
Concurrency Theory
Winter 2025/26

Lecture 17: Petri Net Semantics of CCS

Thomas Noll, Peter Thiemann
Programming Languages Group

University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Motivation

Goal: Define true concurrency semantics for (a subset of) CCS

Distinguish between + and ∥

a.b.nil + b.a.nil: a.b + b.a

b a

nil

a b

b a

LTS

Petri net semantics of CCS

motivation : true
concurrency

senators to CCS

a. b. I t b. a. e and a. eI b.E
- -

①
→ ④ →

0→Db→O
① → Da - so

→ Db
-s0→Da→O

→ Db→O

⇒ distinguish t and I

⇒ enables Petri . net analysis algorithms

⇒ facilitates McMillan prefixes for CCS

terms

Note : f . can still induce non - determinism

a. Q I E. E
 yields Da -00

→⑤ to
conflicts

→ O

✓
LEA

CCS : P i := E I a
.

P I Ptp I PSL) pl p)

(nil) PAT↳
a c- Act

=
AVIUM

, c

Net
a.nil ∥ b.nil: a ∥ b

nil ∥ b a ∥ nil

nil ∥ nil

a b

b a

LTS

Petri net semantics of CCS

motivation : true
concurrency

senators to CCS

a. b. I t b. a. e and a. eI b.E
- -

①
→ ④ →

0→Db→O
① → Da - so

→ Db
-s0→Da→O

→ Db→O

⇒ distinguish t and I

⇒ enables Petri . net analysis algorithms

⇒ facilitates McMillan prefixes for CCS

terms

Note : f . can still induce non - determinism

a. Q I E. E
 yields Da -00

→⑤ to
conflicts

→ O

✓
LEA

CCS : P i := E I a
.

P I Ptp I PSL) pl p)

(nil) PAT↳
a c- Act

=
AVIUM

, c

Net

Enable analysis of CCS processes by Petri net algorithms
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 3 / 21

Non-Determinism and Unboundedness

Observations:
Also without interleaving, parallel composition ∥ can still induce
non-determinism (due to conflicts), e.g., a.nil ∥ a.nil:

a

τ

a

Recursive process calls can entail unboundedness, e.g.,
C = up.(C ∥ down.nil)
(counter; cf. Example 2.6):

up downThomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 4 / 21

The Approach

Goal: Map (a restricted class of) CCS process definitions to finite Petri
nets.

Requirements:
(1) Cover as much of CCS as possible (problem: CCS is

Turing complete and finite Petri nets are not).
(2) To support inductive verification proofs, nets should be

constructed inductively by means of composition operators
(as in CCS).

Method:
(1) Consider only guarded processes and omit restriction and

relabelling operators.
(2) Specify translation J.K : CCS → Petri in a compositional

way, e.g.,

JQ1 + Q2K := JQ1K ⊕ JQ2K︸ ︷︷ ︸
operation on Petri nets

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 21

CCS Revisited

Definition 17.1 (Syntax of Guarded CCS; cf. Definition 2.1)

Let A, A := {a | a ∈ A} and Act := A ∪ A ∪ {τ} be the sets of (action)
names, co-names, and actions, and let Pid be a set of process identifiers.
The set Prc† of guarded process expressions is defined by the following
syntax:

Q ::=
n∑

i=1

αi .Qi | Q1 ∥ Q2 | C

where n ∈ N, αi ∈ Act and C ∈ Pid .
Also, every process call C must be guarded, i.e., occur in an expression
of the form α.Q.
A guarded process definition is an equation system of the form

(Ci = Qi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Qi ∈ Prc† (with identifiers
from {C1, . . . ,Ck}).

Notes:
Restriction and relabelling are not used any longer.
The guardedness condition excludes, e.g., definitions of the form C = C.
Since Prc† ⊆ Prc (Definition 2.1), Definition 2.4 of the semantics still
applies.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 21

Petri Nets Revisited

In order to connect transitions to actions and to support the handling of
process identifiers, we introduce labels for transitions and places.

Definition 17.2 (Labelled Petri net; cf. Definition 14.2)

A labelled Petri net N is a quintuple (P, T , F , l,m) where:

P is a finite set of places,

T is a finite set of transitions with P ∩ T = ∅,

F ⊆ (P × T) ∪ (T × P) are the arcs,

l : T → Act is the transition labelling, and

m : P 99K Pid is the (partial) place labelling.

Adding an initial marking M0 : P → N yields a labelled elementary system net
(P, T , F , l,m,M0).

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 7 / 21

Interleaving Semantics Revisited

Definition 17.3 (Marking graph; cf. Definition 14.18)

Let N = (P, T , F , l,m,M0) be a labelled elementary system net and
M : P → N.

Marking M enables a transition t ∈ T if M(p) ≥ 1 for each place p ∈ •t .

Its firing leads to marking M ′, denoted by the step relation M
l(t)−→ M ′ and

defined for each place p ∈ P by

M ′(p) := M(p)− F(p, t) + F(t, p)

where we represent F by its characteristic function.

The marking graph of N has as nodes the reachable markings of N and
as edges the corresponding steps of N.a

aDue to transition labels, marking graphs are generally no longer deterministic LTSs.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 21

Guarded Choice I

(Reminder: Q ::=
∑n

i=1 αi .Qi | Q1 ∥ Q2 | C ∈ Prc†)

Approach: Implement non-determinism by conflicting transitions (one for each
choice) and branch to outset of respective subnet.1

Translating guarded choice

Let Q =
∑n

i=1 αi .Qi ∈ Prc† and
JQiK = Ni = (Pi , Ti , Fi , li ,mi) for 1 ≤ i ≤ n. Then

JQK := (P ∪̇ P′, T ∪̇ T ′, F ∪̇ F ′, l ∪̇ l ′,m)

where

P :=
⋃n

i=1 Pi P′ := {p}
T :=

⋃n
i=1 Ti T ′ := {t1, . . . , tn}

F :=
⋃n

i=1 Fi F ′ := {(p, ti) | 1 ≤ i ≤ n} ∪̇
⋃n

i=1{ti} × ◦Ni

l :=
⋃n

i=1 li l ′ := [ti 7→ αi | 1 ≤ i ≤ n]
m :=

⋃n
i=1 mi

p ...

...
◦N1

...
◦Nn

t1

α1

tn

αn

1Reminder: ◦N = {p ∈ P | •p = ∅}.Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 21

Guarded Choice II

Example 17.4

(1) Q = nil (=
∑

∅ αi .Qi):

(2) Q = a.nil:

a

(3) Q = a.b.nil + b.a.nil:

a

a

a

a

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 21

Parallel Composition I

Approach:
Model concurrency by disjoint union of subnets, enlarged by τ -transitions
for all possible synchronisation operations.
The latter are enabled by transitions in both subnets with complementary
action labels.

Translating parallel composition

Let Q = Q1 ∥ Q2 ∈ Prc† and JQiK = Ni = (Pi , Ti , Fi , li ,mi) for i ∈ {1, 2} (all
Pi and Ti disjoint). Then

JQK := (P1 ∪̇ P2, T1 ∪̇ T2 ∪̇ Tτ , F1 ∪̇ F2 ∪̇ Fτ , l1 ∪̇ l2 ∪̇ lτ ,m1 ∪̇ m2)

where

Tτ := {(t1, t2) | t1 ∈ T1, l1(t1) ∈ A ∪ A,
t2 ∈ T2, l2(t2) = l1(t1)}

(new τ -transitions)

Fτ := {(p1, (t1, t2)), (p2, (t1, t2)), ((t1, t2), p′
1), ((t1, t2), p′

2) |
(t1, t2) ∈ Tτ , p1 ∈ •t1, p2 ∈ •t2, p′

1 ∈ t •1 , p′
2 ∈ t •2 }

(corresponding arcs)

lτ := [(t1, t2) 7→ τ | (t1, t2) ∈ Tτ] (τ -labels for transitions)Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 21

Parallel Composition II

Example 17.5

(1) Q = a.nil ∥ b.nil:

a

b

(4) Q = a.b.nil ∥ b.a.nil:

a b

b a

τ

τ

(2) Q = a.nil ∥ a.nil:

a

τ

a

(3) Q = b.(a.nil ∥ a.nil) + c.nil:

b

c

a

τ

a

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 13 / 21

Recursive Process Calls I

Approach: Introduce labelled places for process calls (using mapping m),
replace each of them by arcs to all initial places of the corresponding process
expression (convert tail recursion to loop).

Translating recursive process calls

For a process call C ∈ Prc† (C ∈ Pid), we let

JCK := ({p}, ∅, ∅, ∅, [p 7→ C]).

For a guarded process definition D = (Ci = Qi | 1 ≤ i ≤ k) (Ci ∈ Pid ,
Qi ∈ Prc†) with JQiK = Ni = (Pi , Ti , Fi , li ,mi) for 1 ≤ i ≤ k , we let

JQK := (P \ P ′, T , F \ (T × P ′) ∪̇ F ′, l, ∅)
where

P :=
⋃n

i=1 Pi (all places)
P′ :=

⋃n
i=1 P′

i (process calls)
P′

i := m−1({Ci}) (= {p ∈ P | m(p) = Ci}) (calls of Ci)
T :=

⋃n
i=1 Ti (all transitions)

F :=
⋃n

i=1 Fi (all flows)
F ′ := {(t, p) ∈ T × P | ∃i ∈ {1, . . . k} : t • ∩ P′

i ̸= ∅, p ∈ ◦Ni} (arcs for process calls)Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 14 / 21

Recursive Process Calls II

Example 17.6

(1) Call a.C:

Ca

(4) Definition
C = a.(D ∥ b.nil), D = b.D:

a

b

τ

b

(2) Definition
C = a.C + b.nil:

a

b

(3) Definition
C = a.(C ∥ b.C):

347

capturing the intuitive causalities in CCS programs is obtained by adopting an approach based on partial
orders.

C.A. Petri has suggested to represent the behaviour of non-sequential systems by means of partial orders
[Pe]. For nets~ this was formalised by defining processes of systems as mappings from a particular kind of
nets, called causal nets (or occurrence nets), to the system (see e.g. [Re]).

Causal nets are acyclic nets with only unbranched places. We write causal nets as K = (B, E) where
E C 79+(B) × Act × 79+(B) (events). (Since we will be interested in the partial order of action occurrences,
we consider causal nets with events labelled by elements of Act). We require that K is founded (every
element has only fi_n.itely many predecessors). Corresponding to the notations for P/T-systems, °e and e"
denote the pre- and postset of e E E, respectively; °K denotes the initial conditions of K.

Furthermore we use the following notation.

Let X, Y b e s e t s , f : X ~ Y .
For A e zW x, let f (A) e ~V v be defined by f(A)(y) := E A(z) (the multiset image of A).

Using these notations~ we obtain the following reformulation of the notion of process for P/T-systems of
[GoRe]. We consider P/T-sys tems without variables (as obtained for CCS programs) and with arbitrary
initial marking, Mo.

Def in i t i on Let N = (S, T; Mo) be a P/T-system.

Let K = (B , E) b e a c a u s a l n e t , p : B u E - - , S U T w i t h V z e B U E ; p (z) E $ ¢ ~ z E B
and Ve E E : pr2(p(e)) = pr2(e) (labels are respected).
Then p is called a process of N iff

- p(°K) is a marking reachable from Mo in N and

- ve c E : p('e) = ' p (c) and p(~') = p(c)"

The possible partial orders of action occurrences in a P /T-sys tem (pomsets over Act) may now easily
be derived from its set of processes. The use of pomsets (or partial words) for describing net semantics was
proposed by [Gra].

The notion of process for P /T-sys tems has provoked some criticism in the sense that it is not "abstract
enough" (see e.g, [Be]).The problem is tha t the causal dependencies in processes sometimes show which of
the "indistinguishable" tokens on a place has been chosen for firing a transition. However, it turns out that
this property allows in our approach to derive a precise representation of causMities in CCS programs from
the P /T-sys tem semantics.

E x a m p l e

Le~ P = ~ (a . (z l b . .)) . ~ ' (p) =

Consider the processes

and

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 21

Correctness of Translation I

Theorem 17.7

Let Q ∈ Prc† be a guarded process expression, and let

JQK = N = (P, T , F , l,m,M0)

be its labelled elementary system net with initial marking M0 = ◦N.
Then LTS(Q) and the marking graph of N are strongly bisimilar.

Proof.
see Ursula Goltz: On representing CCS programs by finite Petri nets, MFCS
1988

Conjecture

N is bounded iff LTS(Q) is finite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 21

https://doi.org/10.1007/BFb0017157

Correctness of Translation II

Example 17.8 (CCS process with finite LTS; cf. Example 17.6(4))
Process definition:

C = a.(D ∥ b.nil), D = b.D

LTS of C (finite):

Net (one-bounded):

p

q

r

sa

b

τ

b

Marking graph:

p qr qs
a

b
b

τ

b

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 18 / 21

Correctness of Translation III

Example 17.9 (CCS process with infinite LTS; cf. Example 2.6)
Definition of counter process :

C = up.(C ∥ down.nil)

Net:

up down

Reachable states:

C
w−→ C ∥ (down.nil)u−d ∥ nild

where w ∈ {up, down}∗
with |w |up = u and |w |down = d
(and |v |down ≤ |v |up

for each prefix v of w).

Corresponding configurations:

u-d dup down

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 21

Summary

Guarded CCS processes without restriction and relabelling can be
mapped to finite Petri nets.

Interleaving/synchronisation is handled via conflicting transitions, and
recursion via looping.

The resulting marking graph is strongly bisimilar to the (LTS of) the CCS
process.

Conjecture: The net is bounded iff the LTS is finite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 21 / 21

	Introduction
	The Translation
	Correctness
	Summary

