Concurrency Theory

Winter 2025/26

Lecture 9: Properties of Hennessy-Milner Logic

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

Closure under Negation I

Observation: Negation is *not* one of the HML constructs.

Reason: HML is closed under complement.

Lemma 9.1

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Proof.

Definition of F^c:

$$\begin{aligned} \operatorname{tt}^c &:= \operatorname{ff} & \operatorname{ff}^c &:= \operatorname{tt} \\ (F_1 \wedge F_2)^c &:= F_1^c \vee F_2^c & (F_1 \vee F_2)^c &:= F_1^c \wedge F_2^c \\ (\langle \alpha \rangle F)^c &:= [\alpha] F^c & ([\alpha] F)^c &:= \langle \alpha \rangle F^c \end{aligned}$$

Closure under Negation II

Proof (Lemma 9.1; continued).

We show $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ by induction on the structure of $F \in HMF$:

• F = tt (F = ff analogously):

$$\llbracket F^c \rrbracket = \llbracket \mathsf{ff} \rrbracket \overset{\mathsf{Def. 8.2}}{=} \emptyset = \mathcal{S} \setminus \mathcal{S} \overset{\mathsf{Def. 8.2}}{=} \mathcal{S} \setminus \llbracket \mathsf{tt} \rrbracket = \mathcal{S} \setminus \llbracket \mathcal{F} \rrbracket$$

• $F = F_1 \wedge F_2$ ($F = F_1 \vee F_2$ analogously):

Closure under Negation II

Proof (Lemma 9.1; continued).

We show $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ by induction on the structure of $F \in HMF$:

• $F = \langle \alpha \rangle F_0$ ($F = [\alpha] F_0$ analogously):

HML and Process Traces I

Lemma 9.2 (HML and process traces)

Let $(S, Act, \longrightarrow)$ be an LTS, and let $s, t \in S$ satisfy the same HMF (i.e., for all $F \in HMF$: $s \models F \iff t \models F$). Then Tr(s) = Tr(t).

Proof.

Let $s, t \in S$ such that for all $F \in HMF$: $s \models F \iff t \models F$.

Assumption: $Tr(s) \neq Tr(t)$.

Then there exists $n \ge 1$ and $w = \alpha_1 \dots \alpha_n \in Act^+$ with $w \in Tr(s) \setminus Tr(t)$ (or vice versa).

Hence, for $F := \langle \alpha_1 \rangle \dots \langle \alpha_n \rangle$ tt $\in \mathit{HMF}$: $s \models F$ but $t \not\models F$. $\mbox{\em ξ}$

HML and Process Traces II

Remark: The converse does not hold.

Example 9.3

- Let
 - $P := a.(b.nil + c.nil) \in Prc$ and
 - Q := a.b.nil + a.c.nil $\in Prc.$
- Then $Tr(P) = Tr(Q) = \{\varepsilon, a, ab, ac\}.$
- Let $F := [a](\langle b \rangle \mathsf{tt} \wedge \langle c \rangle \mathsf{tt}) \in \mathit{HMF}$.
- Then $P \models F$ but $Q \not\models F$.
- Thus: HML can distinguish branching behaviour of processes (just as bisimulation can...).

Strong Bisimilarity and HML

- Strong bisimilarity (and observation congruence) are based on mutual mimicking of processes.
- They possess the required properties of behavioural equivalences.
- In particular, \sim and \approx^c are deadlock-sensitive CCS congruences.
- Hennessy-Milner Logic (HML) is a logic for expressing properties of processes.

Aim

Study the connection between strong bisimilarity and satisfaction of HML formulae.

Finitely Branching Transition Systems

Definition 9.4 (Finitely branching LTS)

- A process $P \in Prc$ is finitely branching if the set $\{P' \in Prc \mid P \xrightarrow{\alpha} P'\}$ is finite for every $\alpha \in Act$.
- A labelled transition system is finitely branching if each state is finitely branching.

Example 9.5

(1) The process $A_{rep} = a.nil \parallel A_{rep}$ ("A replicated") is not finitely branching. By induction on n, one can prove that for each $n \in \mathbb{N}$:

$$A_{rep} \xrightarrow{a} \underbrace{a.nil \parallel \cdots \parallel a.nil}_{n \text{ times}} \parallel nil \parallel A_{rep}$$

(2) Also the "process" $A^{<\omega} = \sum_{i \in \mathbb{N}} a^i$ with $a^0 = \text{nil}$ and $a^{i+1} = a.a^i$ is not finitely branching:

Relationship Between HML and Strong Bisimilarity I

Theorem 9.6 (Hennessy-Milner Theorem)

Let $(S, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be a finitely branching LTS and $s, t \in S$. Then: $s \sim t$ iff for every $F \in HMF : (s \models F \iff t \models F)$.

Proof.

- " \Rightarrow ": Assume $s \sim t$ and $s \models F$ for some $F \in HMF$. We show $t \models F$ by structural induction on F. Interesting cases:
 - $F = \langle \alpha \rangle F'$:
 - Since $s \models F$, there ex. $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $s' \models F'$.
 - Since $s \sim t$, there ex. $t' \in S$ such that $t \stackrel{\alpha}{\longrightarrow} t'$ and $s' \sim t'$.
 - By induction hypothesis, $t' \models F'$. Thus, $t \models \langle \alpha \rangle F' = F$.
 - $F = [\alpha]F'$: Assume that $t \stackrel{\alpha}{\longrightarrow} t'$ for some $t' \in S$.
 - Since $s \sim t$, there ex. $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $s' \sim t'$.
 - Since $s \models [\alpha]F'$, also $s' \models F'$.

Relationship Between HML and Strong Bisimilarity II

Theorem (Hennessy-Milner Theorem)

Let $(S, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$ be a finitely branching LTS and $s, t \in S$. Then: $s \sim t$ iff for every $F \in HMF : (s \models F \iff t \models F)$.

Proof.

"\(\infty\)": Define $u \equiv v$ iff $(u \models F \iff v \models F)$ for every $F \in HMF$, and let $s \equiv t$.

We prove $s \sim t$ by showing that \equiv is a strong bisimulation. To this aim, let $u \equiv v$ and $u \stackrel{\alpha}{\longrightarrow} u'$ for some $u' \in S$.

We have to show that ex. $v' \in S$ with $v \xrightarrow{\alpha} v'$ and $u' \equiv v'$.

- Assume that there is no such v'.
- Let $\{v' \in S \mid v \xrightarrow{\alpha} v'\} = \{v'_1, \dots, v'_n\}$ with $n \in \mathbb{N}$ (finitely branching!).
- By the previous assumption, $u' \not\equiv v'_i$ for each $i \in [n]$.
- Thus, for each $i \in [n]$ there ex. $F_i \in HMF$ with $u' \models F_i$ and $v'_i \not\models F_i$.

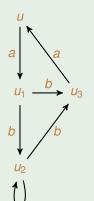
12/19

Proving Non-Bisimilarity

Proving non-bisimilarity

Showing $P \not\sim Q$ thus amounts to finding a single HML-formula F with $P \models F$ and $Q \not\models F$.

Example 9.7



Distinguishing formulae

(satisfied by row state / violated by column state):

	и	<i>u</i> ₁	U_2	U ₃
и	_	$\langle a \rangle$ tt	$\langle a \rangle$ tt	$\langle a \rangle \langle b \rangle$ tt
<i>U</i> ₁	[<i>a</i>]ff	_	_	[<i>a</i>]ff
U_2	[<i>a</i>]ff	_	_	[<i>a</i>]ff
<i>U</i> 3	$\langle a \rangle \langle a \rangle$ tt	$\langle a \rangle$ tt	$\langle a \rangle$ tt	_

(thus $u_1 \sim u_2$ — check using CAAL)

Counterexample for Non-Finitely Branching Processes

Lemma 9.8

Let $A^{<\omega}=\sum_{i\in\mathbb{N}}a^i$ (see Example 9.5) and $A^\omega=a.A^\omega$. Then $A^{<\omega}$ and $A^{<\omega}+A^\omega$

- (1) are not strongly bisimilar, but
- (2) satisfy the same HML formulae.

Proof.

- (1) Assume that $A^{<\omega} \sim A^{<\omega} + A^{\omega}$. Then $A^{<\omega} + A^{\omega} \xrightarrow{a} A^{\omega}$ must be mimicked by $A^{<\omega} \xrightarrow{a} a^{i-1}$ for some $i \ge 1$. But obviously $A^{\omega} \not\sim a^{i-1}$.
- (2) By structural induction on $F \in HMF$, using the following lemma.

Lemma 9.9

For every $F \in HMF$, $A^{\omega} \models F$ iff $a^k \models F$, where k is the modal depth^a of F.

Proof.

^athe maximal number of nested occurrences of modal operators in *F*

Recap: Weak Bisimulation

Definition (Weak transition relation; Definition 5.8)

For $\alpha \in Act$, $\stackrel{\alpha}{\Longrightarrow} \subseteq Prc \times Prc$ is given by

$$\stackrel{\alpha}{\Longrightarrow} := \begin{cases} \left(\stackrel{\tau}{\longrightarrow} \right)^* \circ \stackrel{\alpha}{\longrightarrow} \circ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha \neq \tau \\ \left(\stackrel{\tau}{\longrightarrow} \right)^* & \text{if } \alpha = \tau. \end{cases}$$

where $\left(\stackrel{\tau}{\longrightarrow} \right)^*$ denotes the reflexive and transitive closure of relation $\stackrel{\tau}{\longrightarrow}$.

Definition (Weak bisimulation; Definition 5.9)

(Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P, Q) \in \rho$ and $\alpha \in Act$ (including $\alpha = \tau$):

- (1) if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \Longrightarrow Q'$ and $P' \rho Q'$, and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \cap Q'$.

Introducing Weak Modalities

Goal: Modify HML by turning strong modal operators into weak ones (see J. Parrow et al.: *Weak Nominal Modal Logic*, FORTE 2017)

Introducing Weak Modalities

Definition 9.10 (Syntax and semantics of weak modalities)

• *wHMF* is obtained from *HMF* of (Definition 8.1) by replacing $\langle \alpha \rangle$ and $[\alpha]$ with

$$\langle\langle\alpha\rangle\rangle F$$
 and $[[\alpha]]F$

for $\alpha \in Act$ and $F \in wHMF$.

• Modifying Definition 8.2, for an LTS $(S, Act, \longrightarrow)$ and $F \in wHMF$ we let

$$\llbracket \langle \langle \alpha \rangle \rangle F \rrbracket := \langle \langle \cdot \alpha \cdot \rangle \rangle (\llbracket F \rrbracket) \qquad \qquad \llbracket \llbracket [\alpha] \rrbracket F \rrbracket := \llbracket [\cdot \alpha \cdot] \rrbracket (\llbracket F \rrbracket)$$

where $\langle\langle\cdot\alpha\cdot\rangle\rangle,[[\cdot\alpha\cdot]]:2^S\to 2^S$ are given by

$$\begin{split} &\langle\langle\cdot\alpha\cdot\rangle\rangle(T) := \{s \in S \mid \exists s' \in T : s \stackrel{\alpha}{\Longrightarrow} s'\} \\ &[[\cdot\alpha\cdot]](T) := \{s \in S \mid \forall s' \in S : s \stackrel{\alpha}{\Longrightarrow} s' \text{ implies } s' \in T\} \end{split}$$

Again, we write $s \models F$ iff $s \in \llbracket F \rrbracket$, and $F, G \in wHMF$ are equivalent (written $F \equiv G$) iff they are satisfied by the same processes in every LTS.

Relationship Between HML with Weak Modalities and Weak Bisimilarity

Theorem 9.11 (Hennessy-Milner Theorem for weak bisimulation)

Let
$$(S, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$$
 be a finitely branching LTS and $s, t \in S$. Then:
 $s \approx t$ iff for every $F \in wHMF : (s \models F \iff t \models F)$.

Proof.

see J. Parrow et al.: Weak Nominal Modal Logic, FORTE 2017

Example 9.12 (Counterexample to congruence of weak bisimilarity)

- Lecture 6: τ .a.nil + b.nil $\not\approx$ a.nil + b.nil
- Distinguishing *wHMF* formula: $\langle \langle \tau \rangle \rangle$ [[b]]ff
- Check using CAAL