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0 Recap: Trace Equivalence
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The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =5 LTS(Q) = P = Q.

(2) More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:

P=Q= Tr(P)=Tr(Q).
(3) Congruence property: the equivalence must be substitutive with respect to all CCS operators
(in the following).

(4) Deadlock preservation: equivalent processes should have the same deadlock behaviour, i.e.,
they can either both deadlock, or both cannot (in the following).

(5) Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.
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Trace Equivalence

Definition (Trace language)

For every P € Prc, let Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'} be the trace

(07}

language of P (where = Moo BPforw = ay ... Qp).

P.Q € Prc are called trace equivalent if 7r(P) = Tr(Q).
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Trace Equivalence

Definition (Trace language)

For every P € Prc, let Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'} be the trace

(07}

w
language of P (where — := —5 o0...0 —Sforw = ay . .. ap).

P.Q € Prc are called trace equivalent if 7r(P) = Tr(Q).

@ Trace equivalence is a possible behavioural equivalence, is a congruence, but
does not preserve deadlocks.
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Trace Equivalence

Definition (Trace language)

For every P € Prc, let Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'} be the trace

(07}

w
language of P (where — := —5 o0...0 —Sforw = ay . .. ap).

P, Q € Prc are called trace equivalent if 77(P) = Tr(Q).

@ Trace equivalence is a possible behavioural equivalence, is a congruence, but
does not preserve deadlocks.

@ Main problem:
Tr(e.(P+ Q)) = Tr(a.P + .Q),

whereas their deadlock behaviour in a context can differ.
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Trace Equivalence

Definition (Trace language)

For every P € Prc, let Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'} be the trace
(07}

w
language of P (where — := —5 o0...0 —Sforw = ay . .. ap).

P, Q € Prc are called trace equivalent if 77(P) = Tr(Q).

@ Trace equivalence is a possible behavioural equivalence, is a congruence, but
does not preserve deadlocks.

@ Main problem:
Tr(e.(P+ Q)) = Tr(a.P + .Q),
whereas their deadlock behaviour in a context can differ.

@ Solution: consider finer behavioural equivalences = such that

a.(P+ Q) # a.P+a.Q.
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Trace Equivalence

Definition (Trace language)

For every P € Prc, let Tr(P) := {w € Act* | ex. P’ € Prc such that P — P'} be the trace
(07}

w
language of P (where — := —5 o0...0 —Sforw = ay . .. ap).

P, Q € Prc are called trace equivalent if 77(P) = Tr(Q).

@ Trace equivalence is a possible behavioural equivalence, is a congruence, but
does not preserve deadlocks.

@ Main problem:
Tr(e.(P+ Q)) = Tr(a.P + .Q),

whereas their deadlock behaviour in a context can differ.

@ Solution: consider finer behavioural equivalences = such that

a.(P+ Q) # a.P+a.Q.

@ Our (serious) attempt today: Milner’s strong bisimulation. Robin Milner
0342010
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Outline of Lecture 4

@ Bisimulation
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Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the branching
structure of processes into account.

Thomas Noll, Peter Thiemann Winter 2025/26 6/25



Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the branching
structure of processes into account.

This is achieved by an equivalence that is defined according to the following scheme:

Bisimulation scheme

P. Q < Prc are equivalent iff, for every action «, every a-successor of F is equivalent to some
a-successor of @, and vice versa.
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Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take the branching
structure of processes into account.

This is achieved by an equivalence that is defined according to the following scheme:

Bisimulation scheme

P. Q < Prc are equivalent iff, for every action «, every a-successor of F is equivalent to some
a-successor of @, and vice versa.

Three variants will be considered in this course:
(1) Strong bisimulation: ignore the special role of 7-actions
(2) Weak bisimulation: treat 7-actions as invisible
(3) Simulation relations: unidirectional versions of bisimulation
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Strong Bisimulation |

Definition 4.1 (Strong bisimulation) , Milner 1989)

A binary relation p C Prc x Prc is a strong bisimulation if for every (P, Q) € p and o € Act:
(1) if P - P/, then there exists @' « Prcsuchthat © — @ and P/ p @, and
(2) if @ - @, then there exists P’ © Prc suchthat P —— P’ and P/ p Q.
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Strong Bisimulation |

Definition 4.1 (Strong bisimulation) , Milner 1989)

A binary relation p C Prc x Prc is a strong bisimulation if for every (P, Q) € p and o € Act:
(1) if P - P/, then there exists @' « Prcsuchthat © — @ and P/ p @, and
(2) if @ - @, then there exists P’ © Prc suchthat P —— P’ and P/ p Q.

Note: strong bisimulations are not necessarily equivalences (e.g., p = ).

Thomas Noll, Peter Thiemann Winter 2025/26 7125


https://doi.org/10.1007/BFb0017309

Strong Bisimulation |

Definition 4.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p C Prc x Prc is a strong bisimulation if for every (P, Q) € p and o € Act:
(1) if P -~ P/, then there exists @ ¢ Prcsuchthat @ — @ and P p @, and
(2) if @ -~ @, then there exists P ¢ Prc such that P — P’ and P/ p @'.

Note: strong bisimulations are not necessarily equivalences (e.g., p = ).

Definition 4.2 (Strong bisimilarity)

Processes P. Q < Prc are strongly bisimilar (P ~ Q), iff there is a strong bisimulation p with 7 p Q.
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Strong Bisimulation |

Definition 4.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p C Prc x Prc is a strong bisimulation if for every (P, Q) € p and o € Act:
(1) if P -~ P/, then there exists @ ¢ Prcsuchthat @ — @ and P p @, and
(2) if @ -~ @, then there exists P ¢ Prc such that P — P’ and P/ p @'.

Note: strong bisimulations are not necessarily equivalences (e.g., p = ).

Definition 4.2 (Strong bisimilarity)

Processes P. Q < Prc are strongly bisimilar (P ~ Q), iff there is a strong bisimulation p with 7 p Q.

~= U {p C Prc x Prc | pis a strong bisimulation}.

Relation ~ is called strong bisimilarity.
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Strong Bisimulation |l

P % P P 2 P
0 can be completed to p 0
Q Qo % Q@
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Strong Bisimulation |l

P % P P 2 P

0 can be completed to p 0

Q Q %
and

P P % P

P can be completed to P P

Q (4‘> Q/ Q fo! Q,
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Definition 4.3 (Strong bisimulation — recall)

(Park 1981, Milner 1989)
A binary relation p C Prc x Prcis a strong bisimulation if for every (P, Q) € pand o € Act:

(1) if P -+ P/, then there exists Q' ¢ Prc suchthat @ — @ and P’ p @', and

(2) if @ "> @, then there exists P’ ¢ Prcsuchthat » — P and P' p @'

T

Example 4.4 (A first example)

Claim: P ~ Q where P
P
P

a.P1 =+ a.Pg Q
b.P; Q
b.P»

3.01
b.Q
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Definition 4.3 (Strong bisimulation — recall) (Park 1981, Milner 1989)

A binary relation p C Prc x Prcis a strong bisimulation if for every (P, Q) € pand o € Act:

(1) if P -+ P/, then there exists Q' ¢ Prc suchthat @ — @ and P’ p @', and

T

(2) if @ "> @, then there exists P’ ¢ Prcsuchthat » — P and P' p @'

Example 4.4 (A first example)

Claim: P ~ Q where P

a.Py + a.Ps @ = a.Qy
P b.P> Q = b.Qy
P b.P

Proof: p = {(P, Q), (P:, Q1), (P2, Q) } is a strong bisimulation
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Definition 4.3 (Strong bisimulation — recall) (Park 1981, Milner 1989)

A binary relation p C Prc x Prcis a strong bisimulation if for every (P, Q) € pand o € Act:
(1) if P = > @ and P pQ', and
(2) if @ — @', then there exists P’ & Prc suchthat P — P’ and P’ p Q.

Example 4.4 (A first example)

@

. P/, then there exists @' & Prc such that Q

Claim: P ~ Qwhere P = apP;+akF: = a@y
P4 = b.P» 01 == bQW
P> b.P

Proof: p = {(P, Q), (P, Q). (P>, Q) } is a strong bisimulation

Example 4.5 (Relating a finite to an infinite-state process)
Claim: Py ~ Qwhere P, = a.P;fori € Nand O = a.Q.

= ™ — - — =
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Definition 4.3 (Strong bisimulation — recall) (Park 1981, Milner 1989)

A binary relation p C Prc x Prcis a strong bisimulation if for every (P, Q) € pand o € Act:
() ifP > @ and P pQ', and
(2) if @ — @', then there exists P’ & Prc suchthat P — P’ and P’ p Q.

Example 4.4 (A first example)

c @

. P/, then there exists @' & Prc such that Q

Claim: P ~ Qwhere P = apP;+akF: =
P1 = bpg 01 — b01
P> b.P

Proof: p = {(P, Q), (P, Q). (P>, Q) } is a strong bisimulation

Example 4.5 (Relating a finite to an infinite-state process)
Claim: Py ~ Qwhere P, = a.P;fori € Nand O = a.Q.

Proof: p = {(F;, Q) | i € N} is a strong bisimulation.

= i - = = VAN

Thomas Noll, Peter Thiemann Winter 2025/26 9/25


https://doi.org/10.1007/BFb0017309

A Counterexample

Example 4.6 (Vending machines; cf. Example )

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
CTM" = coin.coffee.CTM' + coin.tea.CTM'.
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Example 4.6 (Vending machines; cf. Example )

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
CTM'" = coin.coffee.CTM' + coin.tea.CTM'.
Corresponding LTSs:
coffee lcom tea coff%/ coin\"\ﬁa
oin
coffee.CTM + tea.CTM coffee.CTM' tea.CTM'
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A Counterexample

Example 4.6 (Vending machines; cf. Example )

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
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@ First CTM' chooses the left coin-transition.
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A Counterexample

Example 4.6 (Vending machines; cf. Example )

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.
Corresponding LTSs:
L cT™
coffee lcoin tea coff%/ co,'n\\ﬁa
oin
coffee.CTM + tea.CTM coffee.CTM' tea.CTM'

Assumption: there exists bisimulation p such that CTM p CTM'.
@ First CTM' chooses the left coin-transition.

@ The only possible reaction by CTM is its coin-transition;
thus (coffee.CTM + tea.CTM) p coffee.CTM' must hold.
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A Counterexample

Example 4.6 (Vending machines; cf. Example )

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
CTM'" = coin.coffee.CTM' + coin.tea.CTM'.
Corresponding LTSs:
coffee lcom tea coff%/ coin\\ﬁa
oin
coffee.CTM + tea.CTM coffee.CTM' tea.CTM'

!

Assumption: there exists bisimulation p such that CTM p CTM".
@ First CTM' chooses the left coin-transition.

@ The only possible reaction by CTM is its coin-transition;
thus (coffee.CTM + tea.CTM) p coffee.CTM' must hold.

@ CTM proceeds by selecting the iea-transition.
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A Counterexample

Example 4.6 (Vending machines; cf. Example )

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
CTM'" = coin.coffee.CTM' + coin.tea.CTM'.
Corresponding LTSs:
(:7“4 (:7]4/
coffee lcom tea coff%/ coin\\ﬁa
oin
coffee.CTM + tea.CTM coffee.CTM' tea.CTM'

Assumption: there exists bisimulation p such that CTM p CTM'.
@ First CTM' chooses the left coin-transition.

@ The only possible reaction by CTM is its coin-transition;
thus (coffee.CTM + tea.CTM) p coffee.CTM' must hold.

@ CTM proceeds by selecting the fea-transition.
@ But CTM' cannot react to this step.
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Outline of Lecture 4

e Bisimilarity is an Equivalence
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Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).
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(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ~ is the coarsest strong bisimulation.
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Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ~ Is the coarsest strong bisimulation.

(1) ~ is an equivalence relation:
o Reflexivity:
idpr := {(P,P) | P € Prc}

is obviously a strong bisimulation.
Since idp. C ~ by Definition 4.2, ~ is reflexive.
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Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ~ is the coarsest strong bisimulation.

(1) ~ is an equivalence relation:

e Symmetry: (Caveat: not every strong bisimulation is symmetric; cf. Example 4.4.)
But if p is a strong bisimulation, then so is its inverse

o ' =1{(Q,P)| PpQ}

(due to symmetry in Definition 4.3). Therefore, ~ is symmetric by Definition 4.2.

Thomas Noll, Peter Thiemann Winter 2025/26 12/25



Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).
(2) ~ is the coarsest strong bisimulation.

(1) ~ is an equivalence relation:

@ Transitivity: (Caveat: not every strong bisimulation is transitive.)
But if p and o are strong bisimulations, then so is their composition p o o := {(P. R) | 4Q : PpQ. Qo R}.
Proof: P (po o) Rand P P’

= 3Q: PpQ, QoRand P = P’ (def. o)
= 3Q,Q : QoR, Q@ = Q' and P'pQ@ (p strong bisimulation)
= 3Q',R : P'pQ',R =+ R and Q'0R’ (o strong bisimulation)
=3dR'":R—— R and P’ (poo) R (def. o)

(analogously for assumption 7 —— R’)
Therefore, ~ is transitive by Definition 4.2.

— = = — SR
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Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ~ is the coarsest strong bisimulation.

(2) ~ is the coarsest strong bisimulation:
According to Definition 4.2, it suffices to show that strong bisimulations are closed under union,

i.e., whenever p. o are bisimulations, then so is p L . This immediately follows by case
distinction.

0l
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e Bisimilarity vs. Trace Equivalence
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Bisimulation on Paths

Lemma 4.8 (Bisimulation on paths)

Whenever we have:

Qay ap

Po P =% P, =% P35 P
P
Qo
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Bisimulation on Paths

Lemma 4.8 (Bisimulation on paths)

Whenever we have:

P, Py
P
Qo

this can be completed to
P, 2% P
p P
Q@ 5 o

P>

P>

Q.

Ps

Ps

Qs

Thomas Noll, Peter Thiemann
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Bisimulation on Paths
Lemma 4.8 (Bisimulation on paths)

Whenever we have:
« Qi (%} QU4
Po — P — P, — P3 — Py......

P
Qo
this can be completed to
P = P4 = P> — P3 & Py......
P P P P P

Qo Sl Q — Q@ — Q& — Q......

by induction on the length of the path

Winter 2025/26
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Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ~ Q implies that P and Q are trace equivalent. The reverse does generally not hold.

Thomas Noll, Peter Thiemann Winter 2025/26 15/25



Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not hold.

The implication from left to right follows from Lemma 4.8.
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Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not hold.

The implication from left to right follows from Lemma 4.8.
Consider the other direction:
@ Take P = a.P; with Py = b.nil + c.niland Q = a.b.nil + a.c.nil.
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Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not hold.

The implication from left to right follows from Lemma 4.8.

Consider the other direction:
@ Take P = a.P; with Py = b.nil + c.niland Q = a.b.nil + a.c.nil.
@ Then: Tr(P) = {¢, a,ab, ac} = Tr(Q).
@ Thus, P and Q are trace equivalent.
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Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally not hold.

The implication from left to right follows from Lemma 4.8.
Consider the other direction:
@ Take P = a.P; with Py = b.nil + c.niland Q = a.b.nil + a.c.nil.
Then: Tr(P) = {¢, a, ab, ac} = Tr(Q).
Thus, P and @ are trace equivalent.
But: P »4 O, as there is no state in the LTS of O that is bisimilar to 7; (cf. Example 4.6).
Why? Since no state in @ can perform both b and c.
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Deterministic Transition Systems |

Definition 4.10 (Determinism)
P & Prcis deterministic whenever for every of its reachable states ~ it holds:

(F? % R and R R”> implies A — R
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Deterministic Transition Systems |

Definition 4.10 (Determinism)
P & Prcis deterministic whenever for every of its reachable states ~ it holds:

(R % R and R R”> implies A — R

Theorem 4.11 (Determinism implies coincidence of ~ and trace equiv.)
For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).
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Deterministic Transition Systems |l

Theorem (Determinism implies coincidence of ~ and trace equiv.) (Park 1981)

For deterministic P and Q: iff
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Deterministic Transition Systems |l

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.
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Deterministic Transition Systems |l

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.
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For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.

@ Let RpSand R+ R’ (reverse implication analogous).
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Deterministic Transition Systems |l

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.
@ Let RpSand R+ R’ (reverse implication analogous).
@ As Pis deterministic, {w € Tr(R) |[w =a...} = a- TI(R).
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For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.
@ Let RpSand R+ R’ (reverse implication analogous).
@ As Pis deterministic, {w € Tr(R) |[w =a...} = a- TI(R).
@ As Tr(R) = Tr(S), there ex. w € Tr(S) suchthat w = av. . ..

Thomas Noll, Peter Thiemann Winter 2025/26 17/25


https://doi.org/10.1007/BFb0017309

Deterministic Transition Systems |l

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.
@ Let RpSand R+ R’ (reverse implication analogous).
@ As Pis deterministic, {w € Tr(R) |[w =a...} = a- TI(R).
@ As Tr(R) = Tr(S), there ex. w € Tr(S) suchthat w = av. . ..

@ Henceex. S’ ¢ Prewith S - &',
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Deterministic Transition Systems |l

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.
@ Let RpSand R+ R’ (reverse implication analogous).
@ As Pis deterministic, {w € Tr(R) |[w =a...} = a- TI(R).
@ As Tr(R) = Tr(S), there ex. w € Tr(S) suchthat w = av. . ..
@ Henceex. S’ € Prewith S+ S'.
@ Again by determinism, {w € Tr(S) |w = a...} = o Tr(S).
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Deterministic Transition Systems |l

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 77(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p:={(R,S)|P—" R Q—" S, Tr(R) = Tr(S)}

is a strong bisimulation.

Let RpSand R+ R’ (reverse implication analogous).

As P is deterministic, {w € Tr(R) | w = a...} = a- Tr(R').
As Tr(R) = Tr(S), there ex. w € Tr(S) suchthat w = av. . ..
Hence ex. S’ € Prewith S — S'.

Again by determinism, {w € Tr(S) | w = a...} = o Tr(S).

Altogether, Tr(R’) = Tr(S") and thus A’ pS’, which completes the proof. O
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Outline of Lecture 4

e Bisimilarity is a Congruence
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Congruence |

Theorem 4.12 (CCS congruence property of ~)

Strong bisimilarity ~ is a CCS congruence, that is, whenever P. Q & Prc such that P ~ Q,

a.P~a.Q for every v € Act
P+R~Q+ R foreveryR € Prc
P||R~Q]| R foreveryR € Prc
P\L~Q\L foreveryl C A

P[f] ~ Q[f] forevery f = A — A
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ruence |l

We only consider parallel composition and prove || 7 ~ @ || A by showing that

p={P |R,Q|R)|IP ~a,R—*R}

is a strong bisimulation.
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ruence |l

We only consider parallel composition and prove || 7 ~ @ || A by showing that
p={P |R,Q|R)|IP ~a,R—*R}
is a strong bisimulation.

To this aim, let (P || R') p (O || A').

)

@ ifp || R » 5’ , the following cases are possible:
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Congruence |l

We only consider parallel composition and prove || 7 ~ @ || A by showing that

p={P |R,Q|R)|IP ~a,R—*R}
is a strong bisimulation.

To this aim, let (P || R') p (O || A').

@ P || B” -5 &/, the following cases are possible:

(1) P = P'and S’ = P" || R":
Since P’ ~ @, there ex. Q" such that @' — Q" and P ~ Q.
Thus, @ || A % @ | R'and S’ p (Q" || R)).
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Congruence |l

We only consider parallel composition and prove || 7 ~ @ || A by showing that

p={P |R,Q|R)|IP ~a,R—*R}
is a strong bisimulation.
To this aim, let (P || /') p (O || /).

@ P || B” -5 &/, the following cases are possible:
«

(1) P — P"and S’ = P” H R
Since P’ ~ @, there ex. Q" such that @' — Q" and P ~ Q.

Thus, @ | R % Q" || R"and S' p (@ || R)).
2 R > R'"andS' =P || R":

«

Here @ | R — Q' || R and S’ p (Q' || R").
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Congruence |l

We only consider parallel composition and prove || 7 ~ @ || A by showing that
p={P |R,Q|R)|IP ~a,R—*R}
is a strong bisimulation.

To this aim, let (P || R') p (O || A').

@ P || B” -5 &/, the following cases are possible:
«

(1) PP — P"and S'=P" || R":
Since P/ ~ @, there ex. Q" such that @' > @” and P ~ Q.
Thus, @ |R' = Q" || R and S’ p (Q" || R').

2 R > R'"andS' =P || R":

«

Here @ | R — Q' || R and S’ p (Q' || R").

@) a=r1,P 2 P R 2 R" (forsome A € AUA)and §' = P" || R":
combination of (1) and (2).
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Congruence |l

We only consider parallel composition and prove || 7 ~ @ || A by showing that
p={P |R,Q|R)|IP ~a,R—*R}
is a strong bisimulation.

To this aim, let (P || R') p (O || A').

@ P || B” -5 &/, the following cases are possible:
«

(1) PP — P"and S'=P" || R":
Since P/ ~ @, there ex. Q" such that @' > @” and P ~ Q.
Thus, @ |R' = Q" || R and S’ p (Q" || R').

2 R > R'"andS' =P || R":

«

Here @ | R — Q' || R and S’ p (Q' || R").

@) a=r1,P 2 P R 2 R" (forsome A € AUA)and §' = P" || R":
combination of (1) and (2).

@ o | AR - 77:analogous
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Outline of Lecture 4

@ Bisimilarity is Deadlock Sensitive
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Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock; cf. Definition 3.2)
Let and such that

and
Then @ is called a w-deadlock of

Definition (Deadlock sensitivity; cf. Definition 2.10)

Relation is deadlock sensitive whenever:

implies has a w-deadlock iff © has a w-deadlock
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Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition =.70)
Relation is whenever:

implies has a w-deadlock iff © has a w-deadlock

Theorem 4.13

~ Is deadlock sensitive.
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Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition 2.10)

Relation is whenever:

implies has a w-deadlock iff © has a w-deadlock

Theorem 4.13
~ is deadlock sensitive. )

Let P ~ Q.

@ We assume that, for some w & Aci”, P has a w-deadlock but @ does not (or vice versa).
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Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition 2.10)

Relation is whenever:

implies has a w-deadlock iff © has a w-deadlock

Theorem 4.13
~ is deadlock sensitive. )

Let P ~ Q.

@ We assume that, for some w & Aci”, P has a w-deadlock but @ does not (or vice versa).
@ Thus, there exists P’ & Prc suchthat P —— P and P’ /.

@ Moreover, for all Q' € Prc with @ —+ Q' there exist o € Actand Q" € Prc such that @ = Q.
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Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition 2.10)

Relation is whenever:

implies has a w-deadlock iff © has a w-deadlock

Theorem 4.13

~ Is deadlock sensitive.

Let P ~ Q.

We assume that, for some w < Act, P has a w-deadlock but © does not (or vice versa).
Thus, there exists P’ & Prc such that » —— P’ and P’ /.

°
°
@ Moreover, for all @' & Prc with @ —— Q' there exist o € Act and Q' € Prc such that @' — Q.
°
°

For P 5 P’, Lemma 4.8 (bisimulation on paths) yields @’ with @ —*+ @' and P’ ~ @'.

Thus P’ /- and Q"+ Q" cannot hold at the same time. /
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Outline of Lecture 4

ﬂ Data Structures Revisited
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Semaphores |

Example 4.14 (An n-ary semaphore)

5] stands for a semaphore for 11 identical, exclusive resources / of which are taken:

S§ = get.S]
S] = get.S ,+put.S!, for0<i<n
S = put.S]_,
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Semaphores |

Example 4.14 (An n-ary semaphore)

5! stands for a semaphore for 17 identical, exclusive resources / of which are taken:

Sg = get.S]
S] = get.S ,+put.S!, for0<i<n
S = put.S]_,

This process is strongly bisimilar to 1 parallel binary semaphores:

Foreveryn < I, we have: Sj ~ S, || - || ).
—_

n times
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Semaphores Il

Lemma

For every , we have:
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Semaphores Il

Lemma

For every , we have:
Consider the following binary relation where /. ... . i, ¢ {0, 1}:
n
1 1 ;
p=1(ShSil-11S) [D ii=k
j=1
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Semaphores Il

Lemma

For every , we have:

Consider the following binary relation where /. . . . . in € {0,1}:

n

p=1(Sushll--ls) D i=k
j=1

Then:  is a strong bisimulation and (S]. S} || - || S)) < . O
—_

ntimes
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