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Nets

Definition (Petri net)

A Petri net N is a triple (P, T , F) where:

P is a finite set of places,

T is a finite set of transitions with P ∩ T = ∅, and

F ⊆ (P × T ) ∪ (T × P) are the arcs.a

Places and transitions are generically called nodes.

aF is also called the flow relation.

Example

P = {A,B,C, . . .}
T = {a, b, c, . . .}
F = {(A, a), (a,B), (B, b), . . .}
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Markings

Definition (Marking)

A marking M of a net N = (P, T , F) is a mapping M : P → N.

For net N = (P, T , F) and marking M0, the tuple (P, T , F ,M0) is called an elementary system
net with initial marking M0.

Intuition:

A marking can be seen as a multiset of places.

It defines a distribution of tokens across places.

Tokens are depicted as black dots.

Remark: In generic (= non-elementary) system nets, several
types (colours) of tokens can be distinguished.
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Transition Occurrence

Definition (Enabling and occurrence of a transition)

Let (P, T , F ,M) be an elementary system net.

Marking M enables a transition t if M(p) ≥ 1 for each place
p ∈ •t .

Transition t can occur in marking M if t is enabled in M.

Its occurrence or firing leads to marking M ′, and defined for
place p ∈ P by:

M ′(p) := M(p)− F(p, t) + F(t, p)

where we represent F by its characteristic function.
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Reachable Markings

Definition (Step sequence)

Let (P, T , F ,M0) be an elementary system net.

A sequence of transitions σ = t1 t2 . . . tn ∈ T ∗ is a step sequence if there exist markings
M1, . . . ,Mn such that

M0
t1−→ M1

t2−→ · · · tn−1−→ Mn−1
tn−→ Mn.

Marking Mn is then reached by the occurrence of σ, denoted M0
σ−→ Mn.

M is a reachable marking if there exists a step sequence σ such that M0
σ−→ M.

Example
In the previous example,  0

0
0

 cbedeab−→

 1
0
1


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Marking Graph

Definition (Marking graph)
The marking graph of a net N has as nodes the reachable markings of N and as edges the
corresponding steps of N.a

aSince firing an (enabled) transition in a marking yields a unique successor marking, marking graphs are a
deterministic LTS.

Example

A sample elementary system net . . . and its marking graph

Interleaving semantics
The marking graph represents the interleaving semantics of a Petri net.
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Interleaving vs. True Concurrency I

The interleaving thesis
The total order assumption is a reasonable abstraction, adequate for practical purposes and leading
to nice mathematics.

The true concurrency thesis
The total order assumption does not correspond to physical reality and leads to awkward
representations of simple phenomena.
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Motivation

Example 15.1 (cf. Example 14.20)

A

C

B

D

a b

A

C

E

B

D

a b

Both nets have identical sequential runs and isomorphic marking graphs (a occurs before b, or
vice versa).

But the left net, in contrast to the right one, allows the simultaneous execution of a and b.

Interleaving semantics cannot distinguish these nets!

To do so requires a finer perspective on the execution of transitions.
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Interleaving vs. True Concurrency II

In interleaving semantics, a system composed of n independent components

a1

...
an

has n! different sequential runs.
Its marking graph has 2n states.
In true concurrency semantics, it has only one (non-sequential) execution (“distributed run”).

Roadmap:

Net 7→ {sequential runs} =̂ marking graph (as seen)
Net 7→ {distributed runs} (today) =̂ branching process (next lecture)

Distributed runs are special causal nets, which take the causal order of transitions into account.
Branching processes are special occurrence nets, which additionally represent choices for
resolving conflicts between transitions.
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Overview

Interleaving semantics

Sequential runs (step sequences):

AC
a−→ BC

b−→ AC
c−→ D

AC
d−→ AE

a−→ BE
b−→ AE

a−→ · · ·

Marking graph (LTS):

True concurrency semantics

Distributed runs (causal nets):

(Max.) Distributed process (occurrence net):
Branching processes of Petri nets 581 

o( 

1 

Fig. 6 

Requirement (,) is an essential part of the definition (and, in spite of its simplicity, 
it may, in some sense, be viewed as the main contribution of this paper). Intuitive- 
ly, it means that, in any particular situation, a transition of N can be chosen 
at most once in N'. Without (*), a branching process is called a "folding from 
an occurrence net"  in [Win2].  Requirement (,) is one half of the condition 
(*) in Theorem 3.3.12 of [Win2] that characterizes the unfolding of a safe net. 

It is easy to see that every process is a branching process (this uses the 
fact that pre(t) is nonempty for every transition t). Just as processes, branching 
processes of N can be viewed as nets of which the places and transitions are 
labeled by those of N. 

Branching processes of the net N of Fig. 1 are given in Figs. 2-6. The one 
in Fig. 6 is infinite, as suggested by the dashed lines and dots (there are infinitely 
many transitions labeled 4, and the same holds for 1 and for 2). The b-process 
of Fig. 6 is in fact the unfolding of N, as will be shown later. We note here 
that N is safe (see [Rei]). Figure 7 shows a net N1 that is not safe, and Fig. 8 
contains a branching process of that net (in fact its unfolding). Non-safeness 
of N1 can be seen in Fig. 8 from the fact that the places labeled d are not 
in conflict and do not precede each other. 

We define homomorphisms between branching processes in a natural way: 
they are (net) homomorphisms that preserve the labeling. 
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Nets with Infinite Node Sets

Definition 15.2 (Elementary system net – extending Definition 14.6)

An elementary system net is a tuple N = (P, T , F ,M0) where

P is a countable set of places,

T is a countable set of transitions with P ∩ T = ∅,

F ⊆ (P × T ) ∪ (T × P) are the arcs such that, for every transition t ∈ T , •t and t • are
non-empty and finite, and

M0 : P → N is the initial marking.

Places and transitions are generically called nodes.
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The True Concurrency Semantics of Petri Nets I

Example 15.3 (A distributed run)
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The True Concurrency Semantics of Petri Nets II

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets III

Example 15.3 (continued)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 18 / 50



The True Concurrency Semantics of Petri Nets IV

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets V

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets VI

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets VII

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets VIII

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets IX

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets X

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XI

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XII

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XIII

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XIV

Example 15.3 (continued)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 29 / 50



The True Concurrency Semantics of Petri Nets XV

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XVI

Example 15.3 (continued)
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Actions

A distributed run of a net is a partial order represented as a net whose basic building blocks are
simple nets denoted as actions.1

Definition 15.4 (Action)

An action is a labelled net A = (Q, {v},G) with •v ∩ v • = ∅ and •v ∪ v • = Q.

Actions represent transition occurrences of elementary system nets. If A represents transition t ,
then the elements of Q are labelled with in- and output places of t , and v is labelled with t .

Example 15.5

(action) (transition)

1Not to be confused with the notion of action in transition systems.
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A Mutual Exclusion Net and Its Actions

Example 15.6
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A Mutual Exclusion Net and Its Actions

Example 15.6

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 34 / 50



Actions Represent (Repeated) Transition Occurrences

Example 15.7

Original net

p qt

p

p

q

t
Action of t

p

p

q

p

q

p

q

· · ·

t

t

t

Repeated occurrences of t
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Causal Nets Informally

A causal net constitutes the basis of a “distributed” run.

It is a (possibly infinite) elementary system net with the following properties:

(1) It has no place branches: at most one arc ends or starts in a place.

(2) It is acyclic, i.e., no sequence of arcs forms a loop.

(3) Each sequence of arcs (flows) has a unique first element.

(4) The initial marking contains all places without incoming arcs.
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Causal Nets Formally

A causal net is a (possibly infinite) net with the following properties:

(1) It has no place branches: at most one arc ends or starts in a place.
(2) It is acyclic, i.e., no sequence of arcs forms a loop.
(3) Each sequence of arcs (flows) has a unique first element.
(4) The initial marking contains all places without incoming arcs.

Definition 15.8 (Causal net)

A (possibly infinite) net K = (Q,V ,G,M0) is called a causal net if

(1) for each q ∈ Q, |•q| ≤ 1 and |q •| ≤ 1,

(2) the transitive closure (called causal order) G+ of G is irreflexive,

(3) for each node x ∈ Q ∪ V , the set {y | (y , x) ∈ G+} is finite (i.e., G is well-founded), and

(4) M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K := {q ∈ Q | •q = ∅}.

Note: The “runs” of the nets in Examples 15.3 and 15.7 (with appropriate initial markings) are all
causal nets.
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Properties of Causal Nets

In a causal net places can be marked at most once.

Lemma 15.9

Let K = (Q,V ,G,M0) be a causal net. Then every step sequence

M0
t1−→ M1

t2−→ . . . . . .
tk−→ Mk

of K satisfies Mj ∩ t •k = ∅ for all j ∈ {0, . . . , k − 1}.

Proof (by contraposition).
Suppose that p ∈ Mj ∩ t •k for some p ∈ V and some 0 ≤ j < k .

This is impossible for j = 0 as, by Definition 15.8, no place in M0 has incoming arcs, and thus
M0 ∩ t • = ∅ for each t ∈ T .

Hence, j > 0. Given that p ∈ Mj and p ̸∈ M0, it follows p ∈ t •i for some 0 < i ≤ j . (Before
reaching Mj , some transition must have placed a token in p.)

Thus ti , tk ∈ •p with ti ̸= tk , as G is well-founded.

But every place in a causal net has at most one incoming arc. So also p, contradicting
ti , tk ∈ •p with ti ̸= tk .
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Boundedness of Causal Nets

Lemma
Let K = (Q,V ,G,M0) be a causal net. Then every step sequence

M0
t1−→ M1

t2−→ . . . . . .
tk−→ Mk

of K satisfies Mj ∩ t •k = ∅ for all j ∈ {0, . . . , k − 1}.

Theorem 15.10 (Boundedness of causal nets)

Every causal net is one-bounded, i.e., in every reachable marking every place will hold at most one
token.

Proof.
Follows directly from the fact that the initial marking M0 is one-bounded, and by Lemma 15.9.
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Completeness of Causal Nets I

Lemma 15.11 (Absence of superfluous places and transitions)

Let K = (Q,V ,G,M0) be a causal net. Then there exists a (possibly infinite) step sequence

M0
t1−→ M1

t2−→ · · · · · · tk−→ Mk
tk+1−→ · · · of K such that Q =

⋃
k≥0 Mk and V = {tk | k > 0}.

A causal net thus contains no superfluous places and transitions, as every place is marked and
every transition is fired in the above step sequence.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 40 / 50



Completeness of Causal Nets I

Lemma 15.11 (Absence of superfluous places and transitions)

Let K = (Q,V ,G,M0) be a causal net. Then there exists a (possibly infinite) step sequence

M0
t1−→ M1

t2−→ · · · · · · tk−→ Mk
tk+1−→ · · · of K such that Q =

⋃
k≥0 Mk and V = {tk | k > 0}.

A causal net thus contains no superfluous places and transitions, as every place is marked and
every transition is fired in the above step sequence.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 40 / 50



Completeness of Causal Nets II

Lemma (Absence of superfluous places and transitions)

Let K = (Q,V ,G,M0) be a causal net. Then there exists a (possibly infinite) step sequence

M0
t1−→ M1

t2−→ · · · · · · tk−→ Mk
tk+1−→ · · · of K such that Q =

⋃
k≥0 Mk and V = {tk | k > 0}.

Proof.
Let depth : Q ∪ V → N give a node’s (maximal) “distance” from the initial marking:

depth(p) := max
{

d
2 | d ∈ N,∃p0 ∈ M0 : (p0, p) ∈ Gd

}
depth(t) := max {depth(p) | p ∈ •t}

where G0 := idQ and Gd+1 := G ◦ Gd .

Now construct the step sequence as follows:

M0 −→ · · · −→︸ ︷︷ ︸
all transitions of depth 0

Mi −→ · · · −→︸ ︷︷ ︸
all transitions of depth 1

Mj −→ · · ·

such that all places and transitions are covered.
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Completeness of Causal Nets III

Example 15.12 (illustrating Lemma 15.11)
Causal net with depth information:

A

0

B

0

C

0

D

1

E

2

F

3

G

1
H 3

I

4 J

5

K

5

a

0

b

1

c

2

d

0

e

3

f

4

Step sequence:

{A,B,C} a−→ d−→︸ ︷︷ ︸
d=0

{B,D,G} b−→︸︷︷︸
d=1

{E ,G} c−→︸︷︷︸
d=2

{F ,G,H} e−→︸︷︷︸
d=3

{F ,I} f−→︸︷︷︸
d=4

{F ,J,K}
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Outset and End of Causal Nets

Definition 15.13 (Outset and end of a causal net)

The outset and end of causal net K = (Q,V ,G,M0) are defined by the places without an incoming
or outgoing arc, respectively:

◦K := {q ∈ Q | •q = ∅} K ◦ := {q ∈ Q | q • = ∅}.
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What Is a Distributed Run?

Definition 15.14 (Distributed run)

A distributed run of a one-bounded elementary system net N = (P, T , F ,M0) is

(1) a labelled causal net KN = (Q,V ,G,M)

(2) in which each transition t ∈ V (with •t and t •) is an action of N.

A distributed run KN of N is complete if the marking M = ◦KN represents the initial marking M0 of N
and the marking K ◦

N does not enable any transition in N.

If N is clear from the context, we just write K for KN .
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A Distributed Run for Mutual Exclusion

Example 15.15 (cf. Example 15.6)

Mutual exclusion algorithm (left) and an (incomplete) distributed run (right)

Actions Na, Nb, Nc and Nd causally precede Ne. They form a chain.

Na and Nd are not linked by actions; they are causally independent.

The same applies to Nb and Nd and Nc and Nd .
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Expansion of a Distributed Run

Example 15.16

An (incomplete) distributed run (top) and its extension with actions a, b and c (below)
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More Distributed Runs

Example 15.17

Two finite distributed runs (first complete, second incomplete)
and the only infinite and complete distributed run of a net
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Causality Revisited

In contrast to sequential runs, distributed runs show the causal order of actions.

Example 15.18 (cf. Example 14.20)

Both nets have identical sequential runs (a occurs before b, or vice versa).

But the left net only has the left distributed run below, the right net both ones:
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Composition of Distributed Runs

Definition 15.19 (Composition of distributed runs)

For i ∈ {1, 2}, let Ki = (Qi ,Vi ,Gi ,Mi) be causal nets, labelled with ℓi .
Let (Q1 ∪ V1) ∩ (Q2 ∪ V2) = K ◦

1 = ◦K2 and for each p ∈ K ◦
1 , let ℓ1(p) = ℓ2(p).

The composition of K1 and K2, denoted K1 • K2, is the causal net (Q1 ∪ Q2,V1 ∪ V2,G1 ∪ G2,M1)
labelled with ℓ where ℓ(x) = ℓi(x) if x ∈ Ki .

Intuition: The composition K1 • K2 is formed by identifying the end K ◦
1 of K1 with the outset ◦K2 of

K2. To do this, K ◦
1 and ◦K2 must represent the same marking.

Example 15.20 (Composable runs)
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