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Nets

Definition (Petri net)
A Petrinet Nis a triple (P. 7. F) where:
@ P is afinite set of places,

o 7 is a finite set of transitions with 7 1 7 — (), and
@ FC (PxT)U(T x P) are the arcs.?
Places and transitions are generically called nodes.

4F is also called the flow relation.
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Definition (Marking)

@ A marking M ofanet N = (P.T,F)isamapping V/ : P — N.

@ Fornet N = (P, T.F) and marking , the tuple (P. 7. F. M) is called
an elementary system net with initial marking V.

Intuition:

@ A marking can be seen as a multiset of
places.

@ It defines a distribution of tokens across

places. M
@ Tokens are depicted as black dots. M(p) =3

Remark: In generic (= non-elementary) system
nets, several types (colours) of tokens can be
distinguished.
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Transition Occurrence

Definition (Enabling and occurrence of a

transition)
Let (P, 7. F. M) be an elementary system net.

@ Marking // enables a transition ¢ if M(p) > 1 for
each place p € °f.

@ Transition 7 can occur in marking M if { is enabled
in M.
@ lts occurrence or firing leads to marking /', and
defined for place p < P by:
M'(p) := M(p) — F(p,t) + F(t,p)

where we represent F~ by its characteristic
function.
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Reachable Markings

Definition (Step sequence)

Let (P. 7, F. M) be an elementary system net.

@ A sequence of transitions o = #; i, ... f, € T is a step sequence if there
exist markings M, .. ., M,, such that

t I th—1 f
My —— My =5 -« =5 My_y — M,

@ Marking /V/, is then reached by the occurrence of -, denoted M, — M,

@ M is a reachable marking if there exists a step sequence o such that
My 2 M.

Example

In the previous example,
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Marking Graph

Definition (Marking graph)
The marking graph of a net /V has as nodes the reachable markings of NV and
as edges the corresponding steps of /V.2

@Since firing an (enabled) transition in a marking yields a unique successor marking, marking
graphs are a deterministic LTS.

BE )

A sample elementary system net ... and its marking graph

Interleaving semantics

Winter 2025/26
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Interleaving vs. True Concurrency |

The interleaving thesis

The total order assumption is a reasonable abstraction, adequate for practical
purposes and leading to nice mathematics.

The true concurrency thesis

The total order assumption does not correspond to physical reality and leads
to awkward representations of simple phenomena.
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Motivation

Example 15.1 (cf. Example )

A

o

>

FOO-LHO
Q

o}

FOO-1HO

Thomas Noll, Peter Thiemann Winter 2025/26 10/50



Interleaving vs. True Concurrency Il

@ Ininterleaving semantics, a system composed of 1 independent

components
@» By _>Q
®_> B _>O

has n! different sequential runs.

@ lts marking graph has 2" states.

@ In true concurrency semantics, it has only one (non-sequential) execution
(“distributed run”).

Roadmap:

Net — {sequential runs} marking graph (as seen)
Net +— {distributed runs} (today) branching process (next lecture)
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Overview

Interleaving semanticis |

D E
Sequential runs (step sequer?ces): Distributed runs (causal nets):
AC 25 BC -2 AC -%5 D [
Ac -4 AE %5 BE -2 iz
AE -2 ...

(Max.) Distributed process
(occurrence net):

Marking graph (LTS):
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Nets with Infinite Node Sets

Definition 15.2 (Elementary system net — extending Definition

An elementary system net is a tuple N = (7. 7. F. M) where
@ P is a countable set of places,
@ 7 is a countable set of transitions with 7 1 7 = (),

@ F C (P x T)U(T x P)are the arcs such that, for every transition 7 < T,
°tand 7° are non-empty and finite, and

@ My : P — N is the initial marking.

Places and transitions are generically called nodes.
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The True Concurrency Semantics of Petri Nets |

Example 15.3 (A distributed run)

Sp o do
° ° °
) J
a b c d :
S r di
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The True Concurrency Semantics of Petri Nets |l

Example 15.3 (continued)

OLNOLNOL:
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The True Concurrency Semantics of Petri Nets

Example 15.3 (continued)

®2 ®= @
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The True Concurrency Semantics of Petri Nets IV

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets V

Example 15.3 (continued)

Sp
O,

o n
O O
Go
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The True Concurrency Semantics of Petri Nets VI

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets VII

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets VIII

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets IX

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets X

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets Xl

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XlI

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XllI

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XIV

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XV

Example 15.3 (continued)
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The True Concurrency Semantics of Petri Nets XVI

Example 15.3 (continued)
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A distributed run of a net is a partial order represented as a net whose basic
building blocks are simple nets denoted as actions.’

Definition 15.4 (Action)
An action is a labelled net A = (Q. {v}, G)with*viv® = Dand v iv® = Q.

Actions represent transition occurrences of elementary system nets. If A
represents transition £, then the elements of @ are labelled with in- and output
places of 7, and v is labelled with 7.

v

® i t

represents
q |

g IS

(transition)

(action)
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A Mutual Exclusion Net and Its Actions

Example 15.6
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Actions Represent (Repeated) Transition Occurrences
Original net @) t

Action of ¢

OO

O
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Causal Nets Informally

A causal net constitutes the basis of a “distributed” run.

Itis a (possibly infinite) elementary system net with the following properties:
1) It has no place branches: at most one arc ends or starts in a place.

2

) ltis acyclic, i.e., no sequence of arcs forms a loop.
3) Each sequence of arcs (flows) has a unique first element.
)

(
(
(
(4) The initial marking contains all places without incoming arcs.

-

O @5 o0F
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Causal Nets Formally

A is a (possibly infinite) net with the following properties:
It has : at most one arc ends or starts in a place.
It is , 1.e., no sequence of arcs forms a loop.
Each sequence of arcs (flows) has a .
The contains all places without incoming arcs.

Definition 15.8 (Causal net)

A (possibly infinite) net < = (Q. V. G. My ) is called a causal net if

(1) ‘gl <1and[q°®| <1,

(2) the transitive closure (called causal order) G of G is irreflexive,
)

(3) foreach node x « QU V,theset |y | (y,x) « G} isfinite (i.e., Gis
well-founded), and

for each g € Q,

(4) My equals the minimal set of places in K under G, i.e.,
My=°K:={qeQ|*qg=0}.
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Properties of Causal Nets

In a causal net places can be marked at most once.

Let K = (Q., V.G, M) be a causal net. Then every step sequence

Proof (by contraposition).
@ Suppose that p « M, (1 forsome p « IV and some 0 < | < k.
@ This is impossible for j = 0 as, by Definition 15.8, no place in M, has
incoming arcs, and thus My (1 i® — (l foreach i € T.

@ Hence,/ > 0. Giventhat p « M, and p ¢ My, it follows p < 1, for some
0 </ < . (Before reaching //;, some transition must have placed a token
inp.)

@ Thus #;, i, € *pwith f; # 1, as G is well-founded.

7
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Boundedness of Causal Nets

Let be a causal net. Then every step sequence

of K satisfies for all

Theorem 15.10 (Boundedness of causal nets)

Every causal net is one-bounded, i.e., in every reachable marking every place
will hold at most one token.

Follows directly from the fact that the initial marking //, is one-bounded, and
by Lemma 15.9. O
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Completeness of Causal Nets |

Lemma 15.11 (Absence of superfluous places and transitions)

Let K = (Q., V.G, M) be a causal net. Then there exists a (possibly infinite)
- of K such that

t £ f tk41
step sequence My —— My —— - ey oy 2

Q= Ugso Mk and V = {tc | k > 0}.

A causal net thus contains no superfluous places and transitions, as every
place is marked and every transition is fired in the above step sequence.
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Completeness of Causal Nets Il

Lemma (Absence of superfluous places and transitions)

be a causal net. Then there exists a (possibly infinite)

step sequence of K such that
and

Let depth : QU V — N give a node’s (maximal) “distance” from the initial
marking:
depth(p) := max{Z | d € N,3py € My : (po,p) € G?}
depth(t) := max {depth(p) | p € °t}
where G° := idg and Gt := Go G“.
Now construct the step sequence as follows:
——— ————

all transitions of depth 0 all transitions of depth 1
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Completeness of Causal Nets I

Example 15.12 (illustrating Lemma

Causal net with depth information:

Ol
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Outset and End of Causal Nets

Definition 15.13 (Outset and end of a causal net)

The outset and end of causal net X = (Q. V. G. M) are defined by the places
without an incoming or outgoing arc, respectively:

°K:={geQ|*q=0} K°:={geQ|qg® =0}
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What Is a Distributed Run?

Definition 15.14 (Distributed run)

A distributed run of a one-bounded elementary system net N = (P, T, F. M)
is

(1) alabelled causal net Ky = (Q, V, G, M)

(2) in which each transition { € V/ (with *7 and ¢ °) is an action of V.

A distributed run K, of N is complete if the marking \/ = ° K, represents the
initial marking //, of V .and the marking /<, does not enable any transition in /V.

v

If N is clear from the context, we just write K for Kj.
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A Distributed Run for Mutual Exclusion

Example 15.15 (cf. Example )

—©—{1—-®
Mutual exclusion algorithm (left) and an (incomplete) distributed run (right)

@ Actions N, Ny, N, and Ny causally precede .. They form a chain.
@ /N, and Ny are not linked by actions; they are causally independent.
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Expansion of a Distributed Run

Example 15.16

B+~ ~®
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More Distributed Runs

®-zHE-H~@E - —hl-®
{©
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Two finite distributed runs (first complete, second
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Causality Revisited

In contrast to sequential runs, distributed runs show the causal order of
actions.

Example 15.18 (cf. Example )

@ Both nets have identical sequential runs (2 occurs before b, or vice
versa).

@ But the left net only has the left distributed run below, the right net both
ones:

Thomas Noll, Pete; Thiemann Winter 2025/26




Composition of Distributed Runs

Definition 15.19 (Composition of distributed runs)

Foric {1.2},let K, = (Q, V. G;. M;) be causal nets, labelled with /;.
Let (Q: U V4)N(QU Vo) = K = °K; and for each p € K°, let
t1(p) = £2(p).

The composition of K| and K>, denoted K e K>, is the causal net

(Q1 U o, Vi U Vo, Gy U Ga, My) labelled with ¢ where ¢(x) = /;(x) if x € K. )

Intuition: The composition K e K is formed by identifying the end K.° of K
with the outset “ /> of K>. To do this, K, and “ K> must represent the same
marking.

Example 15.20 (Composable runs)

-G +O-+-® @6 -
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