Concurrency Theory

Winter 2025/26

Lecture 11: Mutually Recursive Equational Systems

Thomas Noll, Peter Thiemann Programming Languages Group University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity; later: mutual recursion)

Definition (Syntax of HML with one variable)

The set HMF_X of Hennessy-Milner formulae with one variable X over a set of actions Act is defined by the following syntax:

$$\begin{array}{lll} F ::= X & \text{(variable)} \\ & \mid & \text{tt} & \text{(true)} \\ & \mid & \text{ff} & \text{(false)} \\ & \mid & F_1 \wedge F_2 & \text{(conjunction)} \\ & \mid & F_1 \vee F_2 & \text{(disjunction)} \\ & \mid & \langle \alpha \rangle F & \text{(diamond)} \\ & \mid & [\alpha] F & \text{(box)} \end{array}$$

where $\alpha \in Act$.

Semantics of HML with One Recursive Variable

So far: $\llbracket F \rrbracket \subseteq S$ for $F \in HMF$ and LTS $(S, Act, \longrightarrow)$.

Now: Semantics of formula depends on states that (are assumed to) satisfy X ("predicate transformer").

Definition (Semantics of HML with one variable)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. The semantics of F,

$$\llbracket F \rrbracket : 2^{\mathcal{S}} \to 2^{\mathcal{S}},$$

is defined by

Applying Fixed-Point Theory to HML with Recursion

Lemma

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then

- (1) $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$
- $(2) \operatorname{lfp}(\llbracket F \rrbracket) = \bigcap \{ T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T \}$
- (3) $gfp(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}$

If, in addition, S is finite, then

- (4) Ifp($\llbracket F \rrbracket$) = $\llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$
- (5) $gfp(\llbracket F \rrbracket) = \llbracket F \rrbracket^M(S)$ for some $M \in \mathbb{N}$

Proof.

- (1) by induction on the structure of F (important: HMF_X does not support negation!)
- (2) by Corollary 10.10 and Theorem 7.12

Greatest Fixed Points and Invariants I

- Invariants (cf. Example 10.5):
 - $Inv(F) \stackrel{max}{=} F \wedge [Act] Inv(F)$ for $F \in HMF$
 - Claim: $s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $inv: 2^S \to 2^S: T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot](T)$ be the corresponding semantic function
- By Lemma 10.11(3), $gfp(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \xrightarrow{w} s' \Rightarrow s' \in \llbracket F \rrbracket \}$$

Theorem 11.1

For every LTS (S, Act, \longrightarrow), Inv = gfp(inv) holds.

Greatest Fixed Points and Invariants II

Proof (Theorem 11.1).

Reminder:

- $Inv \stackrel{(*)}{=} \{s \in S \mid \forall w \in Act^*, s' \in S : s \stackrel{w}{\longrightarrow} s' \Rightarrow s' \in \llbracket F \rrbracket \}$
- $inv: 2^S \rightarrow 2^S: T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot](T)$
- Lemma 10.11(3): $gfp(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$

"Inv \subseteq gfp(inv)":

According to Lemma 10.11(3), it suffices to show that $Inv \subseteq inv(Inv)$. So let $s \in Inv$. Thus by (*), for all $w \in Act^*$ and $s' \in S$ such that $s \stackrel{w}{\longrightarrow} s'$, $s' \in \llbracket F \rrbracket$.

We have to show that $s \in inv(Inv)$, which – by definition of inv – is equivalent to

- (1) $s \in \llbracket F \rrbracket$ and (2) $s \in [Act \cdot](Inv)$:
- (1) Choose $w := \varepsilon$ in (*).
- (2) To show for all $\alpha \in Act s' \in S$ if $s \xrightarrow{\alpha} s'$ then $s' \in Inv$ Thomas Noll Peter Thiemann

 Winter 2025/26

Greatest Fixed Points and Invariants II

Proof (Theorem 11.1).

Reminder:

- $Inv \stackrel{(*)}{=} \{s \in S \mid \forall w \in Act^*, s' \in S : s \stackrel{w}{\longrightarrow} s' \Rightarrow s' \in \llbracket F \rrbracket \}$
- $inv: 2^S \rightarrow 2^S: T \mapsto \llbracket F \rrbracket \cap [\cdot Act \cdot](T)$
- Lemma 10.11(3): $gfp(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$

"gfp(inv) $\subseteq Inv$ ":

Observation: $gfp(inv) = inv(gfp(inv)) \stackrel{(**)}{=} \llbracket F \rrbracket \cap [\cdot Act \cdot](gfp(inv)).$ Let $s \in gfp(inv)$, $w \in Act^*$ and $s' \in S$ such that $s \stackrel{w}{\longrightarrow} s'.$

- We show $s' \in \llbracket F \rrbracket$ by induction on |w|:
 - (1) $w = \varepsilon$: Here s = s', which implies $s' \in gfp(inv)$ and thus (by (**)) $s' \in [F]$.
 - (2) $w = \alpha w'$: Here $s \xrightarrow{\alpha} s'' \xrightarrow{w'} s'$ for some $s'' \in S$. Thus, $s'' \in gfp(inv)$ since $s \in gfp(inv)$ and by (**).

Therefore of FIFT by induction by nothesis for w

Least Fixed Points and Possibilities

- Possibilities (cf. Example 10.5):
 - $Pos(F) \stackrel{min}{=} F \vee \langle Act \rangle Pos(F)$
 - Claim: $s \models Pos(F)$ if a state satisfying F is reachable from s
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $pos: 2^S \to 2^S: T \mapsto \llbracket F \rrbracket \cup \langle \cdot Act \cdot \rangle(T)$ be the corresponding semantic function
- By Lemma 10.11(2), $lfp(pos) = \bigcap \{T \subseteq S \mid pos(T) \subseteq T\}$
- Direct formulation of possibility property:

$$Pos = \{s \in S \mid \exists w \in Act^*, s' \in \llbracket F \rrbracket : s \xrightarrow{w} s'\}$$

Theorem 11.2

For every LTS $(S, Act, \longrightarrow)$, Pos = lfp(pos) holds.

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 11.3

"It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever."

can be specified by

$$Inv(\langle a \rangle Forever(b))$$

where

$$Inv(F) \stackrel{\text{max}}{=} F \wedge [Act]Inv(F)$$
 (cf. Theorem 11.1)
 $Forever(b) \stackrel{\text{max}}{=} \langle b \rangle Forever(b)$

Syntax of Mutually Recursive Equational Systems

Definition 11.4 (Syntax of mutually recursive equational systems)

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables. The set $HMF_{\mathcal{X}}$ of Hennessy-Milner formulae over \mathcal{X} is defined by the following syntax:

$$F ::= X_i \qquad \text{(variable)}$$

$$\mid \text{ tt} \qquad \text{(true)}$$

$$\mid \text{ ff} \qquad \text{(false)}$$

$$\mid F_1 \wedge F_2 \qquad \text{(conjunction)}$$

$$\mid F_1 \vee F_2 \qquad \text{(disjunction)}$$

$$\mid \langle \alpha \rangle F \qquad \text{(diamond)}$$

$$\mid [\alpha] F \qquad \text{(box)}$$

where $i \in [n]$ and $\alpha \in Act$. A mutually recursive equational system has the form

$$(X_i = F_{X_i} \mid 1 \leq i \leq n)$$

where $F_{X_i} \in HMF_{\mathcal{X}}$ for every $i \in [n]$.

Semantics of Recursive Equational Systems I

As before: Semantics of formula depends on states satisfying the variables.

Definition 11.5 (Semantics of mutually recursive equational systems)

Let $(S, Act, \longrightarrow)$ be an LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. The semantics of E, $[E] : (2^S)^n \to (2^S)^n$, is defined by

$$[\![E]\!](T_1,\ldots,T_n):=([\![F_{X_1}]\!](T_1,\ldots,T_n),\ldots,[\![F_{X_n}]\!](T_1,\ldots,T_n))$$

where

Semantics of Recursive Equational Systems II

Lemma 11.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and

$$(T_1,\ldots,T_n)\sqsubseteq (T'_1,\ldots,T'_n)$$
 iff $T_i\subseteq T'_i$ for every $i\in [n]$.

Then:

(1) (D, \sqsubseteq) is a complete lattice: if $\{(T_1^k, \ldots, T_n^k) \mid k \in I\} \subseteq D$ for some index set I, then

$$\bigsqcup\{(T_1^k,\ldots,T_n^k)\mid k\in I\} = \left(\bigcup_{k\in I}T_1^k,\ldots,\bigcup_{k\in I}T_n^k\right)
\bigcap\{(T_1^k,\ldots,T_n^k)\mid k\in I\} = \left(\bigcap_{k\in I}T_1^k,\ldots,\bigcap_{k\in I}T_n^k\right)$$

- (2) $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq)
- (3) Ifp($\llbracket E \rrbracket$) = $\llbracket E \rrbracket^m(\emptyset, \dots, \emptyset)$ for some $m \in \mathbb{N}$
- (4) $\mathsf{gfp}(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \ldots, S)$ for some $M \in \mathbb{N}$

A Mutually Recursive Specification

Example 11.7

• Let $S := \{s, s_1, s_2, s_3\}$ and E: $X = \langle a \rangle \text{tt} \wedge [a] Y \wedge [b] \text{ff}$ $Y = \langle b \rangle \text{tt} \wedge [b] X \wedge [a] \text{ff}$

Interpretation:

- X: "has no b-successor and ≥ 1 a-successors that all satisfy Y"
- Y: "has no a-successor and
 ≥ 1 b-successors that all satisfy X"
 ⇒ expected: X = {s}, Y = {s₁}

Fixed-point iteration:

Characteristic Formulae

- The Hennessy-Milner theorem asserts that for finitely branching processes, strong bisimilarity and HML-equivalence coincide.
- As a next step, we show that for finite transition systems, the equivalence classes under ~ can be characterised by a system of formulae in HML extended with recursion – one for each state.
- For a finite process P, this HML-formula is called P's characteristic formula as it exactly characterises the ~-equivalence class of P.

The Need for Recursion

Lemma 11.8

There is no recursion-free formula $F \in HMF$ that can characterise the process $A^{\omega} = a.A^{\omega}$ up to strong bisimilarity.

Proof.

- Assume $F \in HMF$ with $\llbracket F \rrbracket = \{ P \in Prc \mid P \sim A^{\omega} \}$.
- Obviously $a^i \not\sim A^{\omega}$ for every $i \geq 0$.
- On the other hand, $A^{\omega} \models F$ implies (by Lemma 9.9) that $a^k \models F$ where k is the modal depth of F.
- Thus, $\mathbf{a}^k \sim \mathbf{A}^\omega$, which contradicts $\mathbf{a}^i \not\sim \mathbf{A}^\omega$.

Lemma (Lemma 9.9)

For every $F \in HMF$, $A^{\omega} \models F$ iff $a^k \models F$, where k is the modal depth^a of F.

Characteristic Formulae by Example

- Consider the finite LTS $(S, Act, \longrightarrow)$, and let \mathcal{X} contain (at least) |S|variables.
- Intuitively, X_P is the syntactic symbol for the characteristic formula of process $P \in S$.
- A characteristic formula for P has to describe
 - which actions P can perform,
 - what happens after performing an action, and
 - which actions it cannot perform.

Example 11.9 (Coffee/tea machine; cf. Example 3.13)

M = m.M' $M' = \overline{c}.M + \overline{t}.M$

Therefore:

Observations:

$$X_M = \langle m \rangle X_{M'} \wedge [m] X_{M'} \wedge [\{\overline{c}, \overline{t}\}]$$
ff

- (1) M can perform m and become M'
- (2) Performing m, M necessarily becomes M'

Similarly:

$$X_{M'} = \langle \overline{c} \rangle X_M \wedge \langle \overline{t} \rangle X_M \wedge \\
[\{\overline{c}, \overline{t}\}] X_M \wedge [m] ff$$

19/25

at parform any other

The General Case

Enabled actions:
$$P \models \bigwedge_{\{\alpha,P' \mid P \xrightarrow{\alpha} P'\}} \langle \alpha \rangle X_{P'}$$

Resulting states:
$$P \models \bigwedge_{\{\alpha \mid P \xrightarrow{\alpha}\}} [\alpha] \left(\bigvee_{\{P' \mid P \xrightarrow{\alpha} P'\}} X_{P'}\right)$$

can be combined!

Disabled actions: $P \models \bigwedge_{\{\alpha \mid P / \stackrel{\sim}{\longrightarrow}\}} [\alpha]$ ff

Theorem 11.10 (Characteristic Formula)

(Ingolfsdottir et al. 1987)

For a finite-state process $P \in Prc$, let the characteristic formula $X_P \in HMF_{\mathcal{X}}$ be defined by:

$$X_{P} \stackrel{\text{max}}{=} \bigwedge_{\{\alpha, P' \mid P \xrightarrow{\alpha} P'\}} \langle \alpha \rangle X_{P'} \wedge \bigwedge_{\alpha \in Act} [\alpha] \left(\bigvee_{\{P' \mid P \xrightarrow{\alpha} P'\}} X_{P'} \right)$$

(where $\bigwedge_{\emptyset} ... := \text{tt}$ and $\bigvee_{\emptyset} ... := \text{ff}$). Then, for every $Q \in Prc : Q \models X_P$ iff $P \sim Q$.

Mixing Least and Greatest Fixed Points I

- So far: least/greatest fixed point of overall system
- But: too restrictive

Example 11.11

"It is possible for the system to reach a state which has a livelock (i.e., an outgoing infinite sequence of internal steps)."

can be specified by

Pos(Livelock)

where

$$Pos(F) \stackrel{\min}{=} F \lor \langle Act \rangle Pos(F)$$
 (cf. Theorem 11.2)
 $Livelock \stackrel{\max}{=} \langle \tau \rangle Livelock$

and thus $Livelock \equiv Forever(\tau)$ (cf. Example 11.3).

Mixing Least and Greatest Fixed Points II

Caveat: Arbitrary mixing can entail non-monotonic behaviour!

Example 11.12

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

$$(\bot,\top)=(\emptyset,\mathcal{S})\stackrel{\llbracket \mathcal{E}\rrbracket}{\mapsto}(\mathcal{S},\emptyset)\stackrel{\llbracket \mathcal{E}\rrbracket}{\mapsto}(\emptyset,\mathcal{S})\stackrel{\llbracket \mathcal{E}\rrbracket}{\mapsto}\dots$$

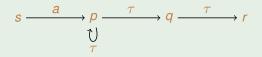
Solution: Nesting of specifications by partitioning equations into a sequence of blocks such that all equations in one block

- are of same type (either min or max) and
- use only variables defined in the same or subsequent blocks.
- ⇒ Bottom-up, block-wise evaluation by fixed-point iteration

Mixing Least and Greatest Fixed Points III

Example 11.13 (cf. Example 11.11)

 $PosLL \stackrel{\min}{=} Livelock \lor \langle Act \rangle PosLL$ $Livelock \stackrel{\max}{=} \langle \tau \rangle Livelock$



(1) Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

(2) Least fixed-point iteration for $PosLL : T \mapsto \{p\} \cup \langle \cdot Act \cdot \rangle(T)$:

$$\bot = \emptyset \mapsto \{p\} \mapsto \{s, p\} \mapsto \{s, p\}$$

The Modal *u*-Calculus

- Logic that supports free mixing of least and greatest fixed points (with guardedness conditions):
 - originally introduced by D. Kozen: Results on the Propositional μ -Calculus, Theoretical Computer Science 27, 1983
 - overview paper by J. Bradfield, C. Stirling: Modal Logics and mu-Calculi: An Introduction, Chapter 4 of Handbook of Process Algebra, Elsevier, 2001
- HML variants are fragments thereof
- Expressivity increases with alternation of least and greatest fixed points:
 - J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict,
 Theoretical Computer Science 195(2), 1998
- Decidable model-checking problem for finite LTSs (in NP ∩ co-NP; linear for HML with one variable)
- Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)
- Overview paper:
 - O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite