
Concurrency Theory
Winter 2025/26

Lecture 4: Strong Bisimulation

Thomas Noll, Peter Thiemann
Programming Languages Group

University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less
processes than LTS isomorphism does, i.e., ≡ should be coarser than
LTS isomorphism:

LTS(P) ≡iso LTS(Q) ⇒ P ≡ Q.

(2) More distinctive than trace equivalence: an equivalence should
distinguish more processes than trace equivalence does, i.e., ≡ should
be finer than trace equivalence:

P ≡ Q ⇒ Tr(P) = Tr(Q).

(3) Congruence property: the equivalence must be substitutive with respect
to all CCS operators (in the following).

(4) Deadlock preservation: equivalent processes should have the same
deadlock behaviour, i.e., they can either both deadlock, or both cannot (in
the following).

(5) Optional: the coarsest possible equivalence: there should be no less
discriminating equivalence satisfying all these requirements.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 3 / 25

Trace Equivalence

Definition (Trace language)
For every P ∈ Prc, let
Tr(P) := {w ∈ Act∗ | ex. P′ ∈ Prc such that P

w−→ P′} be the trace
language of P (where

w−→ :=
α1−→ ◦ . . . ◦ αn−→ for w = α1 . . . αn).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).
Trace equivalence is a possible behavioural equivalence, is a
congruence, but does not preserve deadlocks.

Main problem:

Tr(α.(P + Q)) = Tr(α.P + α.Q),

whereas their deadlock behaviour in a context can differ.

Solution: consider finer behavioural equivalences ≡ such
that

α.(P + Q) ̸≡ α.P + α.Q.

Our (serious) attempt today: Milner’s strong bisimulation.

Robin Milner
(1934–2010)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 4 / 25

Rationale

Observation
In order for a behavioural equivalence to be deadlock sensitive, it has to take
the branching structure of processes into account.

This is achieved by an equivalence that is defined according to the following
scheme:

Bisimulation scheme
P,Q ∈ Prc are equivalent iff, for every action α, every α-successor of P is
equivalent to some α-successor of Q, and vice versa.

Three variants will be considered in this course:

(1) Strong bisimulation: ignore the special role of τ -actions

(2) Weak bisimulation: treat τ -actions as invisible

(3) Simulation relations: unidirectional versions of bisimulation
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 25

Strong Bisimulation I

Definition 4.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation if for every (P,Q) ∈ ρ
and α ∈ Act :

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α−→ Q′ and P′ ρQ′,
and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α−→ P′ and P′ ρQ′.

Note: strong bisimulations are not necessarily equivalences (e.g., ρ = ∅).

Definition 4.2 (Strong bisimilarity)

Processes P,Q ∈ Prc are strongly bisimilar (P ∼ Q), iff there is a strong
bisimulation ρ with P ρQ.

∼ =
⋃

{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 7 / 25

https://doi.org/10.1007/BFb0017309

Strong Bisimulation II

P
α−→ P′ P

α−→ P′

ρ can be completed to ρ ρ

Q Q
α−→ Q′

and

P P
α−→ P′

ρ can be completed to ρ ρ

Q
α−→ Q′ Q

α−→ Q′

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 25

Examples

Definition 4.3 (Strong bisimulation — recall) (Park 1981, Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a strong bisimulation if for every (P,Q) ∈ ρ and α ∈ Act :

(1) if P
α−→ P′, then there exists Q′ ∈ Prc such that Q

α−→ Q′ and P′ ρQ′, and

(2) if Q
α−→ Q′, then there exists P′ ∈ Prc such that P

α−→ P′ and P′ ρQ′.

Example 4.4 (A first example)

Claim: P ∼ Q where P = a.P1 + a.P2 Q = a.Q1

P1 = b.P2 Q1 = b.Q1

P2 = b.P2

Proof: ρ = {(P,Q), (P1,Q1), (P2,Q1)} is a strong bisimulation

Example 4.5 (Relating a finite to an infinite-state process)
Claim: P0 ∼ Q where Pi = a.Pi+1 for i ∈ N and Q = a.Q.

Proof: ρ = {(Pi ,Q) | i ∈ N} is a strong bisimulation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 25

https://doi.org/10.1007/BFb0017309

A Counterexample

Example 4.6 (Vending machines; cf. Example 3.13)

Show CTM ̸∼ CTM′ where CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM′ = coin.coffee.CTM ′ + coin.tea.CTM′.

Corresponding LTSs:
CTM

coffee.CTM + tea.CTM

coincoffee tea

CTM′

coffee.CTM ′ tea.CTM′
coin

coincoffee tea

Assumption: there exists bisimulation ρ such that CTM ρ CTM′.

First CTM′ chooses the left coin-transition.

The only possible reaction by CTM is its coin-transition;
thus (coffee.CTM + tea.CTM) ρ coffee.CTM ′ must hold.

CTM proceeds by selecting the tea-transition.

But CTM′ cannot react to this step. (Verify using CAAL)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 25

Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ∼)

(1) ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ∼ is the coarsest strong bisimulation.

Proof.
(1) ∼ is an equivalence relation:

Reflexivity:
idPrc := {(P,P) | P ∈ Prc}

is obviously a strong bisimulation.
Since idPrc ⊆ ∼ by Definition 4.2, ∼ is reflexive.
Symmetry: (Caveat: not every strong bisimulation is symmetric; cf.
Example 4.4.)
But if ρ is a strong bisimulation, then so is its inverse

ρ−1 := {(Q,P) | PρQ}

(due to symmetry in Definition 4.3). Therefore, ∼ is symmetric by
Definition 4.2.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 25

Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ∼)

(1) ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ∼ is the coarsest strong bisimulation.

Proof.
(1) ∼ is an equivalence relation:

Transitivity: (Caveat: not every strong bisimulation is transitive.)
But if ρ and σ are strong bisimulations, then so is their composition
ρ ◦ σ := {(P,R) | ∃Q : PρQ,QσR}.
Proof: P (ρ ◦ σ) R and P

α−→ P′

⇒ ∃Q : PρQ, QσR and P
α−→ P′ (def. ◦)

⇒ ∃Q,Q′ : QσR, Q
α−→ Q′ and P′ρQ′ (ρ strong bisimulation)

⇒ ∃Q′,R′ : P′ρQ′, R
α−→ R′ and Q′σR′ (σ strong bisimulation)

⇒ ∃R′ : R
α−→ R′ and P′ (ρ ◦ σ) R′ (def. ◦)

(analogously for assumption R
α−→ R′)

Therefore, ∼ is transitive by Definition 4.2.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 25

Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ∼)

(1) ∼ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ∼ is the coarsest strong bisimulation.

Proof.
(2) ∼ is the coarsest strong bisimulation:

According to Definition 4.2, it suffices to show that strong bisimulations
are closed under union, i.e., whenever ρ, σ are bisimulations, then so is
ρ ∪ σ. This immediately follows by case distinction. □

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 25

Bisimulation on Paths

Lemma 4.8 (Bisimulation on paths)

Whenever we have:

P0
α1−→ P1

α2−→ P2
α3−→ P3

α4−→ P4

ρ

Q0

this can be completed to

P0
α1−→ P1

α2−→ P2
α3−→ P3

α4−→ P4

ρ ρ ρ ρ ρ

Q0
α1−→ Q1

α2−→ Q2
α3−→ Q3

α4−→ Q4

Proof.
by induction on the length of the path

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 14 / 25

Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ∼ Q implies that P and Q are trace equivalent. The reverse does generally
not hold.

Proof.
The implication from left to right follows from Lemma 4.8.

Consider the other direction:

Take P = a.P1 with P1 = b.nil + c.nil and Q = a.b.nil + a.c.nil.

Then: Tr(P) = {ϵ, a, ab, ac} = Tr(Q).

Thus, P and Q are trace equivalent.

But: P ̸∼ Q, as there is no state in the LTS of Q that is bisimilar to P1 (cf.
Example 4.6).

Why? Since no state in Q can perform both b and c.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 25

Deterministic Transition Systems I

Definition 4.10 (Determinism)
P ∈ Prc is deterministic whenever for every of its reachable states R it holds:(

R
α−→ R′ and R

α−→ R′′
)

implies R′ = R′′.

Theorem 4.11 (Determinism implies coincidence of ∼ and trace equiv.)
(Park 1981)

For deterministic P and Q: P ∼ Q iff Tr(P) = Tr(Q).

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 25

https://doi.org/10.1007/BFb0017309

Deterministic Transition Systems II

Theorem (Determinism implies coincidence of ∼ and trace equiv.)
(Park 1981)

For deterministic P and Q: P ∼ Q iff Tr(P) = Tr(Q).

Proof.
By Theorem 4.9, it remains to prove that Tr(P) = Tr(Q) implies P ∼ Q.

To this end, we show that

ρ := {(R,S) | P −→∗ R,Q −→∗ S, Tr(R) = Tr(S)}

is a strong bisimulation.

Let RρS and R
α−→ R′ (reverse implication analogous).

As P is deterministic, {w ∈ Tr(R) | w = α . . .} = α · Tr(R′).

As Tr(R) = Tr(S), there ex. w ∈ Tr(S) such that w = α

Hence ex. S′ ∈ Prc with S
α−→ S′.

Again by determinism, {w ∈ Tr(S) | w = α . . .} = α · Tr(S′).

Altogether, Tr(R′) = Tr(S′) and thus R′ρS′, which completes the proof.Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 25

https://doi.org/10.1007/BFb0017309

Congruence I

Theorem 4.12 (CCS congruence property of ∼)
Strong bisimilarity ∼ is a CCS congruence, that is, whenever P,Q ∈ Prc such
that P ∼ Q,

α.P ∼ α.Q for every α ∈ Act
P + R ∼ Q + R for every R ∈ Prc
P ∥ R ∼ Q ∥ R for every R ∈ Prc
P \ L ∼ Q \ L for every L ⊆ A
P[f] ∼ Q[f] for every f : A → A

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 25

Congruence II

Proof.
We only consider parallel composition and prove P ∥ R ∼ Q ∥ R by showing that

ρ := {(P′ ∥ R′
, Q′ ∥ R′) | P′ ∼ Q′

, R −→∗ R′}

is a strong bisimulation.

To this aim, let (P′ ∥ R′) ρ (Q′ ∥ R′).

If P′ ∥ R′ α−→ S′ , the following cases are possible:

(1) P′ α−→ P′′ and S′ = P′′ ∥ R′:
Since P′ ∼ Q′, there ex. Q′′ such that Q′ α−→ Q′′ and P′′ ∼ Q′′.
Thus, Q′ ∥ R′ α−→ Q′′ ∥ R′ and S′ ρ (Q′′ ∥ R′).

(2) R′ α−→ R′′ and S′ = P′ ∥ R′′:
Here Q′ ∥ R′ α−→ Q′ ∥ R′′ and S′ ρ (Q′ ∥ R′′).

(3) α = τ , P′ λ−→ P′′, R′ λ−→ R′′ (for some λ ∈ A ∪ A) and S′ = P′′ ∥ R′′:
combination of (1) and (2).

Q′ ∥ R′ α−→ T ′ : analogous

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 20 / 25

Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition 3.10)
Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗ : P has a w-deadlock iff Q has a w-deadlock) .

Theorem 4.13

∼ is deadlock sensitive.

Proof.
Let P ∼ Q.

We assume that, for some w ∈ Act∗, P has a w-deadlock but Q does not (or vice versa).

Thus, there exists P′ ∈ Prc such that P
w−→ P′ and P′ ̸−→.

Moreover, for all Q′ ∈ Prc with Q
w−→ Q′ there exist α ∈ Act and Q′′ ∈ Prc such that

Q′ α−→ Q′′.

For P
w−→ P′, Lemma 4.8 (bisimulation on paths) yields Q′ with Q

w−→ Q′ and P′ ∼ Q′.

Thus P′ ̸−→ and Q′ α−→ Q′′ cannot hold at the same time.
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 22 / 25

Semaphores I

Example 4.14 (An n-ary semaphore)

Sn
i stands for a semaphore for n identical, exclusive resources i of which are

taken:

Sn
0 = get.Sn

1
Sn

i = get.Sn
i+1 + put.Sn

i−1 for 0 < i < n
Sn

n = put.Sn
n−1

This process is strongly bisimilar to n parallel binary semaphores:

Lemma 4.15

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ∥ · · · ∥ S1
0︸ ︷︷ ︸

n times

.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 24 / 25

Semaphores II

Lemma

For every n ∈ N+, we have: Sn
0 ∼ S1

0 ∥ · · · ∥ S1
0︸ ︷︷ ︸

n times

.

Proof.
Consider the following binary relation where i1, . . . , in ∈ {0, 1}:

ρ =

(
Sn

k ,S1
i1 ∥ · · · ∥ S1

in

) ∣∣∣∣∣∣
n∑

j=1

ij = k


Then: ρ is a strong bisimulation and (Sn

0,S1
0 ∥ · · · ∥ S1

0︸ ︷︷ ︸
n times

) ∈ ρ.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 25 / 25

	Recap: Trace Equivalence
	Bisimulation
	Bisimilarity is an Equivalence
	Bisimilarity vs. Trace Equivalence
	Bisimilarity is a Congruence
	Bisimilarity is Deadlock Sensitive
	Data Structures Revisited

