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0 Introduction
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Goal: Define true concurrency semantics for (a subset of) CCS
@ Distinguish between -+ and ||

e a.b.nil + b.a.nil: N
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@ Enable analysis of CCS processes by Petri net algorithms
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Non-Determinism and Unboundedness

Observations:

@ Also without interleaving, parallel composition || can still induce non-determinism (due to

conflicts), e.g., a.nil || a.nil:
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Non-Determinism and Unboundedness

Observations:

@ Also without interleaving, parallel composition || can still induce non-determinism (due to

conflicts), e.g., a.nil || a.nil:
O~ O

&0

@ Recursive process calls can entail unboundedness, e.g., C = up.(C || down.nil)
(counter; cf. Example 2.6):

O=-0O—E-0
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The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri nets.
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The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri nets.

Requirements:
(1) Cover as much of CCS as possible (problem: CCS is Turing complete and finite
Petri nets are not).
(2) To support inductive verification proofs, nets should be constructed inductively
by means of composition operators (as in CCS).
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The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri nets.

Requirements:
(1) Cover as much of CCS as possible (problem: CCS is Turing complete and finite
Petri nets are not).
(2) To support inductive verification proofs, nets should be constructed inductively
by means of composition operators (as in CCS).
Method:
(1) Consider only guarded processes and omit restriction and relabelling operators.
(2) Specify translation |.| : CCS — Petri in a compositional way, e.g.,
[Qr + Q] =[] @[]
N———

operation on Petri nets
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CCS Reuvisited

Definition 17.1 (Syntax of Guarded CCS; cf. Definition - 1)

@ Let A, A:={a|ac A}and Act := AU AU {7} be the sets of (action) names, co-names, and
actions, and let Pid be a set of process identifiers.
@ The set Prc' of guarded process expressions is defined by the following syntax:
n

QZZ:Z(\,‘.Q[ ‘ Q1 H Qg ‘ C
i=1
where n € N, «; € Act and C € Pid.
@ Also, every process call C must be guarded, i.e., occur in an expression of the form . Q.
@ A guarded process definition is an equation system of the form
(Ci=Q|1<i<k)
where k > 1, C; ¢ Pid (pairwise distinct), and @; © Prc! (with identifiers from {Cq, ..., Ck})- )
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CCS Reuvisited

Definition 17.1 (Syntax of Guarded CCS; cf. Definition - 1)

@ Let A, A:={a|ac A}and Act := AU AU {7} be the sets of (action) names, co-names, and
actions, and let Pid be a set of process identifiers.
@ The set Prc' of guarded process expressions is defined by the following syntax:
n

QZZ:Z(\,‘.Q[ ‘ Q1 H Qg ‘ C
i=1
where n € N, «; € Act and C € Pid.
@ Also, every process call C must be guarded, i.e., occur in an expression of the form . Q.
@ A guarded process definition is an equation system of the form
(Ci=Q|1<i<k)
where k > 1, C; ¢ Pid (pairwise distinct), and @; © Prc! (with identifiers from {Cq, ..., Ck})- )

Notes:
@ Restriction and relabelling are not used any longer.
@ The guardedness condition excludes, e.g., definitions of the form C — C.
@ Since Prc’ C Pre (Definition 2.1), Definition 2.4 of the semantics still applies.
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Petri Nets Revisited

In order to connect transitions to actions and to support the handling of process identifiers, we
introduce labels for transitions and places.

Definition 17.2 (Labelled Petri net; cf. Definition

A labelled Petri net V is a quintuple (P, 7. F, [, m) where:
@ P is afinite set of places,
@ 7 is a finite set of transitions with # 1 7 = (),
@ FC (PxT)U(T x P) are the arcs,
@ /: T — Act is the transition labelling, and
@ m: P -—» Pidis the (partial) place labelling.
Adding an initial marking M, : P — N yields a labelled elementary system net (P, T. F./, m, My).

v
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Interleaving Semantics Revisited

Definition 17.3 (Marking graph; cf. Definition
Let N = (P, T.F.l.m, M) be alabelled elementary system netand \/ : P — I\

@ Marking )/ enables a transition t < T if M(p) > 1 for each place p < °1.

@ lts firing leads to marking //, denoted by the step relation // ﬂ V" and defined for each

place p € P by
M'(p) := M(p) — F(p,t) + F(t,p)
where we represent /~ by its characteristic function.

@ The marking graph of N has as nodes the reachable markings of /V and as edges the
corresponding steps of V.2

#Due to transition labels, marking graphs are generally no longer deterministic LTSs.
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Outline of Lecture 17

9 The Translation
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Guarded Choice |

(Reminder: Q= > . 0,0, | Q| x| C < Prc)

Approach: Implement non-determinism by conflicting transitions (one for each choice) and branch

to outset of respective subnet.’

3 bd O

Translating guarded choice

LetQ=>",.Q € Prc' and [Q]] = N; = (P;, T;, F, ;, m;) for
1 < /< n. Then

Q] =(PUP , TUT FUF IUI' m)

where
Pi= U,:,1 P, P :={p}
T=U_, T T :={t,..., tn}
n 7 . n o
Fi=U_Ffi F={(pt)[1<i<ntulU_{t} x°N
=UL == a|1<i<n]
n
m:= Ui*1 mi
'Reminder: °N = {pc P | °p=(}.
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Guarded Choice I

Example 17.4

(1) @=nil (=3 p0iQ):
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Guarded Choice I

Example 17.4

(1) @=nil (=3 p0iQ):

O—1:—0O

(2) Q= anil:
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Guarded Choice I

Example 17.4

(1) @=nil (=3 p0iQ):

O—1:—0O

(2) Q= anil:

(3) Q = a.b.nil + b.a.nil:
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Parallel Composition |

Approach:
@ Model concurrency by disjoint union of subnets, enlarged by 7-transitions for all possible
synchronisation operations.
@ The latter are enabled by transitions in both subnets with complementary action labels.

Translating parallel composition

Let Q= Q; | @2 € Prct and [Q] = N; = (P;, T;, Fi, I;, m;) for i € {1,2} (all P; and T; disjoint).
Then

[[Qﬂ ::(P1UP2.T1UTQUT,_,HUFQUFT./1U/2U/,_,m1Um2)

where
T.:={(ti,) | ty € Ty, () € AUA, (new T-transitions)
b € To, /Q(fg) = /1(f1)}>
Fr:={(p1,(t1, 1)), (p2, (t1, 1)), ((t1, &), 0}), ((t1, &), P5) | (corresponding arcs)
(f1,f2) eT.,p € 'f1,p2 € .fg,pq € Tf.pé € f;}
L=[(t, ) — 7| (t, ) € T;] (7-labels for transitions)

— = = — >yt
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Parallel Composition Il

(1) Q= a.nil || b.nil:

Ol ®
Ol ®)
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Parallel Composition Il

(1) Q = a.nil || b.nil: (2) Q = a.nil || a.nil:

Ol ® C=0

O30 ><
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Parallel Composition Il

(1) Q= a.nil || b.nil:

Ol ®
Ol ®)

(2) Q = a.nil || a.nil:
9: ¢
OnEln®

(3) Q = b.(a.nil || a.nil) + c.nil:

ONEy®

oL TS

TR0
O
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Parallel Composition Il

(1) Q= a.nil || b.nil:

Ol ®
Ol ®)

(4) Q= a.b.nil || b.a.nil:

(2) Q = a.nil || a.nil:
9: ¢
OnEln®

(3) Q = b.(a.nil || a.nil) + c.nil:

ONEy®

oL TS

TR0
O
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Recursive Process Calls |

Approach: Introduce labelled places for process calls (using mapping m), replace each of them by
arcs to all initial places of the corresponding process expression (convert tail recursion to loop).

Translating recursive process calls

@ For aprocess call C © Prc! (C < Pid), we let

[c] := ({p}, 0, 0,0, [p — CJ).

@ For a guarded process definition D — (C; — @, | 1 </ < k) (C; © Pid, Q; ¢ Prc') with

[Q] = N; = (P, T;, Fi, i, mi) for 1 < i < k, we let
[Q] :==(P\P,T,F\(T x PYUF,1,0)

where
P:=UL,P
P =L P
Pl=m'({C}) (={peP|m(p)=C})
T:=UrTi
F:= U7:1 Fi

F-={(t,p) e TxP|Jie{l,...k}:t* NP #0,pe°N}

(all places)
(process calls)
(calls of C;)
(all transitions)
(all flows)
(arcs for process calls)
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Recursive Process Calls I

(1) Call a.C:
©O—{}—©
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Recursive Process Calls I

Example 17.6

(2) Definition C = a.C + b.nil:

OO0 S
q@{)

(1) Call a.C:
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Recursive Process Calls I

Example 17.6

(2) Definition C = a.C + b.nil:

(1) Call a.C:

O—{:—0©
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Recursive Process Calls I

Example 17.6
(1) Call a.C:
(4) Definition C = a. (D | b. nil) = b.D:

\

Lo

@_>

(2) Definition C = a.C + b.nil:

(3) Definition C = a.(C || b.C):
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Outline of Lecture 17

e Correctness
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Correctness of Translation |

Let O « Prc' be a guarded process expression, and let

[Q] = N=(P,T,F,I,m, M)

be its labelled elementary system net with initial marking My = °N.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

Thomas Noll, Peter Thiemann Winter 2025/26 17/21


https://doi.org/10.1007/BFb0017157

Correctness of Translation |

Let O « Prc' be a guarded process expression, and let

[Q] =N=(P,T,F,I,m, M)

be its labelled elementary system net with initial marking My = °N.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

see Ursula Goltz: On representing CCS programs by finite Petri nets, MFCS 1988
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Correctness of Translation |

Let O « Prc' be a guarded process expression, and let
Q] =N= (P, T,F,I,m, M)

be its labelled elementary system net with initial marking My — V.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

see Ursula Goltz: , MFCS 1988

N is bounded iff L7S( Q) is finite.
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Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))

Process definition:
C=al(D| B.nil). D= b.D
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Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))
Net (one-bounded):

O=n

N
©
L

Process definition: 5
C=al(D| B.nil). D= b.D @_,
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Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))

Net (one-bounded):
Process definition: , @i\lzl
C=a(D| b.nil), D= b.D (O— ©)
LTS of C (finiteh @Z,
a
b b
u’ < t(b)b
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Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example (4))
Net (one-bounded):

O=n

Process definition: ,
C=al(D| B.nil). D= b.D @_,

> o
LTS of C (finiteh @_,

Marking graph:

b . b . b
: G T
we ) WOl SO
[ D N
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Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example = )
Definition of counter process :

C = up.(C || down.nil)
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Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example = )
Definition of counter process : N

et:
C = up.(C || down.nil) @O_>O
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Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example = )
Definition of counter process : N

et:
C = up.(C || down.nil) @O_>O

Reachable states:
C % C || (down.nil)“=9 || nil¥
where w € {up, down}*
with |w|yp = v and |W|gown = d
(and ‘V‘down < ‘V‘UD
for each prefix v of w).
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Correctness of Translation Il

Example 17.9 (CCS process with infinite LTS; cf. Example = )
Definition of counter process : N

et:
C = up.(C || down.nil) @O_>O

Reachable states:

w au—d ad
&= | {eerm) I i Corresponding configurations:

h {up, down}*
it Wl — 0 and |wlgoun — =[P —[donn~(3)

(and ‘V‘down < ‘V‘up
for each prefix v of w).
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Outline of Lecture 17

e Summary
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@ Guarded CCS processes without restriction and relabelling can be mapped to finite Petri nets.
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@ Guarded CCS processes without restriction and relabelling can be mapped to finite Petri nets.
@ Interleaving/synchronisation is handled via conflicting transitions, and recursion via looping.
@ The resulting marking graph is strongly bisimilar to the (LTS of) the CCS process.

@ Conjecture: The net is bounded iff the LTS is finite.
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