nil)“=9 || nil¥
where w € {up, down}*
with |w|yp = v and |W|gown = d
(and ‘V‘down < ‘V‘UD
for each prefix v of w).

Thomas Noll, Peter Thiemann Winter 2025/26 19/21

Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example =)
Definition of counter process : N

et:
C = up.(C || down.nil) @O_>O

Reachable states:

w au—d ad
&= | {eerm) I i Corresponding configurations:

h {up, down}*
it Wl — 0 and |wlgoun — =[P —[donn~(3)

(and ‘V‘down < ‘V‘up
for each prefix v of w).

Thomas Noll, Peter Thiemann Winter 2025/26 19/21

Outline of Lecture 17

e Summary

Thomas Noll, Peter Thiemann Winter 2025/26 20/21

@ Guarded CCS processes without restriction and relabelling can be mapped to finite Petri nets.

Thomas Noll, Peter Thiemann Winter 2025/26 21/21

@ Guarded CCS processes without restriction and relabelling can be mapped to finite Petri nets.

@ Interleaving/synchronisation is handled via conflicting transitions, and recursion via looping.

Thomas Noll, Peter Thiemann Winter 2025/26 21/21

@ Guarded CCS processes without restriction and relabelling can be mapped to finite Petri nets.
@ Interleaving/synchronisation is handled via conflicting transitions, and recursion via looping.

@ The resulting marking graph is strongly bisimilar to the (LTS of) the CCS process.

Thomas Noll, Peter Thiemann Winter 2025/26 21/21

@ Guarded CCS processes without restriction and relabelling can be mapped to finite Petri nets.
@ Interleaving/synchronisation is handled via conflicting transitions, and recursion via looping.
@ The resulting marking graph is strongly bisimilar to the (LTS of) the CCS process.

@ Conjecture: The net is bounded iff the LTS is finite.

Thomas Noll, Peter Thiemann Winter 2025/26 21/21

	Introduction
	The Translation
	Correctness
	Summary

