Concurrency Theory

Winter 2025/26

Lecture 5: Game Characterisation and Variants of Strong Bisimulation

Thomas Noll, Peter Thiemann Programming Languages Group University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

Strong Bisimulation

Definition (Strong bisimulation)

(Park 1981, Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P,Q) \in \rho$ and $\alpha \in Act$:

- (1) if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$, and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \cap Q'$.

Note: strong bisimulations are not necessarily equivalences (e.g., $\rho = \emptyset$).

Definition (Strong bisimilarity)

Processes $P,Q \in Prc$ are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation ρ with $P \rho Q$.

$$\sim = \bigcup \{ \rho \subseteq \mathit{Prc} \times \mathit{Prc} \mid \rho \text{ is a strong bisimulation} \}.$$

Relation \sim is called strong bisimilarity.

Properties of Strong Bisimilarity

Lemma (Properties of \sim)

- (1) \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive).
- (2) \sim is the coarsest strong bisimulation.

Proof.

- (1) \sim is an equivalence relation:
 - Reflexivity:

$$\mathrm{id}_{\mathit{Prc}} := \{ (\mathit{P}, \mathit{P}) \mid \mathit{P} \in \mathit{Prc} \}$$

is obviously a strong bisimulation.

Since $id_{Prc} \subseteq \sim$ by Definition 4.2, \sim is reflexive.

 Symmetry: (Caveat: not every strong bisimulation is symmetric; cf. Example 4.4.)

But if ρ is a strong bisimulation, then so is its inverse

$$\rho^{-1} := \{ (Q, P) \mid P \rho Q \}$$

Properties of Strong Bisimilarity

Lemma (Properties of ∼)

- (1) \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive).
- (2) \sim is the coarsest strong bisimulation.

Proof.

- (1) \sim is an equivalence relation:
 - Transitivity: (Caveat: not every strong bisimulation is transitive.) But if ρ and σ are strong bisimulations, then so is their composition

$$\rho \circ \sigma := \{ (P, R) \mid \exists Q : P \rho Q, Q \sigma R \}.$$

Proof:
$$P(\rho \circ \sigma) R$$
 and $P \xrightarrow{\alpha} P'$
 $\Rightarrow \exists Q : P \rho Q, Q \sigma R$ and $P \xrightarrow{\alpha} P'$ (def. \circ)
 $\Rightarrow \exists Q, Q' : Q \sigma R, Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$ (ρ strong bisimulation)
 $\Rightarrow \exists Q', R' : P' \rho Q', R \xrightarrow{\alpha} R'$ and $Q' \sigma R'$ (σ strong bisimulation)
 $\Rightarrow \exists R' : R \xrightarrow{\alpha} R'$ and $P'(\rho \circ \sigma) R'$ (def. σ)

Properties of Strong Bisimilarity

Lemma (Properties of ∼)

- (1) \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive).
- (2) \sim is the coarsest strong bisimulation.

Proof.

(2) \sim is the coarsest strong bisimulation: According to Definition 4.2, it suffices to show that strong bisimulations are closed under union, i.e., whenever ρ , σ are bisimulations, then so is $\rho \cup \sigma$. This immediately follows by case distinction.

Strong Bisimilarity vs. Trace Equivalence

Theorem

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from Lemma 4.8.

Consider the other direction:

- Take $P = a.P_1$ with $P_1 = b.\text{nil} + c.\text{nil}$ and Q = a.b.nil + a.c.nil.
- Then: $Tr(P) = \{\epsilon, a, ab, ac\} = Tr(Q)$.
- Thus, P and Q are trace equivalent.
- But: $P \not\sim Q$, as there is no state in the LTS of Q that is bisimilar to P_1 (cf. Example 4.6).
- Why? Since no state in Q can perform both b and c.

Congruence

Theorem (CCS congruence property of ∼)

Strong bisimilarity \sim is a CCS congruence, that is, whenever $P,Q \in Prc$ such that $P \sim Q$,

```
lpha.P\simlpha.Q for every lpha\in Act P+R\sim Q+R for every R\in Prc P\parallel R\sim Q\parallel R for every R\in Prc P\setminus L\sim Q\setminus L for every L\subseteq A for every f:A\rightarrow A
```

Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition 3.10)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies $(\forall w \in Act^* : P \text{ has a } w\text{-deadlock iff } Q \text{ has a } w\text{-deadlock})$.

Theorem

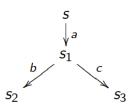
~ is deadlock sensitive.

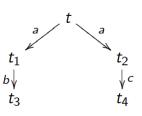
Proof.

Let $P \sim Q$.

- We assume that, for some $w \in Act^*$, P has a w-deadlock but Q does not.
- Thus, there exists $P' \in Prc$ such that $P \xrightarrow{w} P'$ and $P' \not\longrightarrow$.
- Moreover, for all $Q' \in Prc$ with $Q \xrightarrow{w} Q'$ there exist $\alpha \in Act$ and $Q'' \in Prc$ such that $Q' \xrightarrow{\alpha} Q''$.
- For $P \stackrel{\text{w}}{\longrightarrow} P'$, Lemma 4.8 (bisimulation on paths) yields Q' with Thomas Noll. Peter Thiemann

How to Show Non-Bisimilarity?





Alternatives to prove that $s \nsim t$

- Enumerate all binary relations and show that none of those containing (s, t) is a strong bisimulation.
 - This is expensive, as there are 2^{k^2} binary relations on a set S with |S| = k.
- Make certain observations which will enable to disqualify many bisimulation candidates in one step.
 - Yields heuristics how about completeness?
- Use game characterisation of strong bisimilarity.

The Strong Bisimulation Game

Let $(S, Act, \longrightarrow)$ be an LTS and $s, t \in S$. Question: does $s \sim t$ hold?

We define a game with two players: an "attacker" and a "defender".

- The game is played in rounds, and configurations of the game are pairs of states from S x S.
- In each round, the game is in a current configuration.
- Initially, the configuration (s, t) is chosen as the current one.

Intuition

The defender wants to show that $s \sim t$ while the attacker aims to prove the opposite.

Rules of the Bisimulation Game

Rules

In each round, the current configuration (s, t) is changed as follows:

- (1) the attacker chooses one of the two processes in the current configuration, say t, and makes an $\stackrel{\alpha}{\longrightarrow}$ -move for some $\alpha \in Act$ to t', say, and
- (2) the defender must respond by making an $\stackrel{\alpha}{\longrightarrow}$ -move in the other process s of the current configuration under the same action α , yielding $s \stackrel{\alpha}{\longrightarrow} s'$.

The pair of processes (s', t') becomes the new current configuration. The game continues with another round.

Results

- (1) If one player cannot move, the other player wins:
 - attacker cannot move if $s \rightarrow$ and $t \rightarrow$
 - defender cannot move if no matching transition available
- (2) If the game is played ad infinitum, the defender wins.

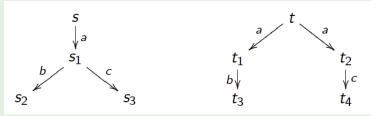
Examples

Example 5.1 (Bisimulation games)

(1) Use the CAAL games feature to show $P \sim Q$ where

$$P = a.P_1 + a.P_2$$
 $Q = a.Q_1$
 $P_1 = b.P_2$ $Q_1 = b.Q_1$
 $P_2 = b.P_2$

(2) Use the CAAL games feature to show that $s \not\sim t$ where



Two winning strategies for attacker in configuration (s, t):

• start with $s \stackrel{a}{\longrightarrow} s_1$

Game Characterisation of Bisimulation

Theorem 5.2 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

- (1) $s \sim t$ iff the defender has a universal winning strategy from configuration (s,t).
- (2) $s \not\sim t$ iff the attacker has a universal winning strategy from configuration (s,t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation relation

Thus, a bisimulation game can be used to prove bisimilarity as well as non-bisimilarity. It often provides elegant arguments for $s \not\sim t$.

Strong Simulation

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition 5.3 (Strong simulation)

- Relation $\rho \subseteq Prc \times Prc$ is a strong simulation if, whenever $(P, Q) \in \rho$ and $P \xrightarrow{\alpha} P'$, there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$.
- Q strongly simulates P, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- P and Q are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Thus: If Q strongly simulates P, then whatever transition P takes, Q can match it while retaining all of P's options.

But: P does not need to be able to match each transition of Q!

Simulation: Example

Definition (Strong simulation)

- Relation $\rho \subseteq Prc \times Prc$ is a strong simulation if, whenever $(P, Q) \in \rho$ and $P \stackrel{\alpha}{\longrightarrow} P'$, there exists $Q' \in Prc$ such that $Q \stackrel{\alpha}{\longrightarrow} Q'$ and $P' \rho Q'$.
- Q strongly simulates P, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- P and Q are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Example 5.4

$$\begin{array}{cccc} P & Q \\ a \swarrow \searrow a & \downarrow a \\ P_1 & P_3 & Q_1 \\ b \downarrow & \downarrow c & b \swarrow \searrow c \\ P_2 & P_4 & Q_2 & Q_3 \end{array}$$

Q strongly simulates P, but not vice versa

This yields that:

$$a.b.$$
nil $+ a.c.$ nil $\sqsubseteq a.(b.$ nil $+ c.$ nil) and $a.(b.$ nil $+ c.$ nil) $\not\sqsubseteq a.b.$ nil $+ a.c.$ nil. (Note that $P \not\sim Q$.)

Strong Simulation and Bisimilarity

Lemma 5.5 (Bisimilarity implies simulation equivalence)

If $P \sim Q$, then $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: The converse does not generally hold!

Example 5.6

$$\begin{array}{cccc}
P & Q \\
a \swarrow \searrow a & \downarrow a \\
P_1 & P_3 & Q_1 \\
\downarrow b & \downarrow b \\
P_2 & Q_2
\end{array}$$

$$P \sqsubseteq Q$$
 and $Q \sqsubseteq P$, but $P \not\sim Q$

 $\label{eq:Reason:} \textbf{Reason:} \sim \text{allows the attacker} \\ \text{to switch sides at each step!}$

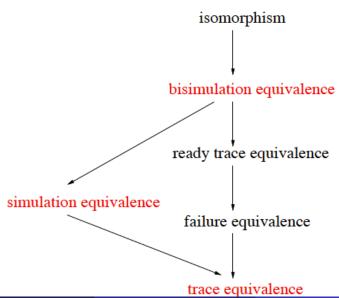
Summary: Strong (Bi-)Similarity

Summary

- Strong bisimulation of processes is based on mutually mimicking each other.
- Strong bisimilarity ∼:
 - (1) is the largest strong bisimulation
 - (2) is an equivalence relation
 - (3) is strictly coarser than LTS isomorphism
 - (4) is strictly finer than trace equivalence
 - (5) is a CCS congruence
 - (6) is deadlock sensitive
 - (7) can be checked using a two-player game
- Strong similarity

 ::
 - (1) is a one-way strong bisimilarity
 - (2) bi-directional version (strong simulation equivalence) is strictly coarser than

Overview of Some Behavioral Equivalences



Inadequacy of Strong Bisimilarity

Example 5.7 (Two-place buffers; cf. Example 2.5)

(1) Sequential two-place buffer:

$$B_0 = in.B_1$$

$$B_1 = \overline{out}.B_0 + in.B_2$$

$$B_2 = \overline{out}.B_1$$

(2) Parallel two-place buffer:

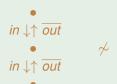
$$B_{\parallel} = (B[f] \parallel B[g]) \setminus com$$

 $B = in.\overline{out}.B$

$$(f := [out \mapsto com],$$

 $q := [in \mapsto com])$

Observation:



Conclusion

- ullet The requirement in \sim to exactly match all actions is often too strong.
- ullet This suggests to weaken this and not insist on exact matching of au-actions.
- Rationale: τ -actions are special as they are internal and thus unobservable.

The Rationales for Abstracting from τ -Actions

- τ-actions are internal and thus unobservable.
- This is natural in parallel communication resulting in τ :
 - synchronization in CCS is binary handshaking
 - observation means communication with the process
 - thus the result of any communication is unobservable
- Strong bisimilarity treats τ -actions as any other action.
- ullet Can we retain the nice properties of \sim while "abstracting" from au-actions?

Weak Transition Relation

Definition 5.8 (Weak transition relation)

For $\alpha \in \mathit{Act}, \stackrel{\alpha}{\Longrightarrow} \subseteq \mathit{Prc} \times \mathit{Prc}$ is given by

$$\stackrel{\alpha}{\Longrightarrow} := \begin{cases} \left(\stackrel{\tau}{\longrightarrow}\right)^* \circ \stackrel{\alpha}{\longrightarrow} \circ \left(\stackrel{\tau}{\longrightarrow}\right)^* & \text{if } \alpha \neq \tau \\ \left(\stackrel{\tau}{\longrightarrow}\right)^* & \text{if } \alpha = \tau. \end{cases}$$

where $\left(\stackrel{\tau}{\longrightarrow}\right)^*$ denotes the reflexive and transitive closure of relation $\stackrel{\tau}{\longrightarrow}$.

Informal meaning

- If $\alpha \neq \tau$, then $P \stackrel{\alpha}{\Longrightarrow} P'$ means that from P we can get to P' by doing zero or more τ actions, followed by the action α , followed by zero or more τ actions.
- If $\alpha = \tau$, then $P \stackrel{\alpha}{\Longrightarrow} P'$ means that from P we can reach P' by doing zero or more τ actions.

Weak Bisimulation

Definition 5.9 (Weak bisimulation)

(Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P,Q) \in \rho$ and $\alpha \in Act$ (including $\alpha = \tau$):

- (1) if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \Longrightarrow Q'$ and $P' \rho Q'$, and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \cap Q'$.

Definition 5.10 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted $P \approx Q$, iff there is a weak bisimulation ρ with $P \rho Q$.

$$\approx \ = \ \big|\ \big|\{\rho \subseteq \mathit{Prc} \times \mathit{Prc} \mid \rho \text{ is a weak bisimulation}\}.$$

Relation \approx is called weak bisimilarity or observational equivalence.

Explanation

Definition (Weak bisimulation)

(Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a weak bisimulation whenever for every $(P,Q) \in \rho$ and $\alpha \in Act$ (including $\alpha = \tau$):

- (1) if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \Longrightarrow Q'$ and $P' \rho Q'$, and
- (2) if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \rho Q'$.

Remark

Each clause in the definition of weak bisimulation subsumes two cases:

- $P \xrightarrow{\alpha} P'$ where $\alpha \neq \tau$: There exists $Q' \in Prc$ such that $Q(\xrightarrow{\tau})^* \xrightarrow{\alpha} (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$.
- $P \xrightarrow{\tau} P'$:
 There exists $Q' \in Prc$ such that $Q \xrightarrow{\tau}^* Q'$ and $P' \rho Q'$ (where Q' = Q is admissible).

Evamples Example 5.11

- (1) Let $P = \tau Q$ with Q = a.nil.
 - obviously $P \not\sim Q$; claim: $P \approx Q$
 - proof: $\rho = \{(P, Q), (Q, Q), (\text{nil}, \text{nil})\}$ is a weak bisimulation with $P \rho Q$
- (2) More general: for every $P \in Prc$, $P \approx \tau P$.

Proof: $\rho = \{(P, \tau.P)\} \cup id_{Prc}$ is a weak bisimulation:

- every transition $\stackrel{\sim}{P} \xrightarrow{\alpha} \stackrel{\sim}{P'}$ can be simulated by $\tau . \stackrel{\sim}{P} \xrightarrow{\tau} \stackrel{\sim}{P} \xrightarrow{\alpha} \stackrel{\sim}{P'}$ (i.e., $\tau.P \stackrel{\alpha}{\Longrightarrow} P'$ with $P' \rho P'$ (since $id_{Prc} \subseteq \rho$)
- the only transition of $\tau.P$ is $\tau.P \xrightarrow{\tau} P$; it is simulated by $P \xrightarrow{\tau} P$ with $P \rho P$ (since $id_{Prc} \subseteq \rho$)
- (3) Sequential and parallel two-place buffer are weakly bisimilar (check with CAAL):

$$P_1$$
 Q_1 $in \downarrow \uparrow \overline{out}$ $in \swarrow \nwarrow \overline{out}$ P_2 $Q_2 \xrightarrow{\tau} Q_3$ $\rho = \{(P_1, Q_1), (P_2, Q_2), (P_2, Q_3)\}$ O

28/28