
Concurrency Theory
Winter 2025/26

Lecture 5: Game Characterisation and Variants of Strong Bisimulation

Thomas Noll, Peter Thiemann
Programming Languages Group

University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 5

1 Recap: Strong Bisimulation

2 Strong Bisimilarity as a Game

3 Simulation Equivalence

4 Summary: Strong (Bi-)Similarity

5 Inadequacy of Strong Bisimilarity

6 Weak Bisimulation

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 2 / 28

Strong Bisimulation

Definition (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation whenever for every (P,Q) ∈ ρ and
α ∈ Act :

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α−→ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α−→ P′ and P′ ρQ′.

Note: strong bisimulations are not necessarily equivalences (e.g., ρ = ∅).

Definition (Strong bisimilarity)
Processes P,Q ∈ Prc are strongly bisimilar, denoted P ∼ Q, iff there is a strong bisimulation ρ with
P ρQ.

∼ =
⋃

{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 3 / 28

https://doi.org/10.1007/BFb0017309

Properties of Strong Bisimilarity

Lemma (Properties of ∼)
(1) ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ∼ is the coarsest strong bisimulation.

Proof.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 4 / 28

Strong Bisimilarity vs. Trace Equivalence

Theorem
P ∼ Q implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.
The implication from left to right follows from Lemma 4.8.

Consider the other direction:

Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.

Then: Tr(P) = {ϵ, a, ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

But: P ̸∼ Q, as there is no state in the LTS of Q that is bisimilar to P1 (cf. Example 4.6).

Why? Since no state in Q can perform both b and c.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 28

Congruence

Theorem (CCS congruence property of ∼)
Strong bisimilarity ∼ is a CCS congruence, that is, whenever P,Q ∈ Prc such that P ∼ Q,

α.P ∼ α.Q for every α ∈ Act
P + R ∼ Q + R for every R ∈ Prc
P ∥ R ∼ Q ∥ R for every R ∈ Prc
P \ L ∼ Q \ L for every L ⊆ A
P[f] ∼ Q[f] for every f : A → A

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 28

Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition 3.10)
Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗ : P has a w-deadlock iff Q has a w-deadlock) .

Theorem
∼ is deadlock sensitive.

Proof.
Let P ∼ Q.

We assume that, for some w ∈ Act∗, P has a w-deadlock but Q does not.

Thus, there exists P′ ∈ Prc such that P
w−→ P′ and P′ ̸−→.

Moreover, for all Q′ ∈ Prc with Q
w−→ Q′ there exist α ∈ Act and Q′′ ∈ Prc such that

Q′ α−→ Q′′.

For P
w−→ P′, Lemma 4.8 (bisimulation on paths) yields Q′ with Q

w−→ Q′ and P′ ∼ Q′.

Thus P′ ̸−→ and Q′ α−→ Q′′ cannot hold at the same time.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 7 / 28

Outline of Lecture 5

1 Recap: Strong Bisimulation

2 Strong Bisimilarity as a Game

3 Simulation Equivalence

4 Summary: Strong (Bi-)Similarity

5 Inadequacy of Strong Bisimilarity

6 Weak Bisimulation

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 28

How to Show Non-Bisimilarity?

Alternatives to prove that s ̸∼ t

Enumerate all binary relations and show that none of those containing (s, t) is a strong
bisimulation.

This is expensive, as there are 2k2
binary relations on a set S with |S| = k .

Make certain observations which will enable to disqualify many bisimulation candidates in one
step.

Yields heuristics – how about completeness?

Use game characterisation of strong bisimilarity.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 28

How to Show Non-Bisimilarity?

Alternatives to prove that s ̸∼ t

Enumerate all binary relations and show that none of those containing (s, t) is a strong
bisimulation.

This is expensive, as there are 2k2
binary relations on a set S with |S| = k .

Make certain observations which will enable to disqualify many bisimulation candidates in one
step.

Yields heuristics – how about completeness?

Use game characterisation of strong bisimilarity.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 28

How to Show Non-Bisimilarity?

Alternatives to prove that s ̸∼ t

Enumerate all binary relations and show that none of those containing (s, t) is a strong
bisimulation.

This is expensive, as there are 2k2
binary relations on a set S with |S| = k .

Make certain observations which will enable to disqualify many bisimulation candidates in one
step.

Yields heuristics – how about completeness?

Use game characterisation of strong bisimilarity.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 28

How to Show Non-Bisimilarity?

Alternatives to prove that s ̸∼ t

Enumerate all binary relations and show that none of those containing (s, t) is a strong
bisimulation.

This is expensive, as there are 2k2
binary relations on a set S with |S| = k .

Make certain observations which will enable to disqualify many bisimulation candidates in one
step.

Yields heuristics – how about completeness?

Use game characterisation of strong bisimilarity.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 28

How to Show Non-Bisimilarity?

Alternatives to prove that s ̸∼ t

Enumerate all binary relations and show that none of those containing (s, t) is a strong
bisimulation.

This is expensive, as there are 2k2
binary relations on a set S with |S| = k .

Make certain observations which will enable to disqualify many bisimulation candidates in one
step.

Yields heuristics – how about completeness?

Use game characterisation of strong bisimilarity.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 28

How to Show Non-Bisimilarity?

Alternatives to prove that s ̸∼ t

Enumerate all binary relations and show that none of those containing (s, t) is a strong
bisimulation.

This is expensive, as there are 2k2
binary relations on a set S with |S| = k .

Make certain observations which will enable to disqualify many bisimulation candidates in one
step.

Yields heuristics – how about completeness?

Use game characterisation of strong bisimilarity.
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 28

The Strong Bisimulation Game

Let (S,Act,−→) be an LTS and s, t ∈ S. Question: does s ∼ t hold?

We define a game with two players: an “attacker” and a “defender”.

The game is played in rounds, and configurations of the game are pairs of states from S × S.

In each round, the game is in a current configuration.

Initially, the configuration (s, t) is chosen as the current one.

Intuition
The defender wants to show that s ∼ t while the attacker aims to prove the opposite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 28

The Strong Bisimulation Game

Let (S,Act,−→) be an LTS and s, t ∈ S. Question: does s ∼ t hold?

We define a game with two players: an “attacker” and a “defender”.

The game is played in rounds, and configurations of the game are pairs of states from S × S.

In each round, the game is in a current configuration.

Initially, the configuration (s, t) is chosen as the current one.

Intuition
The defender wants to show that s ∼ t while the attacker aims to prove the opposite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 28

The Strong Bisimulation Game

Let (S,Act,−→) be an LTS and s, t ∈ S. Question: does s ∼ t hold?

We define a game with two players: an “attacker” and a “defender”.

The game is played in rounds, and configurations of the game are pairs of states from S × S.

In each round, the game is in a current configuration.

Initially, the configuration (s, t) is chosen as the current one.

Intuition
The defender wants to show that s ∼ t while the attacker aims to prove the opposite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 28

The Strong Bisimulation Game

Let (S,Act,−→) be an LTS and s, t ∈ S. Question: does s ∼ t hold?

We define a game with two players: an “attacker” and a “defender”.

The game is played in rounds, and configurations of the game are pairs of states from S × S.

In each round, the game is in a current configuration.

Initially, the configuration (s, t) is chosen as the current one.

Intuition
The defender wants to show that s ∼ t while the attacker aims to prove the opposite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 28

The Strong Bisimulation Game

Let (S,Act,−→) be an LTS and s, t ∈ S. Question: does s ∼ t hold?

We define a game with two players: an “attacker” and a “defender”.

The game is played in rounds, and configurations of the game are pairs of states from S × S.

In each round, the game is in a current configuration.

Initially, the configuration (s, t) is chosen as the current one.

Intuition
The defender wants to show that s ∼ t while the attacker aims to prove the opposite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 28

The Strong Bisimulation Game

Let (S,Act,−→) be an LTS and s, t ∈ S. Question: does s ∼ t hold?

We define a game with two players: an “attacker” and a “defender”.

The game is played in rounds, and configurations of the game are pairs of states from S × S.

In each round, the game is in a current configuration.

Initially, the configuration (s, t) is chosen as the current one.

Intuition
The defender wants to show that s ∼ t while the attacker aims to prove the opposite.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 28

Rules of the Bisimulation Game

Rules
In each round, the current configuration (s, t) is changed as follows:

(1) the attacker chooses one of the two processes in the current configuration, say t , and makes
an

α−→-move for some α ∈ Act to t ′, say,

and

(2) the defender must respond by making an
α−→-move in the other process s of the current

configuration under the same action α, yielding s
α−→ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results
(1) If one player cannot move, the other player wins:

attacker cannot move if s ̸→ and t ̸→
defender cannot move if no matching transition available

(2) If the game is played ad infinitum, the defender wins.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 28

Rules of the Bisimulation Game

Rules
In each round, the current configuration (s, t) is changed as follows:

(1) the attacker chooses one of the two processes in the current configuration, say t , and makes
an

α−→-move for some α ∈ Act to t ′, say, and

(2) the defender must respond by making an
α−→-move in the other process s of the current

configuration under the same action α, yielding s
α−→ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results
(1) If one player cannot move, the other player wins:

attacker cannot move if s ̸→ and t ̸→
defender cannot move if no matching transition available

(2) If the game is played ad infinitum, the defender wins.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 28

Rules of the Bisimulation Game

Rules
In each round, the current configuration (s, t) is changed as follows:

(1) the attacker chooses one of the two processes in the current configuration, say t , and makes
an

α−→-move for some α ∈ Act to t ′, say, and

(2) the defender must respond by making an
α−→-move in the other process s of the current

configuration under the same action α, yielding s
α−→ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results
(1) If one player cannot move, the other player wins:

attacker cannot move if s ̸→ and t ̸→
defender cannot move if no matching transition available

(2) If the game is played ad infinitum, the defender wins.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 28

Rules of the Bisimulation Game

Rules
In each round, the current configuration (s, t) is changed as follows:

(1) the attacker chooses one of the two processes in the current configuration, say t , and makes
an

α−→-move for some α ∈ Act to t ′, say, and

(2) the defender must respond by making an
α−→-move in the other process s of the current

configuration under the same action α, yielding s
α−→ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results
(1) If one player cannot move, the other player wins:

attacker cannot move if s ̸→ and t ̸→
defender cannot move if no matching transition available

(2) If the game is played ad infinitum, the defender wins.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 28

Rules of the Bisimulation Game

Rules
In each round, the current configuration (s, t) is changed as follows:

(1) the attacker chooses one of the two processes in the current configuration, say t , and makes
an

α−→-move for some α ∈ Act to t ′, say, and

(2) the defender must respond by making an
α−→-move in the other process s of the current

configuration under the same action α, yielding s
α−→ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results
(1) If one player cannot move, the other player wins:

attacker cannot move if s ̸→ and t ̸→
defender cannot move if no matching transition available

(2) If the game is played ad infinitum, the defender wins.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 28

Examples

Example 5.1 (Bisimulation games)
(1) Use the CAAL games feature to show P ∼ Q where

P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

(2) Use the CAAL games feature to show that s ̸∼ t where

Two winning strategies for attacker in configuration (s, t):

start with s
a−→ s1

start with t
a−→ t1

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 28

Examples

Example 5.1 (Bisimulation games)
(1) Use the CAAL games feature to show P ∼ Q where

P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

(2) Use the CAAL games feature to show that s ̸∼ t where

Two winning strategies for attacker in configuration (s, t):

start with s
a−→ s1

start with t
a−→ t1

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 28

Game Characterisation of Bisimulation

Theorem 5.2 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

(1) s ∼ t iff the defender has a universal winning strategy from configuration (s, t).

(2) s ̸∼ t iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of how the other
player selects their moves.)

Proof.
by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation
relation

Thus, a bisimulation game can be used to prove bisimilarity as well as non-bisimilarity. It often
provides elegant arguments for s ̸∼ t .

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 13 / 28

Game Characterisation of Bisimulation

Theorem 5.2 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

(1) s ∼ t iff the defender has a universal winning strategy from configuration (s, t).

(2) s ̸∼ t iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of how the other
player selects their moves.)

Proof.
by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation
relation

Thus, a bisimulation game can be used to prove bisimilarity as well as non-bisimilarity. It often
provides elegant arguments for s ̸∼ t .

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 13 / 28

Game Characterisation of Bisimulation

Theorem 5.2 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

(1) s ∼ t iff the defender has a universal winning strategy from configuration (s, t).

(2) s ̸∼ t iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of how the other
player selects their moves.)

Proof.
by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation
relation

Thus, a bisimulation game can be used to prove bisimilarity as well as non-bisimilarity.1 It often
provides elegant arguments for s ̸∼ t .

1Later we will present yet another method to check this.
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 13 / 28

Outline of Lecture 5

1 Recap: Strong Bisimulation

2 Strong Bisimilarity as a Game

3 Simulation Equivalence

4 Summary: Strong (Bi-)Similarity

5 Inadequacy of Strong Bisimilarity

6 Weak Bisimulation

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 14 / 28

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a
system by new features).

Definition 5.3 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all
of P ’s options.

But: P does not need to be able to match each transition of Q!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 28

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a
system by new features).

Definition 5.3 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all
of P ’s options.

But: P does not need to be able to match each transition of Q!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 28

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a
system by new features).

Definition 5.3 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all
of P ’s options.

But: P does not need to be able to match each transition of Q!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 28

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a
system by new features).

Definition 5.3 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all
of P ’s options.

But: P does not need to be able to match each transition of Q!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 28

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a
system by new features).

Definition 5.3 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all
of P ’s options.

But: P does not need to be able to match each transition of Q!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 28

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a
system by new features).

Definition 5.3 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all
of P ’s options.

But: P does not need to be able to match each transition of Q!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 28

Simulation: Example

Definition (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Example 5.4

P
a ↙↘ a
P1 P3

b ↓ ↓ c
P2 P4

Q
↓ a

Q1

b ↙↘ c
Q2 Q3

Q strongly simulates P, but not vice versa

This yields that:

a.b.nil + a.c.nil ⊑ a.(b.nil + c.nil) and
a.(b.nil + c.nil) ̸⊑ a.b.nil + a.c.nil.

(Note that P ̸∼ Q.)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 28

Simulation: Example

Definition (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Example 5.4

P
a ↙↘ a
P1 P3

b ↓ ↓ c
P2 P4

Q
↓ a

Q1

b ↙↘ c
Q2 Q3

Q strongly simulates P, but not vice versa

This yields that:

a.b.nil + a.c.nil ⊑ a.(b.nil + c.nil) and
a.(b.nil + c.nil) ̸⊑ a.b.nil + a.c.nil.

(Note that P ̸∼ Q.)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 28

Simulation: Example

Definition (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P,Q) ∈ ρ and P
α−→ P′, there

exists Q′ ∈ Prc such that Q
α−→ Q′ and P′ ρQ′.

Q strongly simulates P, denoted P ⊑ Q, if there exists a strong simulation ρ such that P ρQ.
Relation ⊑ is called strong similarity.

P and Q are strongly simulation equivalent if P ⊑ Q and Q ⊑ P.

Example 5.4

P
a ↙↘ a
P1 P3

b ↓ ↓ c
P2 P4

Q
↓ a

Q1

b ↙↘ c
Q2 Q3

Q strongly simulates P, but not vice versa

This yields that:

a.b.nil + a.c.nil ⊑ a.(b.nil + c.nil) and
a.(b.nil + c.nil) ̸⊑ a.b.nil + a.c.nil.

(Note that P ̸∼ Q.)
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 28

Strong Simulation and Bisimilarity

Lemma 5.5 (Bisimilarity implies simulation equivalence)
If P ∼ Q, then P ⊑ Q and Q ⊑ P.

Proof.
A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example 5.6

P
a ↙↘ a
P1 P3

↓b
P2

Q
↓ a
Q1

↓ b
Q2

P ⊑ Q and Q ⊑ P, but P ̸∼ Q

Reason: ∼ allows the attacker
to switch sides at each step!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 28

Strong Simulation and Bisimilarity

Lemma 5.5 (Bisimilarity implies simulation equivalence)
If P ∼ Q, then P ⊑ Q and Q ⊑ P.

Proof.
A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example 5.6

P
a ↙↘ a
P1 P3

↓b
P2

Q
↓ a
Q1

↓ b
Q2

P ⊑ Q and Q ⊑ P, but P ̸∼ Q

Reason: ∼ allows the attacker
to switch sides at each step!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 28

Strong Simulation and Bisimilarity

Lemma 5.5 (Bisimilarity implies simulation equivalence)
If P ∼ Q, then P ⊑ Q and Q ⊑ P.

Proof.
A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example 5.6

P
a ↙↘ a
P1 P3

↓b
P2

Q
↓ a
Q1

↓ b
Q2

P ⊑ Q and Q ⊑ P, but P ̸∼ Q

Reason: ∼ allows the attacker
to switch sides at each step!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 28

Strong Simulation and Bisimilarity

Lemma 5.5 (Bisimilarity implies simulation equivalence)
If P ∼ Q, then P ⊑ Q and Q ⊑ P.

Proof.
A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example 5.6

P
a ↙↘ a
P1 P3

↓b
P2

Q
↓ a
Q1

↓ b
Q2

P ⊑ Q and Q ⊑ P,

but P ̸∼ Q

Reason: ∼ allows the attacker
to switch sides at each step!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 28

Strong Simulation and Bisimilarity

Lemma 5.5 (Bisimilarity implies simulation equivalence)
If P ∼ Q, then P ⊑ Q and Q ⊑ P.

Proof.
A strong bisimulation ρ ⊆ Prc × Prc for P ∼ Q is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example 5.6

P
a ↙↘ a
P1 P3

↓b
P2

Q
↓ a
Q1

↓ b
Q2

P ⊑ Q and Q ⊑ P, but P ̸∼ Q

Reason: ∼ allows the attacker
to switch sides at each step!

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 28

Outline of Lecture 5

1 Recap: Strong Bisimulation

2 Strong Bisimilarity as a Game

3 Simulation Equivalence

4 Summary: Strong (Bi-)Similarity

5 Inadequacy of Strong Bisimilarity

6 Weak Bisimulation

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 18 / 28

Summary: Strong (Bi-)Similarity

Summary
Strong bisimulation of processes is based on mutually mimicking each other.

Strong bisimilarity ∼:
(1) is the largest strong bisimulation
(2) is an equivalence relation
(3) is strictly coarser than LTS isomorphism
(4) is strictly finer than trace equivalence
(5) is a CCS congruence
(6) is deadlock sensitive
(7) can be checked using a two-player game

Strong similarity ⊑:
(1) is a one-way strong bisimilarity
(2) bi-directional version (strong simulation equivalence) is strictly coarser than ∼

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 28

Summary: Strong (Bi-)Similarity

Summary
Strong bisimulation of processes is based on mutually mimicking each other.

Strong bisimilarity ∼:
(1) is the largest strong bisimulation
(2) is an equivalence relation
(3) is strictly coarser than LTS isomorphism
(4) is strictly finer than trace equivalence
(5) is a CCS congruence
(6) is deadlock sensitive
(7) can be checked using a two-player game

Strong similarity ⊑:
(1) is a one-way strong bisimilarity
(2) bi-directional version (strong simulation equivalence) is strictly coarser than ∼

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 28

Summary: Strong (Bi-)Similarity

Summary
Strong bisimulation of processes is based on mutually mimicking each other.

Strong bisimilarity ∼:
(1) is the largest strong bisimulation
(2) is an equivalence relation
(3) is strictly coarser than LTS isomorphism
(4) is strictly finer than trace equivalence
(5) is a CCS congruence
(6) is deadlock sensitive
(7) can be checked using a two-player game

Strong similarity ⊑:
(1) is a one-way strong bisimilarity
(2) bi-directional version (strong simulation equivalence) is strictly coarser than ∼

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 28

Overview of Some Behavioral Equivalences

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 20 / 28

Outline of Lecture 5

1 Recap: Strong Bisimulation

2 Strong Bisimilarity as a Game

3 Simulation Equivalence

4 Summary: Strong (Bi-)Similarity

5 Inadequacy of Strong Bisimilarity

6 Weak Bisimulation

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 21 / 28

Inadequacy of Strong Bisimilarity
Example 5.7 (Two-place buffers; cf. Example 2.5)

(1) Sequential two-place buffer:

B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

(2) Parallel two-place buffer:

B∥ = (B[f] ∥ B[g]) \ com
B = in.out.B

(f := [out 7→ com], g := [in 7→ com])

Observation:

•
in ↓↑ out

•
in ↓↑ out

•

̸∼

•
in ↙↖ out
• τ−→ •

out ↖↙ in
•

Conclusion
The requirement in ∼ to exactly match all actions is often too strong.

This suggests to weaken this and not insist on exact matching of τ -actions.

Rationale: τ -actions are special as they are internal and thus unobservable.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 22 / 28

Inadequacy of Strong Bisimilarity
Example 5.7 (Two-place buffers; cf. Example 2.5)

(1) Sequential two-place buffer:

B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

(2) Parallel two-place buffer:

B∥ = (B[f] ∥ B[g]) \ com
B = in.out.B

(f := [out 7→ com], g := [in 7→ com])

Observation:

•
in ↓↑ out

•
in ↓↑ out

•

̸∼

•
in ↙↖ out
• τ−→ •

out ↖↙ in
•

Conclusion
The requirement in ∼ to exactly match all actions is often too strong.

This suggests to weaken this and not insist on exact matching of τ -actions.

Rationale: τ -actions are special as they are internal and thus unobservable.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 22 / 28

Inadequacy of Strong Bisimilarity
Example 5.7 (Two-place buffers; cf. Example 2.5)

(1) Sequential two-place buffer:

B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

(2) Parallel two-place buffer:

B∥ = (B[f] ∥ B[g]) \ com
B = in.out.B

(f := [out 7→ com], g := [in 7→ com])

Observation:

•
in ↓↑ out

•
in ↓↑ out

•

̸∼

•
in ↙↖ out
• τ−→ •

out ↖↙ in
•

Conclusion
The requirement in ∼ to exactly match all actions is often too strong.

This suggests to weaken this and not insist on exact matching of τ -actions.

Rationale: τ -actions are special as they are internal and thus unobservable.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 22 / 28

The Rationales for Abstracting from τ -Actions

τ -actions are internal and thus unobservable.

This is natural in parallel communication resulting in τ :
synchronization in CCS is binary handshaking
observation means communication with the process
thus the result of any communication is unobservable

Strong bisimilarity treats τ -actions as any other action.

Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 23 / 28

The Rationales for Abstracting from τ -Actions

τ -actions are internal and thus unobservable.
This is natural in parallel communication resulting in τ :

synchronization in CCS is binary handshaking
observation means communication with the process
thus the result of any communication is unobservable

Strong bisimilarity treats τ -actions as any other action.

Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 23 / 28

The Rationales for Abstracting from τ -Actions

τ -actions are internal and thus unobservable.
This is natural in parallel communication resulting in τ :

synchronization in CCS is binary handshaking
observation means communication with the process
thus the result of any communication is unobservable

Strong bisimilarity treats τ -actions as any other action.

Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 23 / 28

The Rationales for Abstracting from τ -Actions

τ -actions are internal and thus unobservable.
This is natural in parallel communication resulting in τ :

synchronization in CCS is binary handshaking
observation means communication with the process
thus the result of any communication is unobservable

Strong bisimilarity treats τ -actions as any other action.

Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 23 / 28

Outline of Lecture 5

1 Recap: Strong Bisimulation

2 Strong Bisimilarity as a Game

3 Simulation Equivalence

4 Summary: Strong (Bi-)Similarity

5 Inadequacy of Strong Bisimilarity

6 Weak Bisimulation

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 24 / 28

Weak Transition Relation

Definition 5.8 (Weak transition relation)

For α ∈ Act ,
α

=⇒ ⊆ Prc × Prc is given by

α
=⇒ :=


(

τ−→
)∗

◦ α−→ ◦
(

τ−→
)∗

if α ̸= τ(
τ−→

)∗
if α = τ.

where
(

τ−→
)∗

denotes the reflexive and transitive closure of relation
τ−→.

Informal meaning

If α ̸= τ , then P
α

=⇒ P′ means that from P we can get to P′ by doing zero or more τ actions,
followed by the action α, followed by zero or more τ actions.

If α = τ , then P
α

=⇒ P′ means that from P we can reach P′ by doing zero or more τ actions.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 25 / 28

Weak Bisimulation

Definition 5.9 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every (P,Q) ∈ ρ and α ∈ Act
(including α = τ):

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α
=⇒ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α
=⇒ P′ and P′ ρQ′.

Definition 5.10 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak bisimulation ρ with
P ρQ.

≈ =
⋃

{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called weak bisimilarity or observational equivalence.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 26 / 28

Weak Bisimulation

Definition 5.9 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every (P,Q) ∈ ρ and α ∈ Act
(including α = τ):

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α
=⇒ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α
=⇒ P′ and P′ ρQ′.

Definition 5.10 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak bisimulation ρ with
P ρQ.

≈ =
⋃

{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called weak bisimilarity or observational equivalence.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 26 / 28

Weak Bisimulation

Definition 5.9 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every (P,Q) ∈ ρ and α ∈ Act
(including α = τ):

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α
=⇒ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α
=⇒ P′ and P′ ρQ′.

Definition 5.10 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak bisimulation ρ with
P ρQ.

≈ =
⋃

{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called weak bisimilarity or observational equivalence.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 26 / 28

Weak Bisimulation

Definition 5.9 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every (P,Q) ∈ ρ and α ∈ Act
(including α = τ):

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α
=⇒ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α
=⇒ P′ and P′ ρQ′.

Definition 5.10 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak bisimulation ρ with
P ρQ.

≈ =
⋃

{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called weak bisimilarity or observational equivalence.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 26 / 28

Explanation

Definition (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every (P,Q) ∈ ρ and α ∈ Act
(including α = τ):

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α
=⇒ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α
=⇒ P′ and P′ ρQ′.

Remark
Each clause in the definition of weak bisimulation subsumes two cases:

P
α−→ P′ where α ̸= τ :

There exists Q′ ∈ Prc such that Q (
τ−→)∗

α−→ (
τ−→)∗ Q′ and P′ ρQ′.

P
τ−→ P′:

There exists Q′ ∈ Prc such that Q (
τ−→)∗ Q′ and P′ ρQ′ (where Q′ = Q is admissible).

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 27 / 28

ExamplesExample 5.11

(1) Let P = τ.Q with Q = a.nil.
obviously P ̸∼ Q; claim: P ≈ Q
proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

(2) More general: for every P ∈ Prc, P ≈ τ.P.

Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:

every transition P
α−→ P′ can be simulated by τ.P

τ−→ P
α−→ P′ (i.e., τ.P

α
=⇒ P′)

with P′ ρP′ (since idPrc ⊆ ρ)

the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ−→
0

P with P ρP (since idPrc ⊆ ρ)

(3) Sequential and parallel two-place buffer are weakly bisimilar (check with CAAL):

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in ↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 28 / 28

ExamplesExample 5.11

(1) Let P = τ.Q with Q = a.nil.
obviously P ̸∼ Q; claim: P ≈ Q
proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

(2) More general: for every P ∈ Prc, P ≈ τ.P.

Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:

every transition P
α−→ P′ can be simulated by τ.P

τ−→ P
α−→ P′ (i.e., τ.P

α
=⇒ P′)

with P′ ρP′ (since idPrc ⊆ ρ)

the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ−→
0

P with P ρP (since idPrc ⊆ ρ)

(3) Sequential and parallel two-place buffer are weakly bisimilar (check with CAAL):

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in ↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 28 / 28

ExamplesExample 5.11

(1) Let P = τ.Q with Q = a.nil.
obviously P ̸∼ Q; claim: P ≈ Q
proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

(2) More general: for every P ∈ Prc, P ≈ τ.P.

Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:

every transition P
α−→ P′ can be simulated by τ.P

τ−→ P
α−→ P′ (i.e., τ.P

α
=⇒ P′)

with P′ ρP′ (since idPrc ⊆ ρ)

the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ−→
0

P with P ρP (since idPrc ⊆ ρ)

(3) Sequential and parallel two-place buffer are weakly bisimilar (check with CAAL):

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in ↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 28 / 28

	Recap: Strong Bisimulation
	Strong Bisimilarity as a Game
	Simulation Equivalence
	Summary: Strong (Bi-)Similarity
	Inadequacy of Strong Bisimilarity
	Weak Bisimulation

