Concurrency Theory

Winter 2025/26

Lecture 7: Bisimulation as a Fixed Point

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

Strong Bisimilarity as a Fixed Point

Question: How to (dis-)prove that $P \sim Q$ for $P, Q \in Prc$?

So far: Game characterisation

Theorem (Game characterisation of bisimulation; cf. Theorem 5.2)

- (1) $s \sim t$ iff the defender has a universal winning strategy from configuration (s,t).
- (2) $s \nsim t$ iff the attacker has a universal winning strategy from configuration (s,t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Goal: Show that \sim can be characterised as the greatest fixed point of a monotonic function on a complete lattice¹.

¹Later we will use similar methods to give meaning to recursive logical formulae

Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \Rightarrow d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \Rightarrow d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

- (1) (\mathbb{N}, \leq) is a total order.
- (2) $(\mathbb{N}, <)$ is not a partial order (since not reflexive).
- (3) $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order.
- (4) (Σ^*, \sqsubseteq) is a (non-total) partial order, where Σ is some alphabet and \sqsubseteq denotes prefix ordering $(\underline{u} \sqsubseteq v \iff \exists w \in \Sigma^* : \underline{uw} = v)$.

Upper and Lower Bounds

Definition 7.3 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- (1) An element $d \in D$ is a upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is a least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigsqcup T$).
- (2) An element $d \in D$ is a lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is a greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

- (1) $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty.
- (2) In $(2^{\mathbb{N}}, \subseteq)$, every subset $T \subseteq 2^{\mathbb{N}}$ has an LUB and a GLB:

$$\Box T = \bigcup T$$
 and $\Box T = \bigcap T$.

Complete Lattices I

Definition 7.5 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs.

Remark

In a complete lattice

$$\perp := \square \emptyset (= \square D)$$
 and $\top := \square \emptyset (= \square D)$

respectively denote the least and greatest element of D.

- (1) (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB.
- (2) $(\mathbb{N} \cup {\infty}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice.
- (3) $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice (cf. Example 7.4).

Complete Lattices II

Lemma 7.7

Let S be some (finite or infinite) set. Then $(2^S, \subseteq)$ is a complete lattice with

- $\bigcup \mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$
- $\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{\mathcal{T} \in \mathcal{T}} \mathcal{T}$ for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$
- $\bullet \perp = \sqcup \emptyset = \sqcap 2^{S} = \emptyset$
- ullet $\top = \prod \emptyset = \bigsqcup 2^S = S$

Proof.

omitted

Fixed Points

Definition 7.8 (Fixed point)

Let D be some domain and $f: D \to D$. An element $d \in D$ is

- a fixed point of f if f(d) = d;
- a pre-fixed point of f if $f(d) \sqsubseteq d$;
- a post-fixed point of f if $d \sqsubseteq f(d)$.

- (1) The (only) fixed points of $f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$ are 0 and 1
- (2) A subset $T \subseteq \mathbb{N}$ is a fixed point of $f_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1,2\}$ iff $\{1,2\} \subseteq T$

Monotonicity of Functions

Definition 7.10 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f: D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$, $d_1 \sqsubseteq d_2 \Rightarrow f(d_1) \sqsubseteq' f(d_2)$.

- (1) $f_1: \mathbb{N} \to \mathbb{N}: n \mapsto n^2$ is monotonic w.r.t. (\mathbb{N}, \leq)
- (2) $f_2: \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}: T \mapsto T \cup \{1, 2\}$ is monotonic w.r.t. $(\mathbf{2}^{\mathbb{N}}, \subseteq)$
- (3) Let $\mathcal{T} := \{ T \subseteq \mathbb{N} \mid T \text{ finite} \}$. Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$
- (4) $f_4: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto \mathbb{N} \setminus T$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $f_4(\emptyset) = \mathbb{N} \not\subseteq f_4(\mathbb{N}) = \emptyset$).

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 7.12 (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f: D \to D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f), which are given by

```
fix(f) := \prod \{d \in D \mid f(d) \sqsubseteq d\} (GLB of all pre-fixed points of f)
```

$$FIX(f) := \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\}$$
 (LUB of all post-fixed points of f)

The Fixed-Point Theorem II

Example 7.13 (cf. Example 7.9)

- Let $(D, \sqsubseteq) := (2^{\mathbb{N}}, \subseteq)$ and $f : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\}.$
- As seen in Example 7.9(2): f(T) = T iff $\{1, 2\} \subseteq T$.
- Theorem 7.12 for fix:

$$\begin{aligned} \operatorname{fix}(f) &= \bigcap \{d \in D \mid f(d) \sqsubseteq d\} \\ &= \bigcap \{T \subseteq \mathbb{N} \mid f(T) \subseteq T\} \\ &= \bigcap \{T \subseteq \mathbb{N} \mid T \cup \{1,2\} \subseteq T\} \\ &= \bigcap \{T \subseteq \mathbb{N} \mid \{1,2\} \subseteq T\} \\ &= \{1,2\} \end{aligned} \tag{Def. } \text{f}$$

Theorem 7.12 for FIX:

$$\begin{aligned} \mathsf{FIX}(f) &= \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\} \\ &= \bigcup \{T \subseteq \mathbb{N} \mid T \subseteq f(T)\} \\ &= \bigcup \{T \subseteq \mathbb{N} \mid T \subseteq T \cup \{1,2\}\} \\ &= \bigcup 2^{\mathbb{N}} \\ &= \mathbb{N} \end{aligned} \tag{Lemma 7.7}$$

The Fixed-Point Theorem III

Proof (Theorem 7.12).

First we show that $fix(f) = \prod \{d \in D \mid f(d) \subseteq d\}$ has the required properties:

- (1) fix(t) is a fixed point, i.e., f(fix(t)) = fix(t).
- (2) fix(f) is "least", i.e., $\forall d \in D : f(d) = d \Rightarrow fix(f) \sqsubseteq d$.

```
Let A := \{ d \in D \mid f(d) \sqsubseteq d \} (and thus fix(f) = \prod A).
```

(1) We prove both directions separately:

```
f(fix(f)) \sqsubseteq fix(f): fix(f) = \prod A
                                                                                       (def. fix(f))
                            \Rightarrow \forall a \in A : fix(f) \square a
                                                                                      (def. \square)
                            \Rightarrow \forall a \in A : f(fix(f)) \sqsubseteq f(a) \sqsubseteq a (f monotonic, def. A)
                            \Rightarrow f(fix(f)) \square \square A
                            \Rightarrow f(fix(f)) \sqsubseteq fix(f)
                                                                                      (fix(f) = \prod A)
f(fix(f)) \supseteq fix(f): f(fix(f)) \sqsubseteq fix(f)
                                                                          (as shown)
                            \Rightarrow f(f(fix(f))) \sqsubseteq f(fix(f))
                                                                           (f monotonic)
                            \Rightarrow f(fix(f)) \in A
                                                                          (def. A)
                            \Rightarrow fix(f) \sqsubseteq f(fix(f))
                                                                          (fix(f) = \prod A)
```

The Fixed-Point Theorem III

Proof (Theorem 7.12).

First we show that $fix(f) = \prod \{d \in D \mid f(d) \subseteq d\}$ has the required properties:

- (1) fix(t) is a fixed point, i.e., f(fix(t)) = fix(t).
- (2) fix(f) is "least", i.e., $\forall d \in D : f(d) = d \Rightarrow fix(f) \sqsubseteq d$.

Let $A := \{d \in D \mid f(d) \sqsubseteq d\}$ (and thus fix $(f) = \prod A$).

(2) Let $d \in D$ such that f(d) = d. $\Rightarrow f(d) \sqsubseteq d$ $\Rightarrow d \in A$ (def. A) $\Rightarrow \text{fix}(f) \sqsubseteq d$ (fix $(f) = \bigcap A$)

 $FIX(f) = \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\}$ is greatest fixed point of f: analogously

The Fixed-Point Theorem for Finite Lattices I

Theorem 7.14 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

- Let $f: 2^{\{0,1,2\}} \to 2^{\{0,1,2\}}: T \mapsto T \cup \{1\} \setminus \{2\}$ (monotonic on $(2^{\{0,1,2\}},\subseteq)$)
- $f^0(\bot) = \emptyset$, $f^1(\bot) = \{1\}$, $f^2(\bot) = \{1\} = f^1(\bot)$ $\Rightarrow \text{fix}(f) = \{1\}$ after m = 1 iteration
- $f^0(\top) = \{0, 1, 2\}, f^1(\top) = \{0, 1\}, f^2(\top) = \{0, 1\} = f^1(\top)$ $\Rightarrow FIX(f) = \{0, 1\} \text{ after } M = 1 \text{ iteration}$

The Fixed-Point Theorem for Finite Lattices II

Proof (Theorem 7.14).

We first have to show that there ex. $m \in \mathbb{N}$ such that $fix(f) = f^m(\bot)$:

- Since $\bot = \bigcup \emptyset$ is the least element of D, $\bot \sqsubseteq f(\bot)$.
- By monotonicity of f, we can iteratively apply f to this inequation, which yields the "chain"

$$\bot \sqsubseteq f(\bot) \sqsubseteq \ldots \sqsubseteq f^{i}(\bot) \sqsubseteq f^{i+1}(\bot) \sqsubseteq \ldots$$

- By finiteness of D, there ex. $m \in \mathbb{N}$ such that $f^m(\bot) = f^{m+1}(\bot) = f^{m+2}(\bot) = \dots$
- Thus $f(f^m(\bot)) = f^m(\bot)$, and hence $f^m(\bot)$ is a fixed point of f.
- To show the minimality of $f^m(\bot)$, let f(d) = d be another fixed point. Since $\bot \sqsubseteq d$, monotonicity of f yields $f(\bot) \sqsubseteq f(d) = d$, which can be iterated to show that $f^m(\bot) \sqsubseteq d$.

Altogether, $f^m(\bot) = fix(f)$.

Strong Bisimilarity Revisited

Recall: \sim implies trace equivalence, and checking trace equivalence is PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; cf. Definition 4.2)

Processes $P,Q \in Prc$ are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation ρ with $P \rho Q$. Thus,

$$\sim = \bigcup \{ \rho \subseteq \mathit{Prc} \times \mathit{Prc} \mid \rho \text{ is a strong bisimulation} \}.$$

Relation \sim is called strong bisimilarity.

By Lemma 7.7, $(2^{Prc \times Prc}, \subseteq)$ is a complete lattice with \bigcup and \bigcap as least upper and greatest lower bound, respectively.

Show: \sim can be characterised as the greatest fixed point of a monotonic function on this lattice.

Fixed-Point Characterisation of Strong Bisimilarity I

Definition 7.16 (Function on relations)

Let $\rho \subseteq Prc \times Prc$. Let $\mathcal{F}: 2^{Prc \times Prc} \to 2^{Prc \times Prc}$ be defined as follows: for every $P, Q \in Prc, (P, Q) \in \mathcal{F}(\rho)$ iff

- (1) if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$ and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \cap Q'$.

Intuition: $\mathcal{F}(\rho)$ contains all pairs of processes from which, in one round of the bisimulation game, the defender can ensure that the players reach a configuration contained in ρ . Clearly, \mathcal{F} is monotonic.

Corollary 7.17

 ρ is a strong bisimulation iff $\rho \subseteq \mathcal{F}(\rho)$, and thus:

$$\sim = \bigcup \{ \rho \in \mathit{Prc} \times \mathit{Prc} \mid \rho \subseteq \mathcal{F}(\rho) \}.$$

Fixed-Point Characterisation of Strong Bisimilarity II

Corollary

 ρ is a strong bisimulation iff $\rho \subseteq \mathcal{F}(\rho)$, and thus:

$$\sim = \bigcup \{ \rho \in \mathit{Prc} \times \mathit{Prc} \mid \rho \subseteq \mathcal{F}(\rho) \}.$$

Thus: \sim is the LUB of all post-fixed points of \mathcal{F} .

Theorem (Tarski's fixed-point theorem; cf. Theorem 7.12)

Let (D, \sqsubseteq) be a complete lattice and $f: D \to D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f), which are given by

$$fix(f) := \prod \{d \in D \mid f(d) \sqsubseteq d\}$$
 (GLB of all pre-fixed points of f)

$$FIX(f) := \bigsqcup \{d \in D \mid d \sqsubseteq f(d)\}$$
 (LUB of all post-fixed points of f)

Thus: $\sim = FIX(\mathcal{F})$.

Application to Finite LTS ("Partition Refinement")

Theorem (Fixed-point theorem for finite lattices; cf. Theorem 7.14)

Let (D, \sqsubseteq) be a finite complete lattice and $f: D \to D$ monotonic. Then

$$fix(f) = f^m(\bot)$$
 and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

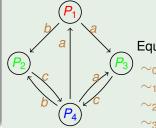
Corollary 7.18

For finite-state process P with state space S, \sim can be computed by:

$$\sim = \bigcap_{i=0}^{\infty} \sim_i$$
 where $\sim_0 := S \times S$

$$\sim_{i+1} := \mathcal{F}(\sim_i)$$

Example 7.19



Equivalence classes:

$$\sim_1 = \{\{P_1, P_4\}, \{P_2\}\}$$

$$\sim_2 = \{\{P_1\}, \{P_2, P_3\}\}$$

Complexity of Checking Strong Bisimilarity

- The previous corollary yields a polynomial-time algorithm.
- More efficient algorithms do exist, but are not topic of this lecture.

Theorem 7.20 (Complexity)

(Balcázar et al. 1992)

Deciding strong bisimilarity between finite LTSs is P-complete.^a

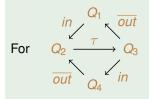
^aRecall that checking trace equivalence is PSPACE-complete.

Deciding Weak Bisimilarity

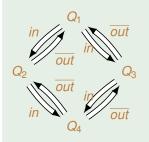
- Checking whether $P \approx Q$ (or $P \approx^c Q$) over finite-state processes can be reduced to checking strong bisimilarity \sim , using a technique called saturation.
- Intuitively, saturation amounts to:
 - (1) pre-computing the weak transition relation $\stackrel{\alpha}{\Longrightarrow}$ (for $\alpha \neq \tau$) based on given relation \longrightarrow
 - (2) constructing a new finite-state process by replacing original transitions with weak transitions
 - (similarly to elimination of ε -transitions in ε -NFA; see following example)
- The question whether $P \approx Q$ now boils down to checking \sim on the saturated processes.
- As both computing \Longrightarrow and \sim can be done in polynomial time, $P \approx Q$ can also be checked in polynomial time.

Deciding Weak Bisimilarity (Example)

Example 7.21 (Parallel two-place buffer; cf. Example 5.11)



saturation yields



$$P_1$$
 $in \iint \overline{out}$
 $\sim P_2$
 $in \iint \overline{out}$
 P_3

Summary: Bisimulation

Definitions:

- ◆ ~: Strong bisimilarity (Definition 4.2)
- ◆ ≈: Weak bisimilarity (observation equivalence; Definition 5.10)
- ≈^c: Observation congruence (Definition 6.12)

Properties:

- \sim , \approx and \approx^c are equivalence relations.
- \sim is finer than \approx^c , and \approx^c is finer than \approx .
- \sim and \approx^c are CCS congruences.
- \sim , \approx and \approx^c are (observationally) deadlock-sensitive.
- ullet \sim and \approx can be characterised by a two-player game.
- ullet and pprox can be characterised as greatest fixed points of a monotonic function on a complete lattice.
- Both characterisations yield decision algorithms for finite-state processes.