Concurrency Theory
Winter 2025/26

Lecture 17: Petri Net Semantics of CCS

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Goal: Define true concurrency semantics for (a subset of) CCS

@ Distinguish between -+ and ||

.abm+bam;‘nn'

a b

CZDD\ a @/@—AO—»@HO
O,

LTS Net

e anil || b.nil: _»’
a 0 b
b i j a G—’@"O

O— -0
LTS Net

@ Enable analysis of CCS processes by Petri net algorithms
Thomas Noll, Peter Thiemann Winter 2025/26 3/21

Non-Determinism and Unboundedness

Observations:

@ Also without interleaving, parallel composition || can still induce
non-determinism (due to conflicts), e.g., a.nil || a.nil:

@ia

]

—>
@ O
@ Recursive process calls can entail unboundedness, e.g.,

C = up.(C || down.nil)
(counter; cf. Example 2.6):

Thomas Noll, Peter Thiemann Winter 2025/26

4/21

The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri
nets.

Requirements:
(1) Cover as much of CCS as possible (problem: CCS is
Turing complete and finite Petri nets are not).
(2) To support inductive verification proofs, nets should be
constructed inductively by means of composition operators
(as in CCS).

Method:
(1) Consider only guarded processes and omit restriction and
relabelling operators.
(2) Specify translation [.| : CCS — Petri in a compositional
way, e.g.,
[Q + Q] = [Qi] @ [Q]

_\,ﬁ
operation on Petri nets

Thomas Noll, Peter Thiemann Winter 2025/26 5/21

CCS Reuvisited

Definition 17.1 (Syntax of Guarded CCS; cf. Definition - 1)

@ Let A, A:={a|aec A} and Act := AU AU {7} be the sets of (action)
names, co-names, and actions, and let Pid be a set of process identifiers.
@ The set Prc' of guarded process expressions is defined by the following

syntax:
n

Q:=> 0;.Q | @ Q@
i=1
where n € N, o € Act and C € Pid.
@ Also, every process call C must be guarded, i.e., occur in an expression
of the form . Q.
@ A guarded process definition is an equation system of the form
(Ci=Q|1<i<Kk)
where k > 1, C; © Pid (pairwise distinct), and ©, Prc' (with identifiers
from {Cq, ..., Ck })-

C

Thomas Noll, Peter Thiemann Winter 2025/26 6/21

Petri Nets Revisited

In order to connect transitions to actions and to support the handling of
process identifiers, we introduce labels for transitions and places.

Definition 17.2 (Labelled Petri net; cf. Definition

A labelled Petri net N is a quintuple (P, T, F, [, m) where:
@ Fis afinite set of places,
@ T is a finite set of transitions with P N 7 = (),
@ FC (PxT)U(T x P) are the arcs,
@ /: T — Act is the transition labelling, and
@ m: P -—» Pid is the (partial) place labelling.

Adding an initial marking M : P — N yields a labelled elementary system net
(P, T,F,l,m, Mp).

Thomas Noll, Peter Thiemann Winter 2025/26 7/21

Interleaving Semantics Revisited

Definition 17.3 (Marking graph; cf. Definition

Let N = (P, T, F.l.m, M) be alabelled elementary system net and
M: P — N.

@ Marking)/ enables a transition 1 < T if M(p) > 1 for each place p < °1.
@ lts firing leads to marking //, denoted by the step relation // ﬂ V" and
defined for each place p < P by
M'(p) := M(p) — F(p,t) + F(t,p)
where we represent /- by its characteristic function.

@ The marking graph of /V has as nodes the reachable markings of /V and
as edges the corresponding steps of V.2

@Due to transition labels, marking graphs are generally no longer deterministic LTSs.

Thomas Noll, Peter Thiemann Winter 2025/26 8/21

Guarded Choice |

(Reminder: O = > 0,0 | Q| x| C € Prc)

Approach: Implement non-determinism by conflicting transitions (one for each
choice) and branch to outset of respective subnet.’

Translating guarded choice

LetQ =), @;.Q € Prc' and
HO/H =N; = (P/. T, Fi, i, m/) for1 < i < n. Then

[Q] =
where
P = Ufﬂ Pi
n
T:= U/*1 T’
F:= U:L1 Fi
[:= U/nﬂ I
m:= U, m,

(PUP ,TUT FUF IUI, m)

{p}

{t tn}

{(p,t}) |1 < i< n} UU;LW{I"} X N

[ti— ;|1 <i<n]

Thomas Noll, Peter Thiemann

Qo

b

/
@

ap

Winter 2025/26

Q/“\OQ/“\ \‘O

10/21

Guarded Choice I

(1) Q=nil (=) 40.Q):
©
©O—1—0O
[—=O—[—O
O
[=O—[-O

Thomas Noll, Peter Thiemann Winter 2025/26 11/21

(2) Q= anil:

(3) Q = a.b.nil + b.a.nil:

Parallel Composition |

Approach:

@ Model concurrency by disjoint union of subnets, enlarged by 7-transitions
for all possible synchronisation operations.

@ The latter are enabled by transitions in both subnets with complementary
action labels.

Translating parallel composition

Let Q= Qi || Q> € Prc and [Q] =
P; and T; disjoint). Then

Q] =

where

N; = (P,', NEN m,-) for i € {12} (aII

(P1UP2.T1UTQUT,_,HUFQUF,../1U/2U/T.m1Umg)

I o= {(f1.f2) ‘ L e T1_/1(l‘1)

cAUA,

(new T-transition

b e T, /g(fg) /1(f1)}
Fr:={(p1,(t1, 1)), (P2, (t1, &)), ((h). p)). ((t.%).p5) | (corresponding ar
(f1. fg) eET.,p1 €°t,p€° 2.p1 € ff.pé € t2.}

Thomas Noll, Peter Thiemann

Winter 2025/26

12/21

Parallel Composition Il

(1) Q = a.nil || b.nil: () Q = anil || anil:

Ol ® ONEy®,

Onlin®
(4) Q= a.b.nil || b.a.nil: @*..;O

(8) Q = b.(a.nil || a.nil) + c.nil:

ONEy®

o

TR0
B ®)

Thomas Noll, Peter Thiemann Winter 2025/26

Recursive Process Calls |

Approach: Introduce labelled places for process calls (using mapping m),
replace each of them by arcs to all initial places of the corresponding process
expression (convert tail recursion to loop).

Translating recursive process calls

@ Foraprocess call C « Prc! (C < Pid), we let
[C] := ({p},0,0,0,[p — C]).

@ For a guarded process definition D = (C; = Q; | 1 </ < k) (C; € Pid,
Q; € Prehywith [Q] = N; = (P;, T, Fi, i, m) for 1 < i < k, we let

[Q] :=(P\ P, T,F\(T x PYUF,I,0)

where
P:=U.,P (all place:
p— U7—1 P! (process
P=m({C}) (={peP|m(p)=C}) (calls of
T=UL,Ti (all transi
F:=UL,Fi (all flows)

Thomas Noll, Peter Thiemann Winter 2025/26 14/21

Recursive Process Calls I

Example 17.6

(1) Call a.C: (2) Definition

O—[1-0 ot

(4) Definition El_>0

C = a.(D | b.nil), D= b.D: -
(8) Definition
O:E C=a.(C]| b.C):
©— O —
/ 1 {a]

Thomas Noll, Peter Thiemann Winter 2025/26 15/21

Correctness of Translation |

LetQ € Prc' be a guarded process expression, and let
[Q] =N = (P, T,F,I,m, M)

be its labelled elementary system net with initial marking My = °N.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

see Ursula Goltz: , MFCS
1988 O

N is bounded iff L7S(Q) is finite.

Thomas Noll, Peter Thiemann Winter 2025/26 17/21

https://doi.org/10.1007/BFb0017157

Correctness of Translation Il

Example 17.8 (CCS process with finite LTS; cf. Example 4))
Process definition: Net (one-bounded):

C = a(D| bnil), D= b.D O=H

o
LTS of *nite): O—

N
[
N St

4 T(b)'b <

0) [1] Marking graph:

-G

Thomas Noll, Peter Thiemann Winter 2025/26 18/21

Correctness of Translation Ill

Example 17.9 (CCS process with infinite LTS; cf. Example =)
Definition of counter process : Net:

C = up.(C || down.nil)
OH#=O—{ow~(

Reachable states: Corresponding configurations:

C - C || (down.nil)*=% || nil

where w € {up, down}* @@—>G>

with |w|yp = v and |W|gown = d
(@nd |v|aown < [V]up

for each prefix v of w).

Thomas Noll, Peter Thiemann Winter 2025/26 19/21

@ Guarded CCS processes without restriction and relabelling can be
mapped to finite Petri nets.

@ Interleaving/synchronisation is handled via conflicting transitions, and
recursion via looping.

@ The resulting marking graph is strongly bisimilar to the (LTS of) the CCS
process.

@ Conijecture: The net is bounded iff the LTS is finite.

Thomas Noll, Peter Thiemann Winter 2025/26 21/21

	Introduction
	The Translation
	Correctness
	Summary

