Concurrency Theory
Winter 2025/26

Lecture 3: Trace Equivalence

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 3

o Recap: Milner’s Calculus of Communicating Systems

Thomas Noll, Peter Thiemann Winter 2025/26 2/32

Syntax of CCS |

Definition (Syntax of CCS)
@ Let Abe a set of (action) names.

@ A:={a| ac A} denotes the set of co-names.

@ Act := AU AU {7} is the set of actions with the silent (or: unobservable) action 7.
@ Let Pid be a set of process identifiers.

@ The set FPrc of process expressions is defined by the following syntax:

P, Q ::=nil (inaction)
| a.P (prefixing)
| P+Q (choice)
| Pl Q (parallel composition)
| P\L (restriction)
| P[f] (relabelling)
| (

process call)

A / . a¥a
Thomas Noll, Peter Thiemann Winter 2025/26

Syntax of CCS |l

Definition (continued)
@ A (recursive) process definition is an equation system of the form

(Ci=Pi|1<i<k)

where k > 1, C; « Pid (pairwise distinct), and ~; ¢ Prc (with identifiers from {Cy. Ck})-

Thomas Noll, Peter Thiemann Winter 2025/26 4/32

Semantics of CCS I

Reminder: 7. Q = nil [a.P|P+Q|P | Q|P\L| P[] C

Definition (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS (Prc. Act, —) whose transitions can be
inferred from the following rules (P, P’. Q. Q' € Prc, oo € Act, \ € AUA, L C A, f: Act — Act):
« / fo!, /
(Act) ————— (sumy)——F__ (Sump)— 92— _
a.P— P P+-Q— P P+Q-%
a / « / A / A /
(Pary) P? £ (Parz) O? Q Com (i~ PTOH ©
PllQ— P | Q PlQ—P| Q PllQ— P | Q@
PP (a,ag¢l a, pr PP (C=P
(Res) ”((af¢l) (Rel)i (Call) - ()
P\L— P'\L P[] () P'[f] cC— P

Thomas Noll, Peter Thiemann Winter 2025/26 5/32

Semantics of CCS llI

Example (continued)

3) Parallel two-place buffer (f := [out > com|, g := [in > coml|):

p

By = (B[] || Blg]) \ com
B = in.out.B
First step: A failing attempt:
(Act) —————— (Act)
(Call) in.out.B — out.B (CaII) in.out.B — out.B
(Rel) B - out.B (Rel) B - out.B
(Pah) B[f] — (out.B)[1] (Pan) Blg] =% (out.B)[g]
B[] || Blg] — (out.B)[f] || Blg] B[] || Bla] < BI1] || (out.B)[q]
(Res) : (Res) .
(Call) (Bl || Blal) \ com > ((eut.B)[1] || Bla]) \ com (Call) (B[|| Bla)) \ com —?
By % ((out.B)If] || Blal) \ com By~

Thomas Noll, Peter Thiemann Winter 2025/26 6/32

Semantics of CCS IV

Example (continued)

(3) Parallel two-place buffer: B = (B[f] || B[g]) \ com (f := [out — com], g := [in — com])
B = in.out.B
Complete LTS:

—>. 1l Blg]) \ com empty

]

[((out B)[f] || Blg com B[f] out.B)| com] one entry
((out.B)[f] || (out.B)[g]) \com full

Thomas Noll, Peter Thiemann Winter 2025/26 7/32

Outline of Lecture 3

9 Why Behavioural Equivalences?

Thomas Noll, Peter Thiemann Winter 2025/26 8/32

Preliminaries

@ When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and /mpl.

o two-place buffer (Example 2.2): sequential “specification” vs. parallel implementation
o mutual exclusion (later)

Thomas Noll, Peter Thiemann Winter 2025/26 9/32

Preliminaries

@ When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and /mpl.

o two-place buffer (Example 2.2): sequential “specification” vs. parallel implementation
o mutual exclusion (later)

@ This gives rise to the natural question: when are two CCS processes behaving the same?

Thomas Noll, Peter Thiemann Winter 2025/26 9/32

Preliminaries

@ When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and /mpl.

o two-place buffer (Example 2.2): sequential “specification” vs. parallel implementation
o mutual exclusion (later)

@ This gives rise to the natural question: when are two CCS processes behaving the same?

@ As there are many different interpretations of “behaving the same”, different behavioural
equivalences have emerged.

Thomas Noll, Peter Thiemann Winter 2025/26 9/32

Behavioural Equivalence

Implementation
CM = coin.coffee.CM

CS = pub.coin.coffee.CS
Uni = (CM || CS) \ {coin, coffee}

Thomas Noll, Peter Thiemann Winter 2025/26 10/32

Behavioural Equivalence

Implementation
CM = coin.coffee.CM

Specification

GS = M.ﬁ.coffee.cs Spec:ﬂ%.sloec
Uni = (CM || CS) \ {coin, coffee}

Thomas Noll, Peter Thiemann Winter 2025/26 10/32

Behavioural Equivalence

Implementation
CM coin.coffee.CM

CS = pub.coin.coffee.CS
(CM || CS) \ {coin, coffee}

Specification

Spec = pub.Spec

Are the specification Spec and implementation Uni behaviourally equivalent:

Spec Uni

Thomas Noll, Peter Thiemann Winter 2025/26 10/32

Equivalence Relations

Some reasonable required properties
@ Reflexivity: P = P for every process P

@ Symmetry: P = Qifandonly if Q = P
@ Transitivity: Spec, = ... = Spec, = Implimplies that Spec, = Impl/

Thomas Noll, Peter Thiemann Winter 2025/26 11/32

Equivalence Relations

Some reasonable required properties

@ Reflexivity: P = P for every process P
@ Symmetry: P = Qifandonly if O = P
@ Transitivity: Spec, = ... = Spec, = Implimplies that Spec, = Impl/

Definition 3.1 (Equivalence relation)

A binary relation = C S x S over a set S is an equivalence if
@ it is reflexive: s = s for every s € S,
@ itis symmetric: s = [implies { = sforevery s. [€ S,

@ itis transitive: s = fand { = v implies s = u for every s. f, u € S.

Thomas Noll, Peter Thiemann Winter 2025/26 11/32

Equivalence Relations

Some reasonable required properties

@ Reflexivity: P = P for every process P
@ Symmetry: P = Qifandonly if O = P
@ Transitivity: Spec, = ... = Spec, = Implimplies that Spec, = Impl/

Definition 3.1 (Equivalence relation)
A binary relation = C S x S over a set S is an equivalence if

@ it is reflexive: s = s for every s € S,
@ itis symmetric: s = [implies { = sforevery s. [€ S,

@ itis transitive: s = fand { = v implies s = u for every s. f, u € S.

Remark: equivalences induce quotient structures with equivalence classes as elements:

S/= = {[s]-|sc S C2° where [s]- — [cS|sd=5sCS5S

Thomas Noll, Peter Thiemann Winter 2025/26 11/32

Outline of Lecture 3

e LTS Isomorphism

Thomas Noll, Peter Thiemann Winter 2025/26 12/32

Isomorphism: An Example Behavioural Equivalence

Definition 3.2 (LTS isomorphism)

Two LTSs T; = (S;, Acty, —+) and T, = (S,, Acto, ——2) are isomorphic, denoted 71 =, To, if
there exists a bijection 7 : S; — S, such that

Vs,a,t. s>t ifandonlyif f(s) —p f(t).

Thomas Noll, Peter Thiemann Winter 2025/26 13/32

Isomorphism: An Example Behavioural Equivalence

Definition 3.2 (LTS isomorphism)

Two LTSs T; = (S;, Acty, —+) and T, = (S,, Acto, ——2) are isomorphic, denoted 71 =, To, if
there exists a bijection 7 : S; — S, such that

Vs,a,t. s>t ifandonlyif f(s) —p f(t).

It follows immediately that =/, is an equivalence.

Thomas Noll, Peter Thiemann Winter 2025/26 13/32

Isomorphism: An Example Behavioural Equivalence

Definition 3.2 (LTS isomorphism)

Two LTSs T; = (S;, Acty, —+) and T, = (S,, Acto, ——2) are isomorphic, denoted 71 =, To, if
there exists a bijection f : S; — S5 such that

Vs,a,t. s>t ifandonlyif f(s) —p f(t).

It follows immediately that =/, is an equivalence.

Lemma 3.3 (Abelian monoid laws for + and |)
For all CCS processes P, Q < Prc,
(1) Commutativity: LTS(P + Q) =iso LTS(Q + P), LTS(P || Q) =iso LTS(Q || P)
(2) Associativity: LTS((P + Q) + R) =iso LTS(P + (Q + R)),
LTS((P || Q) || R) =iso LTS(P || (Q || R))
(3) Neutral elements: LTS(P + nil) =jso LTS(P || nil) =50 LTS(P)

Thomas Noll, Peter Thiemann Winter 2025/26 13/32

Isomorphism |

From now on, we consider processes modulo isomorphism, i.e., we do not distinguish CCS
processes with isomorphic LTSs.

Thomas Noll, Peter Thiemann Winter 2025/26 14/32

Isomorphism |

From now on, we consider processes modulo isomorphism, i.e., we do not distinguish CCS
processes with isomorphic LTSs.

Isomorphism is too distinctive. For instance,

X=aX and Y =aayY

are not isomorphic although both can (only) execute infinitely many a-actions and should thus be
considered equivalent.

Thomas Noll, Peter Thiemann Winter 2025/26 14/32

Outline of Lecture 3

e Trace Equivalence

Thomas Noll, Peter Thiemann Winter 2025/26 15/32

Process Traces |
Goal: reduce processes to the sequences of actions they can perform
Definition 3.4 (Trace language)

For every P < Prc, let

Tr(P) := {w € Act* | ex. P € Prc such that P — P’}

be the trace language of P (where = o 0o Mforw=aqy.. . Qlp).

P, Q € Prc are called trace equivalent if 7r(P) = Tr(Q).

Thomas Noll, Peter Thiemann

Winter 2025/26

16/32

Process Traces |

Goal: reduce processes to the sequences of actions they can perform

Definition 3.4 (Trace language)

For every P < Prc, let

Tr(P) := {w € Act* | ex. P’ € Prc such that P - P’}

o

be the trace language of P (where = o 0o Mforw=aqy.. . Qlp).

P, Q € Prc are called trace equivalent if 7r(P) = Tr(Q).

Example 3.5 (One-place buffer)

B = in.out.B
= Tr(B) = (in- out)* - (in | €)

Thomas Noll, Peter Thiemann

Winter 2025/26

16/32

Process Traces I

Remarks:

@ The trace language of P ¢ Prc is accepted by the LTS of P, interpreted as a (finite or infinite)
automaton with initial state ~ and where every state is final.

Thomas Noll, Peter Thiemann Winter 2025/26 17/32

Process Traces I

Remarks:

@ The trace language of P ¢ Prc is accepted by the LTS of P, interpreted as a (finite or infinite)
automaton with initial state ~ and where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Thomas Noll, Peter Thiemann Winter 2025/26 17/32

Process Traces I

Remarks:

@ The trace language of P ¢ Prc is accepted by the LTS of P, interpreted as a (finite or infinite)
automaton with initial state ~ and where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

@ Trace equivalence identifies processes with isomorphic LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

Thomas Noll, Peter Thiemann Winter 2025/26 17/32

Process Traces I

Remarks:

The trace language of P & Prc is accepted by the LTS of P, interpreted as a (finite or infinite)
automaton with initial state ~ and where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with isomorphic LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
= bisimulation

Thomas Noll, Peter Thiemann Winter 2025/26 17/32

Outline of Lecture 3

e Requirements on Behavioural Equivalences

Thomas Noll, Peter Thiemann Winter 2025/26 18/32

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =5 LTS(Q) = P = Q.

Thomas Noll, Peter Thiemann Winter 2025/26 19/32

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =5 LTS(Q) = P = Q.

(2) More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:

P=Q= Tr(P) = Tr(Q).

Thomas Noll, Peter Thiemann Winter 2025/26 19/32

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =iso LTS(Q) = P = Q.
(2) More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:
P=Q= Tr(P) =Tr(Q).
(3) Congruence property: the equivalence must be substitutive with respect to all CCS operators
(in the following).

Thomas Noll, Peter Thiemann Winter 2025/26 19/32

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =iso LTS(Q) = P = Q.
(2) More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:
P=Q= Tr(P) =Tr(Q).
(3) Congruence property: the equivalence must be substitutive with respect to all CCS operators
(in the following).

(4) Deadlock preservation: equivalent processes should have the same deadlock behaviour, i.e.,
they can either both deadlock, or both cannot (in the following).

Thomas Noll, Peter Thiemann Winter 2025/26 19/32

The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =5 LTS(Q) = P = Q.

(2) More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:

P=Q= Tr(P)=Tr(Q).
(3) Congruence property: the equivalence must be substitutive with respect to all CCS operators
(in the following).

(4) Deadlock preservation: equivalent processes should have the same deadlock behaviour, i.e.,
they can either both deadlock, or both cannot (in the following).

(5) Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

Thomas Noll, Peter Thiemann Winter 2025/26 19/32

What is a Congruence?

P] Q

C(P) Q)

Thomas Noll, Peter Thiemann Winter 2025/26 20/32

What is a Congruence?

P] Q

C(P) Q)

CCS contexts informally

A CCS context is a CCS process fragment C([1) with a “hole” in it, for example:
e [| (empty context)
@ a.nil+ [l
e (Oa—b] | B)\b

Thomas Noll, Peter Thiemann Winter 2025/26 20/32

What is a Congruence?
P] Q

C C

C(P) Q)

CCS contexts informally

A CCS context is a CCS process fragment C([1) with a “hole” in it, for example:
e [| (empty context)
@ a.nil+ [l
o (la 5] | B)\b

CCS congruences informally

Equivalence relation = is a CCS congruence whenever P = O implies C(P) = C(Q) for every
CCS context C.

Thomas Noll, Peter Thiemann Winter 2025/26 20/32

The Importance of Congruences

CCS congruences informally

Equivalence relation = is a CCS congruence whenever implies for every
CCS context

Thomas Noll, Peter Thiemann Winter 2025/26 21/32

The Importance of Congruences

CCS congruences informally

Equivalence relation = is a whenever implies for every
CCS context

Example 3.6 (Congruence)

Let a = bfor a, b € Z whenever a mod k = b mod k, for some k € N .
Equivalence relation = is a congruence for addition and multiplication.

Thomas Noll, Peter Thiemann Winter 2025/26 21/32

The Importance of Congruences

CCS congruences informally

Equivalence relation = is a whenever implies for every
CCS context

Example 3.6 (Congruence)

Let a = bfor a, b € Z whenever a mod k = b mod k, for some k € N .
Equivalence relation = is a congruence for addition and multiplication.

Important motivations for requiring = to be a congruence on processes:
(1) Model-based development through refinement:
Replacing (part of) an abstract model Spec by a more detailed model /mpl.
(2) Optimisation:
Replacing (part of) an implementation /mp/ by a more efficient implementation /mp/’.

Thomas Noll, Peter Thiemann Winter 2025/26 21/32

CCS Congruences Formally

Definition 3.7 (CCS congruence)

An equivalence relation = C Prc x Prcis a CCS congruence if it is preserved by all CCS

constructs, i.e., if P. Q € Prc with P = Q then:

a.P=a.Q
P+R=Q+R
PI|IR=Q]| R
P\L=Q\L
P[f] = Q|[f]

for every oo € Act
for every R < Prc
for every R < Prc
forevery L C A
forevery f 1 A — A

Thomas Noll, Peter Thiemann

Winter 2025/26

22/32

CCS Congruences Formally

Definition 3.7 (CCS congruence)

An equivalence relation = C Prc x Prcis a CCS congruence if it is preserved by all CCS

constructs, i.e., if P. Q € Prc with P = Q then:

a.P=a.Q
P+R=Q+R
PI|IR=Q]| R
P\L=Q\L
P[f] = Q|[f]

for every oo € Act
for every R < Prc
for every R < Prc
forevery L C A
forevery f 1 A — A

Thus, a CCS congruence is substitutive for all possible CCS contexts.

Thomas Noll, Peter Thiemann

Winter 2025/26

22/32

Deadlocks

Definition 3.8 (Deadlock)

Let P, @ € Prcand w & Act” such that
P Q and Q4.

Then Q is called a w-deadlock of F.

Thomas Noll, Peter Thiemann Winter 2025/26 23/32

Deadlocks

Definition 3.8 (Deadlock)
Let P, @ € Prcand w & Act” such that

P Q and Q4.
Then Q is called a w-deadlock of F.

Example 3.9

P = a.b.nil + a.nil has an a-deadlock, whereas 2 — a.b.nil has not.
Such properties are important as it can be crucial that a certain action is eventually enabled.

Thomas Noll, Peter Thiemann Winter 2025/26 23/32

Deadlocks

Definition 3.8 (Deadlock)

Let P, @ € Prcand w & Act” such that

P Q and Q /.
Then Q is called a w-deadlock of P.)
Example 3.9

P = a.b.nil + a.nil has an a-deadlock, whereas 2 — a.b.nil has not.
Such properties are important as it can be crucial that a certain action is eventually enabled.

Definition 3.10 (Deadlock sensitivity)

Relation = C Prc < Pre is deadlock sensitive whenever:

P =0 implies (Vw < Act” : P has a w-deadlock iff © has a w-deadlock) .

T —————— =TT

Thomas Noll, Peter Thiemann Winter 2025/26 23/32

Outline of Lecture 3

@ Properties of Trace Equivalence

Thomas Noll, Peter Thiemann Winter 2025/26 24/32

Checking Trace Equivalence

Traces by automata

For finite-state ~ < Frc, the trace language 77() of process F is accepted by the
(non-deterministic) finite automaton obtained from the LTS of ~ with initial state 7 and making all
states accepting (final).

Thomas Noll, Peter Thiemann Winter 2025/26 25/32

Checking Trace Equivalence

Traces by automata

For finite-state ~ < Frc, the trace language 77() of process F is accepted by the
(non-deterministic) finite automaton obtained from the LTS of ~ with initial state 7 and making all
states accepting (final).

Checking trace equivalence of two finite processes is PSPACE-complete. l

Thomas Noll, Peter Thiemann Winter 2025/26 25/32

Checking Trace Equivalence

Traces by automata

For finite-state ~ < Frc, the trace language 77() of process F is accepted by the
(non-deterministic) finite automaton obtained from the LTS of ~ with initial state 7 and making all
states accepting (final).

Checking trace equivalence of two finite processes is PSPACE-complete.

Checking whether 7r(P) = Tr(Q), for finite-state ~ and (, boils down to deciding whether their
non-deterministic automata accept the same language. As this problem in automata theory is
PSPACE-complete, it follows that checking 77(”) — 7r(Q) is PSPACE-complete. O

= = = Sanoua

Thomas Noll, Peter Thiemann Winter 2025/26 25/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence. \

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence.

By structural induction over the syntax of CCS processes.

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence.

By structural induction over the syntax of CCS processes.
For -+ the proof proceeds as follows:

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence.

By structural induction over the syntax of CCS processes.
For + the proof proceeds as follows:

@ Let P, Q € Prcwith Tr(P) = Tr(Q).

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence.

By structural induction over the syntax of CCS processes.
For + the proof proceeds as follows:

@ Let P, Q € Prcwith Tr(P) = Tr(Q).
@ Then for R € Prc it holds:

Tr(P+ R)=Tr(P)UTr(R) = Tr(Q)U Tr(R) = Tr(Q + R).

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence.

By structural induction over the syntax of CCS processes.
For + the proof proceeds as follows:

@ Let P, Q € Prcwith Tr(P) = Tr(Q).
@ Then for R € Prc it holds:

Tr(P+ R)=Tr(P)UTr(R) = Tr(Q)U Tr(R) = Tr(Q + R).

@ Thus, P + R and Q + R are trace equivalent.

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is a Congruence
Trace equivalence is a CCS congruence.

By structural induction over the syntax of CCS processes.
For -+ the proof proceeds as follows:

@ Let P, Q € Prcwith Tr(P) = Tr(Q).
@ Then for R € Prc it holds:

Tr(P+ R)=Tr(P)UTr(R) = Tr(Q)U Tr(R) = Tr(Q + R).

@ Thus, P + R and Q + R are trace equivalent.
For the other CCS constructs, the proof goes along similar lines.]

Thomas Noll, Peter Thiemann Winter 2025/26 26/32

Trace Equivalence is not Deadlock Sensitive

Example 3.13 (Coffee/tea machines)

Consider the coffee/tea machine CTM and its variant CTM':

CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.

Thomas Noll, Peter Thiemann Winter 2025/26 27/32

Trace Equivalence is not Deadlock Sensitive

Example 3.13 (Coffee/tea machines)

Consider the coffee/tea machine CTM and its variant CTM':

CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.

Note the difference between the two processes. Nevertheless:
Tr(CTM) = Tr(CTM').

Thomas Noll, Peter Thiemann Winter 2025/26 27/32

Trace Equivalence is not Deadlock Sensitive

Example 3.13 (Coffee/tea machines)

Consider the coffee/tea machine CTM and its variant CTM':

CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.

Note the difference between the two processes. Nevertheless:
Tr(CTM) = Tr(CTM').

Are we satisfied?

Thomas Noll, Peter Thiemann Winter 2025/26 27/32

Trace Equivalence is not Deadlock Sensitive

Example 3.13 (Coffee/tea machines)

Consider the coffee/tea machine CTM and its variant CTM':

CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.

Note the difference between the two processes. Nevertheless:
Tr(CTM) = Tr(CTM').
Are we satisfied?
No, as CTM and CTM’ differ in the context:
c(d) = (\D/ | CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

hole

Thomas Noll, Peter Thiemann Winter 2025/26 27/32

Trace Equivalence is not Deadlock Sensitive

Example 3.13 (Coffee/tea machines)

Consider the coffee/tea machine CTM and its variant CTM':

CTM = coin. (coffee.CTM + tea.CTM)
CTM' = coin.coffee.CTM' + coin.tea.CTM'.

Note the difference between the two processes. Nevertheless:
Tr(CTM) = Tr(CTM').
Are we satisfied?
No, as CTM and CTM’ differ in the context:
c(d) = (\D/ | CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

hole

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

Thomas Noll, Peter Thiemann Winter 2025/26 27/32

Traces and Deadlocks

Example 3.14 (Traces and deadlocks)
Traces and deadlocks are independent in the following sense:

2 Q P Q
a/~N\a |la ay/\b ay/\c
bl 1 b 5 b Oc

same fraces different traces
different deadlocks same deadlocks

Thomas Noll, Peter Thiemann Winter 2025/26 28/32

Traces and Deadlocks

Example 3.14 (Traces and deadlocks)
Traces and deadlocks are independent in the following sense:

P Q 2 Q
a,/ \ a la a,/\yb ay/\c
bl 1 b 5 b Oc

same fraces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace equivalent (since every trace
is a prefix of some deadlock).

Thomas Noll, Peter Thiemann Winter 2025/26 28/32

Outline of Lecture 3

ﬂ Completed Trace Equivalence

Thomas Noll, Peter Thiemann Winter 2025/26 29/32

Completed Trace Equivalence

An attempt to fix the deadlock sensitivity flaw:

Definition 3.15 (Completed traces)

A completed trace of P & Prcis a sequence w < Act” such that:
P2 Q and Q4

for some Q € Pre.

Thomas Noll, Peter Thiemann Winter 2025/26 30/32

Completed Trace Equivalence

An attempt to fix the deadlock sensitivity flaw:

Definition 3.15 (Completed traces)

A completed trace of P & Prcis a sequence w < Act” such that:
P2 Q and Q4

for some Q € Pre.

The completed traces of process P may be seen as capturing its deadlock behaviour, as they are
precisely the action sequences that can lead to a process from which no transition is possible (i.e.,
a deadlock).

Thomas Noll, Peter Thiemann Winter 2025/26 30/32

Completed Trace Equivalence

An attempt to fix the deadlock sensitivity flaw:

Definition 3.15 (Completed traces)

A completed trace of P & Prcis a sequence w < Act” such that:
P Q and QA4

for some Q € Pre.

The completed traces of process P may be seen as capturing its deadlock behaviour, as they are
precisely the action sequences that can lead to a process from which no transition is possible (i.e.,
a deadlock).

Example 3.16

@ P = abnil+acniland Q = a.(b.nil + c.nil) have the same completed traces: {ab, ac}.
@ However this does not apply to ~ \ b: {a,ac} and O\ b: {ac}.
@ Thus, completed trace equivalence is not a CCS congruence.

Thomas Noll, Peter Thiemann Winter 2025/26 30/32

Outline of Lecture 3

@ Epilogue

Thomas Noll, Peter Thiemann Winter 2025/26 31/32

(1) Behavioural equivalences should be
(a) less distinctive than isomorphism
(b) more distinctive than trace equivalence
(c) CCS congruences
(d) deadlock sensitive

Winter 2025/26 32/32

Thomas Noll, Peter Thiemann

(1) Behavioural equivalences should be
(a) less distinctive than isomorphism
(b) more distinctive than trace equivalence
(c) CCS congruences
(d) deadlock sensitive
(2) Trace equivalence
(a) equates processes that have the same traces, i.e., action sequences
(b) is implied by LTS isomorphism
(c) is a CCS congruence
d) is not deadlock sensitive
e) checking trace equivalence is PSPACE-complete

Thomas Noll, Peter Thiemann Winter 2025/26 32/32

	Recap: Milner's Calculus of Communicating Systems
	Why Behavioural Equivalences?
	LTS Isomorphism
	Trace Equivalence
	Requirements on Behavioural Equivalences
	Properties of Trace Equivalence
	Completed Trace Equivalence
	Epilogue

