Concurrency Theory
Winter 2025/26

Lecture 4: Strong Bisimulation

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less
processes than LTS isomorphism does, i.e., = should be coarser than
LTS isomorphism:

LTS(P) =iso LTS(Q) = P = Q.
(2) More distinctive than trace equivalence: an equivalence should

distinguish more processes than trace equivalence does, i.e., = should
be finer than trace equivalence:
P=Q= Tr(P) =Tr(Q).

(3) Congruence property: the equivalence must be substitutive with respect
to all CCS operators (in the following).

(4) Deadlock preservation: equivalent processes should have the same
deadlock behaviour, i.e., they can either both deadlock, or both cannot (in
the following).

(5) Optional: the coarsest possible equivalence: there should be no less
discriminating equivalence satisfying all these requirements.

Thomas Noll, Peter Thiemann Winter 2025/26 3/25

Trace Equivalence

Definition (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P —— P’} be the trace

(07}

language of P (where — == "5 o ..o “forw = aq ...).

P.Q € Prc are called trace equivalent if 7r(P) = Tr(Q).

@ Trace equivalence is a possible behavioural equivalence, is a
congruence, but does not preserve deadlocks.

@ Main problem:
Tr(a.(P+ Q)) = Tr(a.P + .Q),

whereas their deadlock behaviour in a context can differ.

@ Solution: consider finer behavioural equivalences = such
that

a.(P+ Q) # a.P+a.Q. Robin Milner

(1934-2010)

@ Our (serious) attempt today: Milner’s strong bisimulation.

Thomas Noll, Peter Thiemann Winter 2025/26 4/25

Observation

In order for a behavioural equivalence to be deadlock sensitive, it has to take
the branching structure of processes into account.

This is achieved by an equivalence that is defined according to the following
scheme:

Bisimulation scheme

P. Q < Prc are equivalent iff, for every action «, every a-successor of P is
equivalent to some «a-successor of), and vice versa.

Three variants will be considered in this course:
(1) Strong bisimulation: ignore the special role of 7-actions
(2) Weak bisimulation: treat 7-actions as invisible
(3) Simulation relations: unidirectional versions of bisimulation

Thomas Noll, Peter Thiemann Winter 2025/26 6/25

Strong Bisimulation |

Definition 4.1 (Strong bisimulation) (Park 1981, Milner 1989)

A binary relation p C Prc x Prc is a strong bisimulation if for every (P, Q) € p
and o € Act:

(1) if P -~ P/, then there exists @' ¢ Prc suchthat @ — @ and P p @/,
and

(2) if @ -~ @, then there exists P ¢ Prc suchthat P — P’ and P/ p Q.

Note: strong bisimulations are not necessarily equivalences (e.g., p = ().

Definition 4.2 (Strong bisimilarity)

Processes P, Q & Prc are strongly bisimilar (P ~ Q), iff there is a strong
bisimulation p with P p Q.

~ = U {p C Prc x Prc | pis a strong bisimulation}.

Thomas Noll, Peter Thiemann Winter 2025/26 7/25

https://doi.org/10.1007/BFb0017309

Strong Bisimulation |l

P % P N

p can be completed to p p

Q Q 5 Q@
and

P P % P

p can be completed to p p

Q 5 Q 5

Thomas Noll, Peter Thiemann Winter 2025/26 8/25

Definition 4.3 (Strong bisimulation — recall) (Park 1981, Milner 1989)

A binary relation p C Prc x Prcis a strong bisimulation if for every (P, Q) € pand o € Act:
(1) if P -5 P, then there exists @' € Prcsuchthat @ —+ @ and P’ p @', and
(2) if @ — @', then there exists P’ © Prcsuchthat P — P and P’ p Q.

Example 4.4 (A first example)

Claim: P ~ Qwhere P = aP +afs Q = aQ
ID1 == bP2 O} == bQ1
P, = b.P

Proof: p = {(P, Q), (P, Qy), (P>, Qi) } is a strong bisimulation

Example 4.5 (Relating a finite to an infinite-state process)
Claim: Py ~ Qwhere P, = a.P;. fori € Nand Q = a.Q.

Proof: p = {(F;, Q) | i € N} is a strong bisimulation.

Thomas Noll, Peter Thiemann Winter 2025/26 9/25

https://doi.org/10.1007/BFb0017309

A Counterexample

Example 4.6 (Vending machines; cf. Example)

Show CTM ¢ CTM' where CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.
Corresponding LTSs:
G cTm’
e lcoin i coff%/ COIN\‘\
coffee. CTM + tea.CTM coffee.CTM’ tea.CTM'

Assumption: there exists bisimulation p such that CTM p CTM'.
@ First CTM' chooses the left coin-transition.

@ The only possible reaction by CTM is its coin-transition;
thus (coffee.CTM + tea.CTM) p coffee.CTM' must hold.

@ CTM proceeds by selecting the iea-transition.

@ But CTM' cannot react to this step. 4 (Verify using CAAL)
v

Thomas Noll, Peter Thiemann Winter 2025/26

10/25

Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).
(2) ~ is the coarsest strong bisimulation.

(1) ~ is an equivalence relation:
o Reflexivity:

idp :={(P, P) | P € Prc}

is obviously a strong bisimulation.
Since idp. C ~ by Definition 4.2, ~ is reflexive.
e Symmetry: (Caveat: not every strong bisimulation is symmetric; cf.
Example 4.4.)
But if p is a strong bisimulation, then so is its inverse

p ' :={(Q,P) | PpQ}

Thomas Noll, Ig’ete;Thi-em-annu e) " Concu y a “\;VAinAter2(525A/26

Properties of Strong Bisimilarity

Lemma 4.7 (Properties of ~)

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ~ is the coarsest strong bisimulation.

(1) ~ is an equivalence relation:
@ Transitivity: (Caveat: not every strong bisimulation is transitive.)
But if p and o are strong bisimulations, then so is their composition
poao:={(P,R)|3Q: PpQ, QoR}.
Proof: P (po o) Rand P — P’

@

= 3Q: PpQ, QoRand P -5 P’ (def. ©)
= 3Q,Q : QoR, Q@ =+ @ and P’ pQ@ (p strong bisimulation)
= 3Q',R : P'pQ', R = R and Q'oR’ (o strong bisimulation)
= 3R R R'and P’ (poo) R (def. o)

(analogously for assumption 7 —— R')
Therefore, ~ is transitive by Definition 4.2.

Thomas Noll, Peter Thiemann Winter 2025/26 12/25

Properties of Strong Bisimilarity

(1) ~ is an equivalence relation (i.e., reflexive, symmetric, and transitive).

(2) ~ is the coarsest strong bisimulation.

(2) ~ is the coarsest strong bisimulation:
According to Definition 4.2, it suffices to show that strong bisimulations
are closed under union, i.e., whenever p, o are bisimulations, then so is
p U . This immediately follows by case distinction.]

v

Thomas Noll, Peter Thiemann Winter 2025/26 12/25

Bisimulation on Paths

Lemma 4.8 (Bisimulation on paths)

Whenever we have:

PP = P2 P B P P
/)
Qo

this can be completed to

« a ag Qg
PO % P1 — P2 — ID3 —

Py......
p p p p p
Q@ =5 o B e =B 6 % oq......

by induction on the length of the path

Thomas Noll, Peter Thiemann

Winter 2025/26

Strong Bisimilarity vs. Trace Equivalence

Theorem 4.9

P ~ Q implies that P and Q) are trace equivalent. The reverse does generally
not hold.

The implication from left to right follows from Lemma 4.8.

Consider the other direction:
@ Take P = a.P; with P; = b.nil 4+ c.niland Q = a.b.nil + a.c.nil.
® Then: Tr(P) = {¢, a, ab, ac} = Tr(Q).
@ Thus, P and Q are trace equivalent.

@ But: P 74 Q, as there is no state in the LTS of @ that is bisimilar to ~; (cf.
Example 4.6).

@ Why? Since no state in @ can perform both b and c.

Thomas Noll, Peter Thiemann Winter 2025/26 15/25

Deterministic Transition Systems |

Definition 4.10 (Determinism)
P & Prcis deterministic whenever for every of its reachable states /7 it holds:

(R . RandR /-?”> implies A — A",

Theorem 4.11 (Determinism implies coincidence of ~ and trace equiv.)

()
For deterministic P and Q: P ~ Q iff Tr(P) = Tr(Q).

Thomas Noll, Peter Thiemann Winter 2025/26 16/25

https://doi.org/10.1007/BFb0017309

Deterministic Transition Systems |l

Theorem (Determinism implies coincidence of ~ and trace equiv.)
(Park 1981)

For deterministic P and Q: iff

By Theorem 4.9, it remains to prove that 7/(P) = 7r(Q) implies P ~ Q.

To this end, we show that
p=4{(R,S)|P—"R Q—" S, T(R)=Tr(S)}

is a strong bisimulation.

@ Let RpSand R — R’ (reverse implication analogous).

@ As Pis deterministic, {w € Tr(R) |w =a...} = a- Tr(R).

@ As Tr(R) = Tr(S), there ex. w € Tr(S) suchthat w = cv. . ..

@ Henceex. S’ € Prewith S -+ &',

°

Again by determinism, {w € Tr(S) | w = a ...} = o Tr(S).

N IO o/ /N ol sl / L TR
Thomas Noll, Peter Thiemann Winter 2025/26

https://doi.org/10.1007/BFb0017309

Congruence |

Theorem 4.12 (CCS congruence property of ~)

Strong bisimilarity ~ is a CCS congruence, that is, whenever P. O < Prc such
that P ~ Q,

a.P~a.Q for every v & Act
P+R~Q+R foreveryR € Prc
P|R~Q| R foreveryR € Prc
P\L~Q\L foreveryl C A

P[f] ~ Q][f] forevery f - A — A

Thomas Noll, Peter Thiemann Winter 2025/26 19/25

Congruence |l

We only consider parallel composition and prove P || A ~ @ || A by showing that
p={P |R,Q |R)|P ~a,R—*R}
is a strong bisimulation.
To this aim, let (P || /') p (0" || /).
@ P || BN -5 &, the following cases are possible:
(1) P— P'andS' =P || R":
Since P’ ~ @, there ex. Q" such that @'~~~ Q" and P ~ Q.
Thus, @ | R - Q" || R"and S’ p (Q" || R').
2 R R"andS' = P' || R":
Here Q' || R - @ || R"and S’ p (Q' || R").

C

@) a=r1,P 25 P R 2 R (forsome A\ € AUA)and S' = P" || R":

combination of (1) and (2).

@ o | A - 77:analogous

Thomas Noll, Peter Thiemann Winter 2025/26

20/25

Deadlock Sensitivity of Strong Bisimilarity

Definition (Deadlock sensitivity; cf. Definition =.70)
Relation is whenever:

implies has a w-deadlock iff ©) has a w-deadlock

Theorem 4.13

~ is deadlock sensitive.)

Let P ~ Q.

@ We assume that, for some w & Aci”, P has a w-deadlock but @ does not (or vice versa).

@ Thus, there exists P’ © Prc suchthat P —— P and P’ /.

@ Moreover, for all @' ¢ Prcwith @ " Q' there exist o © Actand Q" ¢ Prc such that
Q% Q.

@ For P — P/, Lemma 4.8 (bisimulation on paths) yields @' with @ —— Q" and P’ ~ @'.

@ Thus P’ /+and @+ Q" cannot hold at the same time. /

[]
Thomas Noll, Peter Thiemann Winter 2025/26 22/25

Semaphores |

Example 4.14 (An n-ary semaphore)

S’ stands for a semaphore for 17 identical, exclusive resources / of which are
taken:

Sy = get.S]
S = getS! +put.S!, for0<i<n
Sy = put.Sp_,

This process is strongly bisimilar to 1 parallel binary semaphores:

Foreverync N, we have: S§ ~ S} || --- || Sp-
N—_— ——

n times

Thomas Noll, Peter Thiemann Winter 2025/26 24/25

Semaphores |l

Lemma

For every , we have:
Consider the following binary relation where /. ,in € {0,1}:
p=1(SSil---1I'sh) Z’/_k
Then: ; is a strong bisimulation and (S, S, | -+ || S)) © p. O
~—_——
ntimes)
Thomas Noll, Peter Thiemann Winter 2025/26 25/25

	Recap: Trace Equivalence
	Bisimulation
	Bisimilarity is an Equivalence
	Bisimilarity vs. Trace Equivalence
	Bisimilarity is a Congruence
	Bisimilarity is Deadlock Sensitive
	Data Structures Revisited

