Concurrency Theory

Winter 2025/26

Lecture 6: Properties of Weak Bisimulation

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

Rules of the Bisimulation Game

Rules

In each round, the current configuration (s, t) is changed as follows:

- (1) the attacker chooses one of the two processes in the current configuration, say t, and makes an $\stackrel{\alpha}{\longrightarrow}$ -move for some $\alpha \in Act$ to t', say, and
- (2) the defender must respond by making an $\stackrel{\alpha}{\longrightarrow}$ -move in the other process s of the current configuration under the same action α , yielding $s \stackrel{\alpha}{\longrightarrow} s'$.

The pair of processes (s', t') becomes the new current configuration. The game continues with another round.

Results

- (1) If one player cannot move, the other player wins:
 - attacker cannot move if $s \rightarrow$ and $t \rightarrow$
 - defender cannot move if no matching transition available
- (2) If the game is played ad infinitum, the defender wins.

Game Characterisation of Bisimulation

Theorem (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

- (1) $s \sim t$ iff the defender has a universal winning strategy from configuration (s,t).
- (2) $s \nsim t$ iff the attacker has a universal winning strategy from configuration (s,t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation relation $\hfill \Box$

Thus, a bisimulation game can be used to prove bisimilarity as well as non-bisimilarity. It often provides elegant arguments for $s \nsim t$.

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition (Strong simulation)

- Relation $\rho \subseteq Prc \times Prc$ is a strong simulation if, whenever $(P, Q) \in \rho$ and $P \stackrel{\alpha}{\longrightarrow} P'$, there exists $Q' \in Prc$ such that $Q \stackrel{\alpha}{\longrightarrow} Q'$ and $P' \rho Q'$.
- Q strongly simulates P, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- P and Q are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all of P's options.

But: P does not need to be able to match each transition of Q!

Strong Simulation and Bisimilarity

Lemma (Bisimilarity implies simulation equivalence)

If $P \sim Q$, then $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example

$$\begin{array}{cccc}
P & Q \\
a \swarrow \searrow a & \downarrow a \\
P_1 & P_3 & Q_1 \\
\downarrow b & \downarrow b \\
P_2 & Q_2
\end{array}$$

$$P \sqsubseteq Q$$
 and $Q \sqsubseteq P$, but $P \not\sim Q$

 $\label{eq:Reason:} \textbf{Reason:} \sim \text{allows the attacker} \\ \text{to switch sides at each step!}$

Weak Bisimulation

Definition (Weak bisimulation)

(Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P,Q) \in \rho$ and $\alpha \in Act$ (including $\alpha = \tau$):

- (1) if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$, and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \cap Q'$.

Definition (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted $P \approx Q$, iff there is a weak bisimulation ρ with $P \rho Q$.

Thus,

$$pprox = \bigcup \{ \rho \subseteq \mathit{Prc} \times \mathit{Prc} \mid \rho \text{ is a weak bisimulation} \}.$$

Relation \approx is called weak bisimilarity or observational equivalence.

Divergence I

Example 6.1 (A polling process)

(Koomen 1982)

A process that is willing to receive on port a or port b, and then terminates:

$$A? = a.nil + \tau.B?$$

 $B? = b.nil + \tau.A?$

- Claim: $A? \approx B? \approx a.nil + b.nil$
- But note that $A? \xrightarrow{\tau} B? \xrightarrow{\tau} A?$ forms a τ -loop, whereas a.nil + b.nil does not have a loop (not even a τ -loop).
- Thus, \approx assumes that if a process can escape from a τ -loop, it eventually will do so.^a Divergence ("livelock") is a τ -loop.
- Also note that $Div \approx \text{nil}$ where $Div = \tau . Div$.
- Thus, a deadlocked process is weakly bisimilar to a process that can only diverge.
- This is justified by the fact that "observations" can only be made by

Divergence II

Example 6.2 (A simple communication protocol)

Observation: (unbounded) retransmission after communication failures can also cause τ -loops.

```
Spec = acc.del.Spec:
    Impl = (Send \parallel Med \parallel Rec) \setminus \{send, trans, ack, error\};
   Send = acc. Sending;
Sending = send.Wait;
    Wait = ack.Send + error.Sending;
    Med = send.Trans:
   Trans = \overline{trans}.Med + \tau.Err:
     Err = \overline{error}.Med:
    Rec = trans.Del:
     Del = del.Ack:
    Ack = ack.Rec:
```

(analyse using CAAL tool)

Properties of Weak Bisimilarity

Lemma 6.3 (Properties of ≈)

- (1) $P \sim Q$ implies $P \approx Q$.
- (2) \approx is an equivalence relation (i.e., reflexive, symmetric, and transitive).
- (3) \approx is the largest weak bisimulation.
- (4) \approx abstracts from τ -loops.

Proof.

- (1) straightforward (as $\stackrel{\alpha}{\longrightarrow} \subseteq \stackrel{\alpha}{\Longrightarrow}$)
- (2) similar to Lemma 4.7(1) for \sim
- (3) similar to Lemma 4.7(2) for \sim
- (4) see Examples 6.1 and 6.2

Milner's *τ*-Laws

Lemma 6.4 (Milner's *⊤*-laws)

$$\alpha.\tau.P \approx \alpha.P$$
 $P + \tau.P \approx \tau.P$
 $\alpha.(P + \tau.Q) \approx \alpha.(P + \tau.Q) + \alpha.Q$

Proof.

by constructing appropriate weak bisimulation relations (left as an exercise)

Weak Bisimilarity vs. Trace Equivalence

Definition 6.5 (Observational trace language)

The observational trace language of $P \in Prc$ is defined by:

$$ObsTr(P) := \{\widehat{w} \in (A \cup \overline{A})^* \mid \text{there ex. } P' \in Prc : P \xrightarrow{w} P'\}$$

where $\widehat{\mathbf{w}}$ is obtained from \mathbf{w} by removing all τ -actions.

Definition 6.6 (Observational trace equivalence)

 $P, Q \in Prc$ are observationally trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem 6.7

 $P \approx Q$ implies that P and Q are observationally trace equivalent. The reverse does not hold.

Proof.

similar to Theorem 4.9

Observational Deadlocks

Definition 6.8 (Observational deadlock)

Let $P, Q \in Prc$ and $w \in Act^*$ such that

 $P \stackrel{w}{\longrightarrow} Q$ and there exists no $Q' \in Prc$ and $\lambda \in A \cup \overline{A}$ such that $Q \stackrel{\lambda}{\Longrightarrow} Q'$.

Then Q is called an observational \widehat{w} -deadlock of P.

Definition 6.9 (Observational deadlock sensitivity)

Relation $\equiv \subseteq Prc \times Prc$ is observationally deadlock sensitive whenever $P \equiv Q$ implies for every $v \in (A \cup \overline{A})^*$:

P has an observational v-deadlock iff Q has an observational v-deadlock.

Theorem 6.10

≈ is observationally deadlock sensitive.

Proof.

similar to Theorem 4.13 for \sim

Congruence

Lemma 6.11 (Partial CCS congruence property of ≈)

Whenever $P, Q \in Prc$ such that $P \approx Q$,

$$lpha.P pprox lpha.Q$$
 for every $lpha \in Act$
 $P \parallel R pprox Q \parallel R$ for every $R \in Prc$
 $P \setminus L pprox Q \setminus L$ for every $L \subseteq A$
 $P[f] pprox Q[f]$ for every $f : A \rightarrow A$

Proof.

omitted

What about choice?

- τ .a.nil \approx a.nil (cf. Example 5.11(1)) and b.nil \approx b.nil (reflexivity).
- But τ .a.nil + b.nil $\not\approx$ a.nil + b.nil. (Why?)
- Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of \approx .

Observation Congruence

Definition 6.12 (Observation congruence)

(Milner 1989)

 $P,Q \in Prc$ are observationally congruent, denoted $P \approx^c Q$, if for every $\alpha \in Act$ (including $\alpha = \tau$):

- (1) if $P \xrightarrow{\alpha} P'$, then there is a sequence of transitions $Q \xrightarrow{\pi} \circ \xrightarrow{\alpha} \circ \xrightarrow{\tau} Q'$ such that $P' \approx Q'$ and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there is a sequence of transitions $P \xrightarrow{\tau} \circ \xrightarrow{\alpha} \circ \xrightarrow{\tau} P'$ such that $P' \approx Q'$.

Remark

- \approx^c differs from \approx only in that \approx^c requires τ -moves by P or Q to be mimicked by at least one τ -move in the other process.
- Moreover, this only applies to the first step; the successors just have to satisfy $P' \approx Q'$ (and not necessarily $P' \approx^c Q'$).
- Thus: if $P \xrightarrow{\mathcal{T}}$ and $Q \xrightarrow{\mathcal{T}}$, then $P \approx^c Q$ iff $P \approx Q$.

Examples

Example 6.13

(1) Sequential and parallel two-place buffer:

$$\begin{array}{ccc} P_1 & Q_1 \\ in \downarrow \uparrow \overline{out} & in \swarrow \nwarrow \overline{out} \\ P_2 & Q_2 \xrightarrow{\tau} Q_3 \\ in \downarrow \uparrow \overline{out} & \overline{out} \nwarrow \swarrow in \\ P_3 & Q_4 \end{array}$$

 $P_1 \approx^c Q_1$ since $P_1 \approx Q_1$ (cf. Example 5.11(3)) and neither P_1 nor Q_1 has initial τ -steps.

- (2) τ .a.nil $\not\approx^c$ a.nil (since τ .a.nil $\xrightarrow{\tau}$ but a.nil $\xrightarrow{\tau}$); thus the counterexample to congruence of \approx for + does not apply.
- (3) $a.\tau.$ nil $\approx^c a.$ nil (since $\tau.$ nil \approx nil).

Properties of Observation Congruence

Lemma 6.14

For every $P, Q \in Prc$,

- (1) $P \sim Q$ implies $P \approx^c Q$, and $P \approx^c Q$ implies $P \approx Q$
- (2) \approx^c is an equivalence relation
- (3) \approx^c is a CCS congruence
- (4) \approx^c is observationally deadlock-sensitive
- (5) $P \approx^c Q$ if and only if $P + R \approx Q + R$ for every $R \in Prc$
- (6) $P \approx Q$ if and only if $(P \approx^c Q \text{ or } P \approx^c \tau.Q \text{ or } \tau.P \approx^c Q)$

Proof.

omitted

Note: (5) states that \approx^c is the "minimal fix" to establish congruence of \approx .

Weak Bisimilarity as a Game

Rules

In each round, the current configuration (s, t) is changed as follows:

- (1) the attacker chooses one of the processes in the current configuration, say t, and makes an $\stackrel{\alpha}{\longrightarrow}$ -move for some $\alpha \in Act$ to t', say, and
- (2) the defender must respond by making an $\stackrel{\alpha}{\Longrightarrow}$ -move in the other process s of the current configuration under the same action α , yielding $s \stackrel{\alpha}{\Longrightarrow} s'$.

The pair of processes (s', t') becomes the new current configuration. The game continues with another round.

Results

- (1) If one player cannot move, the other player wins.
 - attacker cannot move if $s \rightarrow$ and $t \rightarrow$
 - defender cannot move if no matching transition available
- (2) If the game can be played ad infinitum, the defender wins.

Game Characterisation of Weak Bisimilarity

Theorem 6.15 (Game characterisation of weak bisimilarity) Stirling 1995, Thomas 1993)

- (1) $s \approx t$ iff the defender has a universal winning strategy from configuration (s,t).
- (2) $s \not\approx t$ iff the attacker has a universal winning strategy from configuration (s,t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of weak bisimulation relation