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Overview

Interleaving semantics

Sequential runs (step sequences):

AC
a−→ BC

b−→ AC
c−→ D

AC
d−→ AE

a−→ BE
b−→ AE

a−→ · · ·

Marking graph (LTS):

True concurrency semantics

Distributed runs (causal nets):

(Max.) Distributed process (occurrence net):
Branching processes of Petri nets 581 

o( 

1 

Fig. 6 

Requirement (,) is an essential part of the definition (and, in spite of its simplicity, 
it may, in some sense, be viewed as the main contribution of this paper). Intuitive- 
ly, it means that, in any particular situation, a transition of N can be chosen 
at most once in N'. Without (*), a branching process is called a "folding from 
an occurrence net"  in [Win2].  Requirement (,) is one half of the condition 
(*) in Theorem 3.3.12 of [Win2] that characterizes the unfolding of a safe net. 

It is easy to see that every process is a branching process (this uses the 
fact that pre(t) is nonempty for every transition t). Just as processes, branching 
processes of N can be viewed as nets of which the places and transitions are 
labeled by those of N. 

Branching processes of the net N of Fig. 1 are given in Figs. 2-6. The one 
in Fig. 6 is infinite, as suggested by the dashed lines and dots (there are infinitely 
many transitions labeled 4, and the same holds for 1 and for 2). The b-process 
of Fig. 6 is in fact the unfolding of N, as will be shown later. We note here 
that N is safe (see [Rei]). Figure 7 shows a net N1 that is not safe, and Fig. 8 
contains a branching process of that net (in fact its unfolding). Non-safeness 
of N1 can be seen in Fig. 8 from the fact that the places labeled d are not 
in conflict and do not precede each other. 

We define homomorphisms between branching processes in a natural way: 
they are (net) homomorphisms that preserve the labeling. 
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Actions

A distributed run of a net is a partial order represented as a net whose basic building blocks are
simple nets denoted as actions.

Definition (Action)

An action is a labelled net A = (Q, {v},G) with •v ∩ v • = ∅ and •v ∪ v • = Q.

Actions represent transition occurrences of elementary system nets. If A represents transition t ,
then the elements of Q are labelled with in- and output places of t , and v is labelled with t .

Example
(action)

(transition)
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Causal Nets Informally

A causal net constitutes the basis of a “distributed” run.

It is a (possibly infinite) elementary system net with the following properties:

(1) It has no place branches: at most one arc ends or starts in a place.

(2) It is acyclic, i.e., no sequence of arcs forms a loop.

(3) Each sequence of arcs (flows) has a unique first element.

(4) The initial marking contains all places without incoming arcs.
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Boundedness of Causal Nets

Lemma
Let K = (Q,V ,G,M0) be a causal net. Then every step sequence

M0
t1−→ M1

t2−→ . . . . . .
tk−→ Mk

of K satisfies Mj ∩ t •k = ∅ for all j ∈ {0, . . . , k − 1}.

Theorem (Boundedness of causal nets)
Every causal net is one-bounded, i.e., in every marking every place will hold at most one token.

Proof.
Follows directly from the fact that the initial marking M0 is one-bounded, and by Lemma 15.9.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 40



What Is a Distributed Run?

Definition (Distributed run)

A distributed run of a one-bounded elementary system net N = (P, T , F ,M0) is

(1) a labelled causal net KN = (Q,V ,G,M)

(2) in which each transition t ∈ V (with •t and t •) is an action of N.

A distributed run KN of N is complete if the marking M = ◦KN represents the initial marking M0 of N
and the marking K ◦

N does not enable any transition in N.

If N is clear from the context, we just write K for KN .
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Causality Revisited

In contrast to sequential runs, distributed runs show the causal order of actions.

Example (cf. Example 14.20)

Both nets have identical sequential runs (a occurs before b, or vice versa).

But the left net only has the left distributed run below, the right net both ones:
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Net Homomorphisms I
Definition 16.1 (Net homomorphism)

A homomorphism from net N1 = (P1, T1, F1,M1) to net N2 = (P2, T2, F2,M2) is a mapping
h : P1 ∪ T1 → P2 ∪ T2 such that

(1) h(P1) ⊆ P2 and h(T1) ⊆ T2,

(2) for every t ∈ T1, the restriction of h to •t is a bijection between •t (in N1) and •h(t) (in N2), and
similarly for t • and h(t) •, and

(3) the restriction of h to M1 is a bijection between M1 and M2.a

aDue to one-boundedness, a marking M is a subset of the set P of places.

Intuition
A homomorphism is a mapping between nets that preserves

(1) the kind of a node,
(2) the neighborhood of transitions (but not necessarily that of places), and
(3) the initial marking.

A homomorphism from N1 to N2 means that N1 can be folded onto a part of N2, or, vice versa,
that N1 can be obtained by unfolding a part of N2.
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Net Homomorphisms II

Example 16.2 (Net homomorphism)

Homomorphic/non-homomorphic net mappings
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Characterisation of Distributed Runs by Homomorphisms

Definition 16.3 (Distributed run; cf. Definition 15.14) (Best & Fernandez, 1988)

A distributed run of an elementary system net N is a pair (K , h) where K is a causal net and h is a
homomorphism from K to N.

Intuition
A distributed run (K , h) of N may be viewed as a net K whose places and transitions are
labelled by places and transitions of N such that the labelling h forms a net homomorphism
from K to N.

Here, requirement (2) of Definition 16.1 ensures that K is composed of actions of N.

Thus, Definitions 15.14 and 16.3 are equivalent.
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Examples
Example 16.4 (cf. Example 15.17)

Two finite distributed runs (first complete, second incomplete)
and the only infinite and complete distributed run of a net

(homomorphisms given by labellings)
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Introduction

Interleaving semantics of Petri nets = set of sequential runs.
a sequential run is a total ordering of transition occurrences

The set of all sequential runs can be represented by a marking graph.

True concurrency semantics of Petri nets = set of distributed runs
a distributed run is an acyclic (causal) net which contains no choices
a distributed run gives a partial ordering of transition occurrences

Today: The set of all distributed runs can be represented by a specific branching process, the
unfolding of the net.
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Joost Engelfriet

Joost Engelfriet, Leiden University (NL), retired

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 40



Branching Process: Preamble

A branching process depicts a set of distributed runs.

It explicitly represents each possible resolution of each choice1.

It is a partial ordering with conflicts of transition occurrences.

The true concurrency semantics of a net is a specific branching process, called unfolding.

The unfolding is the true concurrency counterpart of a marking graph.

It is the greatest branching process in a complete lattice.

1In net jargon, a choice is called a conflict.
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Conflicts I

A distributed run is based on a causal net.

A branching process is based on an occurrence net.

Main difference: the presence of conflicts (choices).

Definition 16.5 (Conflict)

Let N = (P, T , F ,M0) be an elementary system net. Nodes x1, x2 ∈ P ∪ T are in conflict, denoted
x1#x2, if there exist distinct transitions t1, t2 ∈ T such that

•t1 ∩ •t2 ̸= ∅ and (t1, x1) ∈ F∗ and (t2, x2) ∈ F∗.

Node x ∈ P ∪ T is in self-conflict whenever x#x .

p

t1

t2

x1

x2

Notes:

Conflicts are structural properties of nets, and as such
independent of concrete markings.

In a causal net, # = ∅ as •t1 ∩ •t2 = ∅ for any two distinct
transitions t1 and t2 (since there is no place branching).
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Conflicts II

Recall: x1#x2 if ∃t1, t2 ∈ T : •t1 ∩ •t2 ̸= ∅, (t1, x1) ∈ F∗, (t2, x2) ∈ F∗.

Example 16.6

A

C

E

D

B

G

a b

c d e

Two threads (left/right sub-net) that cycle around and
synchronize from time to time (via transition d).
Right thread can “opt-out” (via transition b), which leads to
a global deadlock.

Some conflicts:

b#e: for t1 = b and t2 = e, •b ∩ •e = {D} ̸= ∅,
(b, b) ∈ F∗, (e, e) ∈ F∗

b#c: for t1 = b and t2 = e, •b ∩ •e = {D} ̸= ∅,
(b, b) ∈ F∗, (e, c) ∈ F∗

B#G: for t1 = b and t2 = e, •b ∩ •e = {D} ̸= ∅,
(b,B) ∈ F∗, (e,G) ∈ F∗
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Conflicts III

Recall: x1#x2 if ∃t1, t2 ∈ T : •t1 ∩ •t2 ̸= ∅, (t1, x1) ∈ F∗, (t2, x2) ∈ F∗.

Example 16.7

A B

C

a

b

A self-conflict:

a#a

as for t1 = a and t2 = b, •a ∩ •b = {A} ̸= ∅,
(a, a) ∈ F∗, (b, a) ∈ F∗
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Occurrence Nets I

Definition 16.8 (Occurrence net)

A net K = (Q,V ,G,M0) is an occurrence net if

(1) for each place q ∈ Q, |•q| ≤ 1,

(2) the transitive closure G+ of G is irreflexive,

(3) for each node x ∈ Q ∪ V , the set {y | (y , x) ∈ G+} is finite,

(4) no transition v ∈ V is in self-conflict, and

(5) M0 = ◦K .a

aReminder: ◦K = {q ∈ Q | •q = ∅}.

Remarks:

In contrast to causal nets (Definition 15.8), occurrence nets additionally admit output (but still
no input) branching for places.

Since # = ∅ in a causal net and each causal net by definition fulfils the remaining conditions,
every causal net is also an occurrence net.
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Occurrence Nets I

Definition 16.8 (Occurrence net)

A net K = (Q,V ,G,M0) is an occurrence net if

(1) for each place q ∈ Q, |•q| ≤ 1,

(2) the transitive closure G+ of G is irreflexive,

(3) for each node x ∈ Q ∪ V , the set {y | (y , x) ∈ G+} is finite,

(4) no transition v ∈ V is in self-conflict, and

(5) M0 = ◦K .a

aReminder: ◦K = {q ∈ Q | •q = ∅}.

Remarks:
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Occurrence Nets II

Example 16.9580 J. Engel f r ie t  
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3. Branching processes 

In  this section we in t roduce branching  processes. Just  as a process is based 
on a causal  net, a b ranch ing  process  is based on  an occurrence net, as in t roduced  
in [NiePloWin] .  
Definition g Let  N=(P1 ,  Tr, pre, post,  In) be a net. F o r  x l , x 2 ~ P l w T r ,  x l  and  
x2 are in conflict, denoted  x ~ x 2 ,  if there exist distinct t ransi t ions ta, t 2~Tr  
such tha t  p r e ( t l ) n p r e ( t 2 ) + 0  and t~ precedes x~ for i = 1 ,  2. F o r  x ~ P l w T r ,  x 
is in self-conflict if x :~ x. 
Definition 6 An occurrence net is a finitary acyclic net 
N = (PI, Tr,  pre, post,  In) such tha t  
(1) for every p~P1, Lpre(p)] < 1, 
(2) no t ransi t ion t ~ T r  is in self-conflict, and  
(3) I n = M i n ( N ) .  [ ]  

I t  is easy to show that,  in an occurrence net, no place is in self-conflict, 
i.e., the relat ion ~ is irreflexive. Since, obviously,  ~ = 0 in a causal  net, every 
causal  net is an occurrence  net. 

The  a s sumpt ion  tha t  an occurrence net is finitary is crucial  for our  results 
(it al lows proofs  by induction);  note  tha t  this forced us to assume tha t  pre(t)  
is finite for every t ransi t ion t of  every net. 

We  now define the new not ion  of a "b r anch ing  process"  of a net. I t  represents  
several runs of the net together,  with the p rope r  indicat ion of conflict (or choice) 
be tween alternatives.  Just  as a process  does not  necessarily represent  a " fu l l "  
run, a branching  process  is not  necessarily " m a x i m a l " ,  i.e., it does not  necessarily 
conta in  full runs  and  it m a y  not  conta in  all possible runs of the net. 
Definition 7 Let  N be a net. A branching process of N, abbrev ia ted  b-process 
of N, is a pair  (N', ~), where N'= (P1, Tr, pre, post,  In) is an occurrence  net 
and 7c is a h o m o m o r p h i s m  f rom N '  to N, such that :  

(,) for every t l ,  t2eTr ,  i f p r e ( t l ) = p r e ( t 2 )  and rC(tl)= re(t2), then tl = t2. [ ]  

An occurrence net (but not a causal net)
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Boundedness of Occurrence Nets

Theorem 16.10 (Boundedness of occurrence nets)

Every occurrence net is one-bounded, i.e., in every reachable marking every place will hold at most
one token.

Proof.
Similar to Theorem 15.10 (boundedness of causal nets). Note that input branching for places is also
forbidden for occurrence nets.
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Branching Processes I

Definition 16.11 (Branching process) (Engelfriet 1991)

A branching process of net N is a pair B = (K , h) where K = (Q,V ,G,M0) is an occurrence net
and h a net homomorphism from K to N such that

∀v , v ′ ∈ V :
(•v = •v ′ and h(v) = h(v ′) implies v = v ′) .

Remarks:

The condition on h asserts that, in any particular situation, a transition of N can be chosen at
most once in K .

Note that every distributed run is also a branching process. The reverse does not hold.
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Branching Processes II

Example 16.12

(Homomorphisms are given by labellings.)
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Fig. 1 

this is not only natural (a run of a system should start somewhere) but also 
convenient (both systems and their runs are modeled by the same type of net). 

The mappings we consider are homomorphisms from nets to nets, see 
[Win2]. The particular homomorphisms we define are called "foldings" in 
[Win2]. Intuitively, a homomorphism h from net N 1 to net N 2 formalizes the 
fact that N 1 can be folded onto a part of N 2, or, in other words, that N1 
can be obtained by partially unfolding a part of N2. 

Definition 3 Let N/=(Pli, Tri, prel, post/, Inl) be nets, i=  1, 2. A homomorphism 
from N1 to N2 is a mapping h: P11 w Tr I ~ P12 u Tr 2 such that 
(1) h(PI~)___P12 and h(Trl)~_Tr 2, 
(2) for every t e T r l ,  the restriction of h to prel(t) is a bijection between prel(t) 
and pre2 (h(t)), and similarly for post1 (t) and post2 (h (0), and 
(3) the restriction of h to In1 is a bijection between Inl and In2. []  

It is easy to show that the composition of two homomorphisms is a homo- 
morphism. 

Definition 4 Let N be a net. A process of N is a pair (N', h) where N' is a 
causal net and h is a homomorphism from N' to N. [] 

It is easy to see that this is the usual notion of process for P/T nets (of 
finite synchronization). The requirement that N' is finitary is the same as (i), 
(ii) of Definition 3.3.3 of [BesFer], and (1)-(3) of Definition 3 above are the same 
as (iii)-(v) of that definition. 

A process (N', h) of N may be viewed as a net N' of which the places and 
transitions are labeled by places and transitions of N, such that the labeling 
h forms a homomorphism from N' to N. 

Three processes (N', h) of the net N of Fig. 1 are given in Figs. 2, 3, and 4. 
In accordance with the above point of view, the homomorphism h is indicated 

by labeling the places and transitions of N' by the corresponding places and 
transitions of N, respectively (thus, as opposed to Fig. 1, the names of the places 
and transitions of N' are not indicated). The net in Fig. 5 is not a process 
of N because the place p labeled d has [post(p)L = 2 (cf. Definition 2(1)). 

Elementary system net
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3. Branching processes 

In  this section we in t roduce branching  processes. Just  as a process is based 
on a causal  net, a b ranch ing  process  is based on  an occurrence net, as in t roduced  
in [NiePloWin] .  
Definition g Let  N=(P1 ,  Tr, pre, post,  In) be a net. F o r  x l , x 2 ~ P l w T r ,  x l  and  
x2 are in conflict, denoted  x ~ x 2 ,  if there exist distinct t ransi t ions ta, t 2~Tr  
such tha t  p r e ( t l ) n p r e ( t 2 ) + 0  and t~ precedes x~ for i = 1 ,  2. F o r  x ~ P l w T r ,  x 
is in self-conflict if x :~ x. 
Definition 6 An occurrence net is a finitary acyclic net 
N = (PI, Tr,  pre, post,  In) such tha t  
(1) for every p~P1, Lpre(p)] < 1, 
(2) no t ransi t ion t ~ T r  is in self-conflict, and  
(3) I n = M i n ( N ) .  [ ]  

I t  is easy to show that,  in an occurrence net, no place is in self-conflict, 
i.e., the relat ion ~ is irreflexive. Since, obviously,  ~ = 0 in a causal  net, every 
causal  net is an occurrence  net. 

The  a s sumpt ion  tha t  an occurrence net is finitary is crucial  for our  results 
(it al lows proofs  by induction);  note  tha t  this forced us to assume tha t  pre(t)  
is finite for every t ransi t ion t of  every net. 

We  now define the new not ion  of a "b r anch ing  process"  of a net. I t  represents  
several runs of the net together,  with the p rope r  indicat ion of conflict (or choice) 
be tween alternatives.  Just  as a process  does not  necessarily represent  a " fu l l "  
run, a branching  process  is not  necessarily " m a x i m a l " ,  i.e., it does not  necessarily 
conta in  full runs  and  it m a y  not  conta in  all possible runs of the net. 
Definition 7 Let  N be a net. A branching process of N, abbrev ia ted  b-process 
of N, is a pair  (N', ~), where N'= (P1, Tr, pre, post,  In) is an occurrence  net 
and 7c is a h o m o m o r p h i s m  f rom N '  to N, such that :  

(,) for every t l ,  t2eTr ,  i f p r e ( t l ) = p r e ( t 2 )  and rC(tl)= re(t2), then tl = t2. [ ]  

Finite branching process

Branching processes of Petri nets 581 

o( 

1 

Fig. 6 

Requirement (,) is an essential part of the definition (and, in spite of its simplicity, 
it may, in some sense, be viewed as the main contribution of this paper). Intuitive- 
ly, it means that, in any particular situation, a transition of N can be chosen 
at most once in N'. Without (*), a branching process is called a "folding from 
an occurrence net"  in [Win2].  Requirement (,) is one half of the condition 
(*) in Theorem 3.3.12 of [Win2] that characterizes the unfolding of a safe net. 

It is easy to see that every process is a branching process (this uses the 
fact that pre(t) is nonempty for every transition t). Just as processes, branching 
processes of N can be viewed as nets of which the places and transitions are 
labeled by those of N. 

Branching processes of the net N of Fig. 1 are given in Figs. 2-6. The one 
in Fig. 6 is infinite, as suggested by the dashed lines and dots (there are infinitely 
many transitions labeled 4, and the same holds for 1 and for 2). The b-process 
of Fig. 6 is in fact the unfolding of N, as will be shown later. We note here 
that N is safe (see [Rei]). Figure 7 shows a net N1 that is not safe, and Fig. 8 
contains a branching process of that net (in fact its unfolding). Non-safeness 
of N1 can be seen in Fig. 8 from the fact that the places labeled d are not 
in conflict and do not precede each other. 

We define homomorphisms between branching processes in a natural way: 
they are (net) homomorphisms that preserve the labeling. 

Infin. branching process
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Branching Processes III

Definition (Branching process) (Engelfriet 1991)

A branching process of net N is a pair B = (K , h) where K = (Q,V ,G,M0) is an occurrence net
and h a net homomorphism from K to N such that

∀v , v ′ ∈ V :
(•v = •v ′ and h(v) = h(v ′) implies v = v ′) .

Example 16.13

A

B C

t

Net N

A

B
C B

C

qt q′ t

Occurrence net, but not a branching process of N
(•q = •q′ and h(q) = h(q′) but q ̸= q′)
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Relating Branching Processes

Definition 16.14 (Homomorphisms between branching processes)

Let B1 = (K1, h1) and B2 = (K2, h2) be two branching processes of net N.

A homomorphism from B1 to B2 is a homomorphism h from K1 to K2 such that h2 ◦ h = h1.

An isomorphism is a bijective homomorphism.

We write B1
∼= B2 if there exists an isomorphism between B1 and B2.

N

K1 K2

h1 h2

h

Relation ∼= is an equivalence relation.
Its equivalence classes are called isomorphism classes.
The isomorphism quotient, i.e., the set of isomorphism classes of a branching process is
denoted by B.
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Approximation of Branching Processes I

Definition 16.15 (Approximation)
Let B1 and B2 be two branching processes of net N. B1 approximates B2, denoted by B1 ⊑ B2, if
there is an injective homomorphism from B1 to B2.

Remarks:

B1 approximates B2 if every (partial) distributed run in B1 is also contained in B2. In other
words, B1 is isomorphic to an initial part of B2.

Being an approximation on branching processes is the analogue of being a prefix on
sequences.

Obviously, ⊑ is a preorder on branching processes.
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Approximation of Branching Processes II

Example 16.16 (cf. Example 16.12)
B1 ⊑ B4,B2 ⊑ B3 ⊑ B4,B1 ̸⊑ B2, . . .578 J. Engelfriet 
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this is not only natural (a run of a system should start somewhere) but also 
convenient (both systems and their runs are modeled by the same type of net). 

The mappings we consider are homomorphisms from nets to nets, see 
[Win2]. The particular homomorphisms we define are called "foldings" in 
[Win2]. Intuitively, a homomorphism h from net N 1 to net N 2 formalizes the 
fact that N 1 can be folded onto a part of N 2, or, in other words, that N1 
can be obtained by partially unfolding a part of N2. 

Definition 3 Let N/=(Pli, Tri, prel, post/, Inl) be nets, i=  1, 2. A homomorphism 
from N1 to N2 is a mapping h: P11 w Tr I ~ P12 u Tr 2 such that 
(1) h(PI~)___P12 and h(Trl)~_Tr 2, 
(2) for every t e T r l ,  the restriction of h to prel(t) is a bijection between prel(t) 
and pre2 (h(t)), and similarly for post1 (t) and post2 (h (0), and 
(3) the restriction of h to In1 is a bijection between Inl and In2. []  

It is easy to show that the composition of two homomorphisms is a homo- 
morphism. 

Definition 4 Let N be a net. A process of N is a pair (N', h) where N' is a 
causal net and h is a homomorphism from N' to N. [] 

It is easy to see that this is the usual notion of process for P/T nets (of 
finite synchronization). The requirement that N' is finitary is the same as (i), 
(ii) of Definition 3.3.3 of [BesFer], and (1)-(3) of Definition 3 above are the same 
as (iii)-(v) of that definition. 

A process (N', h) of N may be viewed as a net N' of which the places and 
transitions are labeled by places and transitions of N, such that the labeling 
h forms a homomorphism from N' to N. 

Three processes (N', h) of the net N of Fig. 1 are given in Figs. 2, 3, and 4. 
In accordance with the above point of view, the homomorphism h is indicated 

by labeling the places and transitions of N' by the corresponding places and 
transitions of N, respectively (thus, as opposed to Fig. 1, the names of the places 
and transitions of N' are not indicated). The net in Fig. 5 is not a process 
of N because the place p labeled d has [post(p)L = 2 (cf. Definition 2(1)). 

N
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3. Branching processes 

In  this section we in t roduce branching  processes. Just  as a process is based 
on a causal  net, a b ranch ing  process  is based on  an occurrence net, as in t roduced  
in [NiePloWin] .  
Definition g Let  N=(P1 ,  Tr, pre, post,  In) be a net. F o r  x l , x 2 ~ P l w T r ,  x l  and  
x2 are in conflict, denoted  x ~ x 2 ,  if there exist distinct t ransi t ions ta, t 2~Tr  
such tha t  p r e ( t l ) n p r e ( t 2 ) + 0  and t~ precedes x~ for i = 1 ,  2. F o r  x ~ P l w T r ,  x 
is in self-conflict if x :~ x. 
Definition 6 An occurrence net is a finitary acyclic net 
N = (PI, Tr,  pre, post,  In) such tha t  
(1) for every p~P1, Lpre(p)] < 1, 
(2) no t ransi t ion t ~ T r  is in self-conflict, and  
(3) I n = M i n ( N ) .  [ ]  

I t  is easy to show that,  in an occurrence net, no place is in self-conflict, 
i.e., the relat ion ~ is irreflexive. Since, obviously,  ~ = 0 in a causal  net, every 
causal  net is an occurrence  net. 

The  a s sumpt ion  tha t  an occurrence net is finitary is crucial  for our  results 
(it al lows proofs  by induction);  note  tha t  this forced us to assume tha t  pre(t)  
is finite for every t ransi t ion t of  every net. 

We  now define the new not ion  of a "b r anch ing  process"  of a net. I t  represents  
several runs of the net together,  with the p rope r  indicat ion of conflict (or choice) 
be tween alternatives.  Just  as a process  does not  necessarily represent  a " fu l l "  
run, a branching  process  is not  necessarily " m a x i m a l " ,  i.e., it does not  necessarily 
conta in  full runs  and  it m a y  not  conta in  all possible runs of the net. 
Definition 7 Let  N be a net. A branching process of N, abbrev ia ted  b-process 
of N, is a pair  (N', ~), where N'= (P1, Tr, pre, post,  In) is an occurrence  net 
and 7c is a h o m o m o r p h i s m  f rom N '  to N, such that :  

(,) for every t l ,  t2eTr ,  i f p r e ( t l ) = p r e ( t 2 )  and rC(tl)= re(t2), then tl = t2. [ ]  

B3
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Requirement (,) is an essential part of the definition (and, in spite of its simplicity, 
it may, in some sense, be viewed as the main contribution of this paper). Intuitive- 
ly, it means that, in any particular situation, a transition of N can be chosen 
at most once in N'. Without (*), a branching process is called a "folding from 
an occurrence net"  in [Win2].  Requirement (,) is one half of the condition 
(*) in Theorem 3.3.12 of [Win2] that characterizes the unfolding of a safe net. 

It is easy to see that every process is a branching process (this uses the 
fact that pre(t) is nonempty for every transition t). Just as processes, branching 
processes of N can be viewed as nets of which the places and transitions are 
labeled by those of N. 

Branching processes of the net N of Fig. 1 are given in Figs. 2-6. The one 
in Fig. 6 is infinite, as suggested by the dashed lines and dots (there are infinitely 
many transitions labeled 4, and the same holds for 1 and for 2). The b-process 
of Fig. 6 is in fact the unfolding of N, as will be shown later. We note here 
that N is safe (see [Rei]). Figure 7 shows a net N1 that is not safe, and Fig. 8 
contains a branching process of that net (in fact its unfolding). Non-safeness 
of N1 can be seen in Fig. 8 from the fact that the places labeled d are not 
in conflict and do not precede each other. 

We define homomorphisms between branching processes in a natural way: 
they are (net) homomorphisms that preserve the labeling. 

B4
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Approximation of Branching Processes III

Definition (Approximation)
Let B1 and B2 be two branching processes of net N. B1 approximates B2, denoted by B1 ⊑ B2, if
there is an injective homomorphism from B1 to B2.

Lemma 16.17
Approximation is preserved by isomorphism: If B′

i is isomorphic to Bi (for i ∈ {1, 2}), then B1 ⊑ B2

implies B′
1 ⊑ B′

2. Thus, ⊑ can be extended to a partial order on the isomorphism quotient B.

Proof.
omitted

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 34 / 40



Engelfriet’s Theorem

Recall: a complete lattice is a partial order such that all subsets of its domain have LUBs and GLBs.

Theorem 16.18 (Engelfriet’s branching process theorem)

(B,⊑) is a complete lattice.

Proof.
see Joost Engelfriet: Branching processes of Petri nets, Acta Informatica 28, 1991
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The True Concurrency Semantics of a Net I

Corollary 16.19 (Unfolding of a net)
Every net has a greatest (with respect to ⊑) branching process up to isomorphism, which is called
its unfolding.

Definition 16.20 (True concurrency semantics)

Let N be a net, and let Bmax = (Kmax, hmax) denote a representative of the isomorphism class of
the greatest branching process of N. Then Bmax is the true concurrency semantics of N.

Recall: The interleaving semantics of a net is given by its marking graph.
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The True Concurrency Semantics of a Net II

Example 16.21
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this is not only natural (a run of a system should start somewhere) but also 
convenient (both systems and their runs are modeled by the same type of net). 

The mappings we consider are homomorphisms from nets to nets, see 
[Win2]. The particular homomorphisms we define are called "foldings" in 
[Win2]. Intuitively, a homomorphism h from net N 1 to net N 2 formalizes the 
fact that N 1 can be folded onto a part of N 2, or, in other words, that N1 
can be obtained by partially unfolding a part of N2. 

Definition 3 Let N/=(Pli, Tri, prel, post/, Inl) be nets, i=  1, 2. A homomorphism 
from N1 to N2 is a mapping h: P11 w Tr I ~ P12 u Tr 2 such that 
(1) h(PI~)___P12 and h(Trl)~_Tr 2, 
(2) for every t e T r l ,  the restriction of h to prel(t) is a bijection between prel(t) 
and pre2 (h(t)), and similarly for post1 (t) and post2 (h (0), and 
(3) the restriction of h to In1 is a bijection between Inl and In2. []  

It is easy to show that the composition of two homomorphisms is a homo- 
morphism. 

Definition 4 Let N be a net. A process of N is a pair (N', h) where N' is a 
causal net and h is a homomorphism from N' to N. [] 

It is easy to see that this is the usual notion of process for P/T nets (of 
finite synchronization). The requirement that N' is finitary is the same as (i), 
(ii) of Definition 3.3.3 of [BesFer], and (1)-(3) of Definition 3 above are the same 
as (iii)-(v) of that definition. 

A process (N', h) of N may be viewed as a net N' of which the places and 
transitions are labeled by places and transitions of N, such that the labeling 
h forms a homomorphism from N' to N. 

Three processes (N', h) of the net N of Fig. 1 are given in Figs. 2, 3, and 4. 
In accordance with the above point of view, the homomorphism h is indicated 

by labeling the places and transitions of N' by the corresponding places and 
transitions of N, respectively (thus, as opposed to Fig. 1, the names of the places 
and transitions of N' are not indicated). The net in Fig. 5 is not a process 
of N because the place p labeled d has [post(p)L = 2 (cf. Definition 2(1)). 

Elementary system net

Branching processes of Petri nets 581 

o( 

1 

Fig. 6 

Requirement (,) is an essential part of the definition (and, in spite of its simplicity, 
it may, in some sense, be viewed as the main contribution of this paper). Intuitive- 
ly, it means that, in any particular situation, a transition of N can be chosen 
at most once in N'. Without (*), a branching process is called a "folding from 
an occurrence net"  in [Win2].  Requirement (,) is one half of the condition 
(*) in Theorem 3.3.12 of [Win2] that characterizes the unfolding of a safe net. 

It is easy to see that every process is a branching process (this uses the 
fact that pre(t) is nonempty for every transition t). Just as processes, branching 
processes of N can be viewed as nets of which the places and transitions are 
labeled by those of N. 

Branching processes of the net N of Fig. 1 are given in Figs. 2-6. The one 
in Fig. 6 is infinite, as suggested by the dashed lines and dots (there are infinitely 
many transitions labeled 4, and the same holds for 1 and for 2). The b-process 
of Fig. 6 is in fact the unfolding of N, as will be shown later. We note here 
that N is safe (see [Rei]). Figure 7 shows a net N1 that is not safe, and Fig. 8 
contains a branching process of that net (in fact its unfolding). Non-safeness 
of N1 can be seen in Fig. 8 from the fact that the places labeled d are not 
in conflict and do not precede each other. 

We define homomorphisms between branching processes in a natural way: 
they are (net) homomorphisms that preserve the labeling. 

Its unfolding
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The True Concurrency Semantics of a Net III

Example 16.22 (cf. Example 16.6)

Elementary system net:
A

C

E

D

B

F

a b

c d e

Its unfolding:
A

C

F

D

B

E C

D F

B

E C

D F

· · ·

B

a

e

b

d

c

e

b

d

c

e

b

d
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Summary

A branching process captures several distributed runs of a net N.

It is represented by a relaxed notion of causal net, the occurrence net.

N maps to its branching processes via homomorphisms.

Approximation (denoted ⊑) is a preorder on branching processes.

Isomorphism classes of branching processes with ⊑ form a complete lattice.

The true concurrency semantics of N is its greatest element (with respect to ⊑).

[For one-bounded nets, it is possible to construct a finite approximating branching process
(“McMillan prefix”) that covers all reachable markings.]
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