Concurrency Theory
Winter 2025/26

Lecture 16: True Concurrency Semantics of Petri Nets: Branching Processes

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Overview

Interleaving semantics

Sequential runs (step sequences)?@ D -

; b . True concurrency semantics
AC — BC — AC — D

ACi>AEi>BEi>AE4~- Distributed runs (causal nets):

{ BOBOB O

00

Marking graph (LTS):
-~ (Max.) Distributed process (occurrence net):
e AC41> D

/

~ =

AE

Thomas NoII‘ Peter Thiemann Winter 2025/26

Outline of Lecture 16

0 Recap: Distributed Runs

Thomas Noll, Peter Thiemann Winter 2025/26 3/40

A distributed run of a net is a partial order represented as a net whose basic building blocks are
simple nets denoted as actions.

Definition (Action)
An action is a labelled net A = (Q. {v}, G)with*v 1 v® = (and*v 1 v°® = Q.

Actions represent transition occurrences of elementary system nets. If A represents transition 7,
then the elements of Q are labelled with in- and output places of 7, and v is labelled with .

Thomas Noll, Peter Thiemann Winter 2025/26 4/40

Causal Nets Informally

A causal net constitutes the basis of a “distributed” run.

Itis a (possibly infinite) elementary system net with the following properties:
1) It has no place branches: at most one arc ends or starts in a place.

(
(2
(
(

) ltis acyclic, i.e., no sequence of arcs forms a loop.
3) Each sequence of arcs (flows) has a unique first element.
)

4) The initial marking contains all places without incoming arcs.

-

Q‘QT Q0]

Thomas Noll, Peter Thiemann Winter 2025/26 5/40

Boundedness of Causal Nets

Let K = (Q. V., G, My) be a causal net. Then every step sequence

t 17
My —= My = — M

of K satisfies V; (1 1," = () forall j < {0.. ... k—1}.

Theorem (Boundedness of causal nets)

Every causal net is one-bounded, i.e., in every marking every place will hold at most one token.

Follows directly from the fact that the initial marking)/, is one-bounded, and by Lemma 15.9. O

Thomas Noll, Peter Thiemann Winter 2025/26 6/40

What Is a Distributed Run?

Definition (Distributed run)

A distributed run of a one-bounded elementary system net N = (7. 7. F M) is

(1) alabelled causal net Ky = (Q, V, G, M)
(2) in which each transition f \/ (with *# and 7) is an action of V.

A distributed run Kj, of N is complete if the marking \/ = “ K}y represents the initial marking /, of NV

and the marking /<, does not enable any transition in /V.

v

If N is clear from the context, we just write K for K.

Thomas Noll, Peter Thiemann

Winter 2025/26

7/40

Causality Revisited

In contrast to sequential runs, distributed runs show the causal order of actions.

Example (cf. Example)

@ Both nets have identical sequential runs (a occurs before b, or vice versa).
@ But the left net only has the left distributed run below, the right net both ones:

B——a—6
®
©——{b|—0@

Thomas Noll, Peter Thiemann

© @ &
(™

© ™ ®

™ &
(™

[o]

™ @

Winter 2025/26 8/40

Outline of Lecture 16

9 Net Homomorphisms

Thomas Noll, Peter Thiemann Winter 2025/26 9/40

Net Homomorphisms |

Definition 16.1 (Net homomorphism)

A homomorphism from net Ny = (P, Ty, Fy, M;) to net No = (P», T», Fo, M) is a mapping
h: Py UTy — P> U T, such that

Thomas Noll, Peter Thiemann Winter 2025/26 10/40

Net Homomorphisms |

Definition 16.1 (Net homomorphism)

A homomorphism from net Ny = (P, Ty, Fy, M;) to net No = (P», T», Fo, M) is a mapping
h: Py UTy — P> U T, such that

(1) h(P1) Q P2 and h(T1) Q Tg,

Thomas Noll, Peter Thiemann Winter 2025/26 10/40

Net Homomorphisms |

Definition 16.1 (Net homomorphism)

A homomorphism from net Ny = (P, Ty, Fy, M;) to net No = (P», T», Fo, M) is a mapping
h: Py UTy — P> U T, such that

(1) h(P1) - P2 and h(T1) - Tg,
(2) for every t & T4, the restriction of /1 to “1 is a bijection between 7 (in ;) and ° /(1) (in /), and
similarly for ¢ * and /(1) ®, and

Thomas Noll, Peter Thiemann Winter 2025/26 10/40

Net Homomorphisms |

Definition 16.1 (Net homomorphism)

A homomorphism from net Ny = (P, Ty, Fy, M;) to net No = (P», T», Fo, M) is a mapping
h: Py UTy — P> U T, such that
(1) h(P;) C P, and h(Ty) C Tp,
(2) for every t & T4, the restriction of /1 to “1 is a bijection between 7 (in ;) and ° /(1) (in /), and
similarly for ¢ * and /(1) ®, and
(8) the restriction of /1to /M, is a bijection between //; and M.2

“Due to one-boundedness, a marking // is a subset of the set P of places.

Thomas Noll, Peter Thiemann Winter 2025/26 10/40

Net Homomorphisms |

Definition 16.1 (Net homomorphism)

A homomorphism from net Ny = (P, Ty, Fy, M;) to net No = (P», T», Fo, M) is a mapping
h: Py UTy — P> U T, such that
(1) h(P;) C P, and h(Ty) C Tp,
(2) forevery i « T, the restriction of /1to °1 is a bijection between “7 (in ;) and “/(1) (in N>), and
similarly for ¢ * and /(1) ®, and
(8) the restriction of /1to /M, is a bijection between //; and M.2

“Due to one-boundedness, a marking /V/ is a subset of the set P of places.

@ A homomorphism is a mapping between nets that preserves

(1) the kind of a node,
(2) the neighborhood of transitions (but not necessarily that of places), and

(3) the initial marking.
@ A homomorphism from /; to N> means that /V/; can be folded onto a part of /\», or, vice versa,
that //; can be obtained by unfolding a part of /\-.

= = = e

Thomas Noll, Peter Thiemann Winter 2025/26 10/40

Net Homomorphisms |l

Example 16.2 (Net homomorphism)

Q

O
® D»o”.

D«é

Homomorphic/non-homomorphic net mappings

>. L}_}_:;,..é O
9.

Thomas Noll, Peter Thiemann Winter 2025/26 11/40

Characterisation of Distributed Runs by Homomorphisms

Definition 16.3 (Distributed run; cf. Definition (Best & Fernandez, 1988)

A distributed run of an elementary system net /\ is a pair (<, /1) where K is a causal net and /1 is a
homomorphism from K to /V.

Thomas Noll, Peter Thiemann Winter 2025/26 12/40

Characterisation of Distributed Runs by Homomorphisms

Definition 16.3 (Distributed run; cf. Definition (Best & Fernandez, 1988)

A distributed run of an elementary system net /\ is a pair (<, /1) where K is a causal net and /1 is a
homomorphism from K to /V.

@ Adistributed run (K, /1) of N may be viewed as a net < whose places and transitions are

labelled by places and transitions of /V such that the labelling /7 forms a net homomorphism
from K to V.

@ Here, requirement (2) of Definition 16.1 ensures that K is composed of actions of /V.
@ Thus, Definitions 15.14 and 16.3 are equivalent.

Thomas Noll, Peter Thiemann Winter 2025/26 12/40

Examples

Example 16.4 (cf. Example

©

@+ - @ @
©-@-®

.

©~E-®

Two finite distributed runs (first complete, second incomplete)
and the only infinite and complete distributed run of a net

(homomorphisms given by labellings)
Thomas Noll, Peter Thiemann Winter 2025/26

BB

13/40

Outline of Lecture 16

© Introduction to Branching Processes

Thomas Noll, Peter Thiemann Winter 2025/26 14/40

Introduction

@ Interleaving semantics of Petri nets = set of sequential runs.
e asequential run is a total ordering of transition occurrences

Thomas Noll, Peter Thiemann Winter 2025/26 15/40

Introduction

@ Interleaving semantics of Petri nets = set of sequential runs.
e asequential run is a total ordering of transition occurrences

@ The set of all sequential runs can be represented by a marking graph.

Thomas Noll, Peter Thiemann Winter 2025/26 15/40

Introduction

@ Interleaving semantics of Petri nets = set of sequential runs.
e asequential run is a total ordering of transition occurrences

@ The set of all sequential runs can be represented by a marking graph.

@ True concurrency semantics of Petri nets = set of distributed runs

e adistributed run is an acyclic (causal) net which contains no choices
e adistributed run gives a partial ordering of transition occurrences

Thomas Noll, Peter Thiemann Winter 2025/26 15/40

Introduction

@ Interleaving semantics of Petri nets = set of sequential runs.
e asequential run is a total ordering of transition occurrences
@ The set of all sequential runs can be represented by a marking graph.

@ True concurrency semantics of Petri nets = set of distributed runs

e adistributed run is an acyclic (causal) net which contains no choices
e adistributed run gives a partial ordering of transition occurrences

@ Today: The set of all distributed runs can be represented by a specific branching process, the
unfolding of the net.

Thomas Noll, Peter Thiemann Winter 2025/26 15/40

Joost Engelfriet

Joost Engelfriet, Leiden University (NL), retired

Thomas Noll, Peter Thiemann Winter 2025/26 16/40

Branching Process: Preamble

@ A branching process depicts a set of distributed runs.

'In net jargon, a choice is called a conflict.
Thomas Noll, Peter Thiemann Winter 2025/26 17/40

Branching Process: Preamble

@ A branching process depicts a set of distributed runs.

e It explicitly represents each possible resolution of each choice’.

'In net jargon, a choice is called a conflict.
Thomas Noll, Peter Thiemann Winter 2025/26 17/40

Branching Process: Preamble

@ A branching process depicts a set of distributed runs.
e It explicitly represents each possible resolution of each choice’.

@ It is a partial ordering with conflicts of transition occurrences.

'In net jargon, a choice is called a conflict.
Thomas Noll, Peter Thiemann Winter 2025/26 17/40

Branching Process: Preamble

@ A branching process depicts a set of distributed runs.
e It explicitly represents each possible resolution of each choice’.
@ It is a partial ordering with conflicts of transition occurrences.

@ The true concurrency semantics of a net is a specific branching process, called unfolding.

'In net jargon, a choice is called a conflict.
Thomas Noll, Peter Thiemann Winter 2025/26 17/40

Branching Process: Preamble

A branching process depicts a set of distributed runs.

It explicitly represents each possible resolution of each choice’.

It is a partial ordering with conflicts of transition occurrences.

The true concurrency semantics of a net is a specific branching process, called unfolding.

The unfolding is the true concurrency counterpart of a marking graph.

'In net jargon, a choice is called a conflict.
Thomas Noll, Peter Thiemann Winter 2025/26 17/40

Branching Process: Preamble

A branching process depicts a set of distributed runs.

It explicitly represents each possible resolution of each choice’.

It is a partial ordering with conflicts of transition occurrences.

The true concurrency semantics of a net is a specific branching process, called unfolding.

The unfolding is the true concurrency counterpart of a marking graph.

It is the greatest branching process in a complete lattice.

'In net jargon, a choice is called a conflict.
Thomas Noll, Peter Thiemann Winter 2025/26 17/40

Outline of Lecture 16

e Conflicts

Thomas Noll, Peter Thiemann Winter 2025/26 18/40

Conflicts |

@ A distributed run is based on a causal net.
@ A branching process is based on an occurrence net.
@ Main difference: the presence of conflicts (choices).

Thomas Noll, Peter Thiemann Winter 2025/26 19/40

Conflicts |

@ A distributed run is based on a causal net.
@ A branching process is based on an occurrence net.
@ Main difference: the presence of conflicts (choices).

Definition 16.5 (Conflict)

Let N = (P, T.F.M,) be an elementary system net. Nodes x;. x> ¢ P L T are in conflict, denoted
x1# xo, if there exist distinct transitions 1, &> ¢ T such that

.f1 m.fg #(/) and (f1,X1) c F° and (TQ,XQ) € F*.

Node x € P LU T is in self-conflict whenever x+#: x.

\
O =

Thomas Noll, Peter Thiemann Winter 2025/26 19/40

Conflicts |

@ A distributed run is based on a causal net.
@ A branching process is based on an occurrence net.
@ Main difference: the presence of conflicts (choices).

Definition 16.5 (Conflict)

Let N = (P, T.F.M,) be an elementary system net. Nodes x;. x> ¢ P L T are in conflict, denoted
x1# xo, if there exist distinct transitions 1, &> ¢ T such that

.f1 m.fg #(/) and (f1,X1) c F° and (TQ,XQ) € F*.

Node x € P LU T is in self-conflict whenever x+#: x.

Q_> X Notes:

/ @ Conflicts are structural properties of nets, and as such
() independent of concrete markings.
\ @ Inacausal net, # = () as °t; M &, = () for any two distinct

Q—» X2 transitions #; and > (since there is no place branching).

Thomas Noll, Peter Thiemann Winter 2025/26 19/40

Conflicts I

Recall: X1#X2 ifdty, b eT:°tN°%h 7L (/) (f1AX1) € F*, (l‘gAX2) € F*.

Example 16.6

Two threads (left/right sub-net) that cycle around and
synchronize from time to time (via transition d).
Right thread can “opt-out” (via transition b), which leads to

a global deadlock.
!
O

Thomas Noll, Peter Thiemann Winter 2025/26 20/40

Conflicts I

Recall: X1#X2 ifdty, b eT:°tN°%h 7L (/) (f1AX1) € F*, (l‘gAX2) € F*.

Example 16.6

Two threads (left/right sub-net) that cycle around and
synchronize from time to time (via transition d).
Right thread can “opt-out” (via transition b), which leads to

a global deadlock.
!
O

Some conflicts:
b#e: fort =bandt, = e, *b N *e = {D} # 0,

)Z(\ (b,b) € F*, (e,€) € F*
N ,

Thomas Noll, Peter Thiemann Winter 2025/26 20/40

Conflicts I

Recall: X1#X2 ifdty, b eT:°tN°%h 7L (/) (f1AX1) € F*, (fg.X2) € F*.

Example 16.6

Two threads (left/right sub-net) that cycle around and
synchronize from time to time (via transition d).
Right thread can “opt-out” (via transition b), which leads to

a global deadlock.
!
O

Some conflicts:
b#e: fort =bandt, = e, *b N *e = {D} # 0,

o \\ (b,b) € F*, (e,e) € F*
)Z(b#c: forty =bandt, = e, *bN*e = {D} # 0,
AN

(b,b) € F*, (e,c) € F*

Thomas Noll, Peter Thiemann Winter 2025/26 20/40

Conflicts I

Recall: X1#X2 ifdty, b eT:°tN°%h 7L (/) (f1AX1) € F*, (fg.X2) € F*.

Example 16.6

Two threads (left/right sub-net) that cycle around and
synchronize from time to time (via transition d).
Right thread can “opt-out” (via transition b), which leads to

a global deadlock.
!
O

Some conflicts:
b#e: fort =bandt, = e, *b N *e = {D} # 0,

o \\ (b,b) € F*, (e,e) € F*
)Z(b#c: forty =bandt, = e, *bN*e = {D} # 0,
N (b,b) € F*, (e,c) € F*
@ @ B#G: forty =bandth = e, *bN®e = {D} # 0,

(b,B) € F*,(e,G) € F*

— —— == =

Thomas Noll, Peter Thiemann Winter 2025/26 20/40

Conflicts Il

Recall: X1#X2 ifdty, b e T:°N°%b # (/) (f1AX1) € F*, (TQ.X2) € F*.

Example 16.7

Thomas Noll, Peter Thiemann Winter 2025/26 21/40

Conflicts Il

Recall: X1#X2 ifdy, b eT:°thN°h # 0, (f1AX1) € F*, (TQ.X2) € F*,
Example 16.7

O,

A self-conflict:
a

a#a
asforty =aand b = b, *an*b = {A} # 0,

(a- a) € F><’ (b a) € F*
\

b

Thomas Noll, Peter Thiemann Winter 2025/26 21/40

Outline of Lecture 16

a Occurrence Nets

Thomas Noll, Peter Thiemann Winter 2025/26 22/40

Occurrence Nets |

Definition 16.8 (Occurrence net)

Anet K = (Q, V, G, My) is an occurrence net if
(1)
(2
(3
(
(

the transitive closure G+ of G is irreflexive,

for each node x « Q1) V,theset {y | (y.x) ¢ G} is finite,
4
5

no transition v € V is in self-conflict, and

)
)
)
) Mo = °K.2

“Reminder: °K = {g € Q| °q = 0}.

Thomas Noll, Peter Thiemann Winter 2025/26 23/40

Occurrence Nets |

Definition 16.8 (Occurrence net)

Anet K = (Q, V, G, My) is an occurrence net if
(1)
(2) the transitive closure G+ of G is irreflexive,

(3) for each node x « QU V,theset |y | (y.x) ¢ G} isfinite,
(4) no transition v < V is in self-conflict, and

(5) My = °K.?

5

“Reminder: °K = {g € Q| °q = 0}.

Remarks:

@ In contrast to causal nets (Definition 15.8), occurrence nets additionally admit output (but still
no input) branching for places.

@ Since # — () in a causal net and each causal net by definition fulfils the remaining conditions,
every causal net is also an occurrence net.

Thomas Noll, Peter Thiemann Winter 2025/26 23/40

Occurrence Nets Il

Example 16.9

a

An occurrence net (but not a causal net)

= = = =

Thomas Noll, Peter Thiemann Winter 2025/26 24/40

Boundedness of Occurrence Nets

Theorem 16.10 (Boundedness of occurrence nets)

Every occurrence net is one-bounded, i.e., in every reachable marking every place will hold at most
one token.

Thomas Noll, Peter Thiemann Winter 2025/26 25/40

Boundedness of Occurrence Nets

Theorem 16.10 (Boundedness of occurrence nets)

Every occurrence net is one-bounded, i.e., in every reachable marking every place will hold at most
one token.

Similar to Theorem 15.10 (boundedness of causal nets). Note that input branching for places is also
forbidden for occurrence nets. O

Thomas Noll, Peter Thiemann Winter 2025/26 25/40

Outline of Lecture 16

@ Branching Processes

Thomas Noll, Peter Thiemann Winter 2025/26 26/40

Branching Processes |

Definition 16.11 (Branching process) (Engelfriet 1991)

A branching process of net /V is a pair B — (K. h) where K = (Q, V. G. M,) is an occurrence net
and /1 a net homomorphism from K to NV such that

Vv,v e V: (*v="Vand h(v) = h(V') implies v="V').

Thomas Noll, Peter Thiemann Winter 2025/26 27/40

Branching Processes |

Definition 16.11 (Branching process) (Engelfriet 1991)
A branching process of net /V is a pair B — (K. h) where K = (Q, V. G. M,) is an occurrence net
and / a net homomorphism from K to N such that

Vv,v e V: (*v="Vand h(v) = h(V') implies v="V').

Remarks:
@ The condition on 1 asserts that, in any particular situation, a transition of /V can be chosen at
most once in K.
@ Note that every distributed run is also a branching process. The reverse does not hold.

Thomas Noll, Peter Thiemann Winter 2025/26 27/40

Branching Processes Il

Example 16.12

(Homomorphisms are given by labellings.)

'
1
t
|
.

Elementary system net Finite branching process Infin. branching process

Thomas Noll, Peter Thiemann Winter 2025/26 28/40

Branching Processes Il

Definition (Branching process) (Engelfriet 1991)

A of net Vis a pair where is an occurrence net
and /1 a net homomorphism from K to /V such that

and implies

Example 16.13

® .
o e
" TN

¢ O Oc 80 Oc

Occurrence net, but not a branching process of V
(*9="q and h(q) = h(q') but g # q)

= = e

Thomas Noll, Peter Thiemann Winter 2025/26 29/40

Outline of Lecture 16

@ The True Concurrency Semantics of a Net

Thomas Noll, Peter Thiemann Winter 2025/26 30/40

Relating Branching Processes

Definition 16.14 (Homomorphisms between branching processes)
Let By = (Ki.hy)and B> = (K>, 1) be two branching processes of net /V.
@ A homomorphism from B; to B; is @ homomorphism £ from K to K> such that 1, o h = hy.

@ An isomorphism is a bijective homomorphism.
@ We write B; = B; if there exists an isomorphism between 5, and 5..

N
hy hy

Thomas Noll, Peter Thiemann Winter 2025/26 31/40

Relating Branching Processes

Definition 16.14 (Homomorphisms between branching processes)
Let By = (Ki.hy)and B> = (K>, 1) be two branching processes of net /V.
@ A homomorphism from B; to B; is @ homomorphism £ from K to K> such that 1, o h = hy.

@ An isomorphism is a bijective homomorphism.
@ We write B; = B; if there exists an isomorphism between 5, and 5..

N
hy ho

K > Ko

@ Relation = is an equivalence relation.
@ lts equivalence classes are called isomorphism classes.
@ The isomorphism quotient, i.e., the set of isomorphism classes of a branching process is

denoted by B.

Thomas Noll, Peter Thiemann

Winter 2025/26 31/40

Approximation of Branching Processes |

Definition 16.15 (Approximation)

Let B; and B> be two branching processes of net V. B; approximates B, denoted by B, [By, if
there is an injective homomorphism from 5; to B-.

Thomas Noll, Peter Thiemann Winter 2025/26 32/40

Approximation of Branching Processes |

Definition 16.15 (Approximation)
Let B; and B> be two branching processes of net V. B; approximates B, denoted by B, [By, if
there is an injective homomorphism from 5; to B-.

Remarks:

@ By approximates B- if every (partial) distributed run in B is also contained in B-. In other
words, By is isomorphic to an initial part of B..

@ Being an approximation on branching processes is the analogue of being a prefix on
sequences.

@ Obviously, [is a preorder on branching processes.

Thomas Noll, Peter Thiemann Winter 2025/26 32/40

Approximation of Branching Processes |l

Example 16.16 (cf. Example)
By CE B4, Bo C B3 C By, By £ By, ...

7
. T a
LI | “
T |

b

Thomas Noll, Peter Thiemann Winter 2025/26 33/40

Approximation of Branching Processes Il

Definition (Approximation)
. if

Let B, and B> be two branching processes of net , denoted by ,
there is an homomorphism from 5; to

Approximation is preserved by isomorphism: If B is isomorphic to B; (fori < {1.2}), then B, L B,
implies B, _ B.. Thus, __ can be extended to a partial order on the isomorphism quotient |5.

omitted

Thomas Noll, Peter Thiemann Winter 2025/26 34/40

Engelfriet’'s Theorem

Recall: a complete lattice is a partial order such that all subsets of its domain have LUBs and GLBs.

Theorem 16.18 (Engelfriet’s branching process theorem)

(B,) is a complete lattice.

see Joost Engelfriet: Branching processes of Peiri nets, Acta Informatica 28, 1991

Thomas Noll, Peter Thiemann Winter 2025/26 35/40

https://doi.org/10.1007/BF01463946

The True Concurrency Semantics of a Net |

Corollary 16.19 (Unfolding of a net)

Every net has a greatest (with respect to) branching process up to isomorphism, which is called
its unfolding.

Thomas Noll, Peter Thiemann Winter 2025/26 36/40

The True Concurrency Semantics of a Net |

Corollary 16.19 (Unfolding of a net)

Every net has a greatest (with respect to) branching process up to isomorphism, which is called
its unfolding.

Definition 16.20 (True concurrency semantics)

Let V be a net, and let Brax — (K2, hinax) denote a representative of the isomorphism class of
the greatest branching process of V. Then 5., is the true concurrency semantics of /V.

Thomas Noll, Peter Thiemann Winter 2025/26 36/40

The True Concurrency Semantics of a Net |

Corollary 16.19 (Unfolding of a net)

Every net has a greatest (with respect to) branching process up to isomorphism, which is called
its unfolding.

Definition 16.20 (True concurrency semantics)

Let V be a net, and let Brax — (K2, hinax) denote a representative of the isomorphism class of
the greatest branching process of V. Then 5., is the true concurrency semantics of /V.

Recall: The interleaving semantics of a net is given by its marking graph.

Thomas Noll, Peter Thiemann Winter 2025/26 36/40

The True Concurrency Semantics of a Net |l

Example 16.21

i

e m——]

u |
[\?;/D\T

2
U O |
c e f é
Elementary system net Its unfolding

Thomas Noll, Peter Thiemann Winter 2025/26 37/40

The True Concurrency Semantics of a Net |

Example 16.22 (cf. Example)

Elementary system net:
’ C? Its unfolding:
@%@\ @ﬂ@\ @—EP@\
(©) CT) : /E< /D
N +d o0 o0
[0 -G -G
© O

Thomas Noll, Peter Thiemann Winter 2025/26 38/40

Outline of Lecture 16

9 Summary

Thomas Noll, Peter Thiemann Winter 2025/26 39/40

@ A branching process captures several distributed runs of a net V.

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

@ A branching process captures several distributed runs of a net V.

@ ltis represented by a relaxed notion of causal net, the occurrence net.

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

@ A branching process captures several distributed runs of a net /V.
@ ltis represented by a relaxed notion of causal net, the occurrence net.

@ /N maps to its branching processes via homomorphisms.

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

@ A branching process captures several distributed runs of a net V.
@ ltis represented by a relaxed notion of causal net, the occurrence net.
@ /N maps to its branching processes via homomorphisms.

@ Approximation (denoted L) is a preorder on branching processes.

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

A branching process captures several distributed runs of a net /V.

It is represented by a relaxed notion of causal net, the occurrence net.

N maps to its branching processes via homomorphisms.

Approximation (denoted L) is a preorder on branching processes.

Isomorphism classes of branching processes with L form a complete lattice.

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

A branching process captures several distributed runs of a net /V.

It is represented by a relaxed notion of causal net, the occurrence net.

N maps to its branching processes via homomorphisms.

Approximation (denoted L) is a preorder on branching processes.

Isomorphism classes of branching processes with L form a complete lattice.

The true concurrency semantics of /N is its greatest element (with respect to).

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

A branching process captures several distributed runs of a net /V.

It is represented by a relaxed notion of causal net, the occurrence net.

N maps to its branching processes via homomorphisms.

Approximation (denoted L) is a preorder on branching processes.

Isomorphism classes of branching processes with L form a complete lattice.

The true concurrency semantics of /N is its greatest element (with respect to).

[For one-bounded nets, it is possible to construct a finite approximating branching process
(“McMillan prefix”) that covers all reachable markings.]

Thomas Noll, Peter Thiemann Winter 2025/26 40/40

	Recap: Distributed Runs
	Net Homomorphisms
	Introduction to Branching Processes
	Conflicts
	Occurrence Nets
	Branching Processes
	The True Concurrency Semantics of a Net
	Summary

