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Syntax of CCS I

Definition (Syntax of CCS)
Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:

P,Q ::= nil (inaction)
| α.P (prefixing)
| P + Q (choice)
| P ∥ Q (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act , ∅ ̸= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a)
for each a ∈ A.
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Syntax of CCS II

Definition (continued)
A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with identifiers from {C1, . . . ,Ck}).

Notational Conventions:
a means a∑n

i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where
∑0

i=1 Pi := nil)
P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with

f (ai) = bi for i ∈ [n] and f (α) = α otherwise

restriction and relabelling bind stronger than prefixing, prefixing stronger than parallel
composition, parallel composition stronger than choice:

P \ a + b.Q ∥ R means (P \ a) + ((b.Q) ∥ R)
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Semantics of CCS II

Reminder: P,Q ::= nil | α.P | P + Q | P ∥ Q | P \ L | P[f ] | C

Definition (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS (Prc,Act,−→) whose transitions can be
inferred from the following rules (P,P′,Q,Q′ ∈ Prc, α ∈ Act , λ ∈ A ∪ A, L ⊆ A, f : Act → Act):

(Act)
α.P

α−→ P
(Sum1)

P
α−→ P′

P + Q
α−→ P′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P′

P ∥ Q
α−→ P′ ∥ Q

(Par2)
Q

α−→ Q′

P ∥ Q
α−→ P ∥ Q′

(Com)
P

λ−→ P′ Q
λ−→ Q′

P ∥ Q
τ−→ P′ ∥ Q′

(Res)
P

α−→ P′ (α, α /∈ L)

P \ L
α−→ P′ \ L

(Rel) P
α−→ P′

P[f ]
f (α)−→ P′[f ]

(Call)
P

α−→ P′ (C = P)

C
α−→ P′
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Semantics of CCS III

Example (continued)
(3) Parallel two-place buffer (f := [out 7→ com], g := [in 7→ com]):

B∥ = (B[f ] ∥ B[g]) \ com
B = in.out.B

First step:

(Call)

(Res)

(Par1)

(Rel)
(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

B[f ]
in−→ (out.B)[f ]

B[f ] ∥ B[g]
in−→ (out.B)[f ] ∥ B[g]

(B[f ] ∥ B[g]) \ com
in−→ ((out.B)[f ] ∥ B[g]) \ com

B∥
in−→ ((out.B)[f ] ∥ B[g]) \ com

A failing attempt:

(Call)

(Res)
(Par1)

(Rel)
(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

B[g]
com−→ (out.B)[g]

B[f ] ∥ B[g]
com−→ B[f ] ∥ (out.B)[g]

(B[f ] ∥ B[g]) \ com
?−→ ?

B∥
?−→ ?
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Semantics of CCS IV

Example (continued)

(3) Parallel two-place buffer: B∥ = (B[f ] ∥ B[g]) \ com
B = in.out.B

(f := [out 7→ com], g := [in 7→ com])

Complete LTS:

B∥

((out.B)[f ] ∥ B[g]) \ com

((out.B)[f ] ∥ (out.B)[g]) \ com

(B[f ] ∥ (out.B)[g]) \ com

(B[f ] ∥ B[g]) \ com empty

one entry

full

in
in

τ

out

inout
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Preliminaries

When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl .

two-place buffer (Example 2.2): sequential “specification” vs. parallel implementation
mutual exclusion (later)

This gives rise to the natural question: when are two CCS processes behaving the same?

As there are many different interpretations of “behaving the same”, different behavioural
equivalences have emerged.
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Behavioural Equivalence

Implementation
CM = coin.coffee.CM

CS = pub.coin.coffee.CS

Uni = (CM ∥ CS) \ {coin, coffee}

Specification

Spec = pub.Spec

Question
Are the specification Spec and implementation Uni behaviourally equivalent:

Spec
?≡ Uni
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Equivalence Relations

Some reasonable required properties
Reflexivity: P ≡ P for every process P

Symmetry: P ≡ Q if and only if Q ≡ P

Transitivity: Spec0 ≡ . . . ≡ Specn ≡ Impl implies that Spec0 ≡ Impl

Definition 3.1 (Equivalence relation)
A binary relation ≡ ⊆ S × S over a set S is an equivalence if

it is reflexive: s ≡ s for every s ∈ S,

it is symmetric: s ≡ t implies t ≡ s for every s, t ∈ S,

it is transitive: s ≡ t and t ≡ u implies s ≡ u for every s, t, u ∈ S.

Remark: equivalences induce quotient structures with equivalence classes as elements:

S/≡ := {[s]≡ | s ∈ S} ⊆ 2S where [s]≡ := {s′ ∈ S | s′ ≡ s} ⊆ S
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Isomorphism: An Example Behavioural Equivalence

Definition 3.2 (LTS isomorphism)

Two LTSs T1 = (S1,Act1,−→1) and T2 = (S2,Act2,−→2) are isomorphic, denoted T1 ≡iso T2, if
there exists a bijection f : S1 → S2 such that

∀s, α, t. s
α−→1 t if and only if f (s)

α−→2 f (t).

It follows immediately that ≡iso is an equivalence.

Lemma 3.3 (Abelian monoid laws for + and ∥)

For all CCS processes P,Q ∈ Prc,

(1) Commutativity: LTS(P + Q) ≡iso LTS(Q + P), LTS(P ∥ Q) ≡iso LTS(Q ∥ P)

(2) Associativity: LTS((P + Q) + R) ≡iso LTS(P + (Q + R)),
LTS((P ∥ Q) ∥ R) ≡iso LTS(P ∥ (Q ∥ R))

(3) Neutral elements: LTS(P + nil) ≡iso LTS(P ∥ nil) ≡iso LTS(P)
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Isomorphism II

Assumption
From now on, we consider processes modulo isomorphism, i.e., we do not distinguish CCS
processes with isomorphic LTSs.

Caveat
Isomorphism is too distinctive. For instance,

X = a.X and Y = a.a.Y

are not isomorphic although both can (only) execute infinitely many a-actions and should thus be
considered equivalent.
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Process Traces I

Goal: reduce processes to the sequences of actions they can perform

Definition 3.4 (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P′ ∈ Prc such that P
w−→ P′}

be the trace language of P (where
w−→ :=

α1−→ ◦ . . . ◦ αn−→ for w = α1 . . . αn).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.5 (One-place buffer)

B = in.out.B

⇒ Tr(B) = (in · out)∗ · (in | ε)
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Process Traces II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or infinite)
automaton with initial state P and where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with isomorphic LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) ⇒ Tr(P) = Tr(Q)

Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
⇒ bisimulation
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The Wish List for Behavioural Equivalences

(1) Less distinctive than isomorphism: an equivalence should distinguish less processes than LTS
isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) ⇒ P ≡ Q.

(2) More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q ⇒ Tr(P) = Tr(Q).

(3) Congruence property: the equivalence must be substitutive with respect to all CCS operators
(in the following).

(4) Deadlock preservation: equivalent processes should have the same deadlock behaviour, i.e.,
they can either both deadlock, or both cannot (in the following).

(5) Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.
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What is a Congruence?

CCS contexts informally

A CCS context is a CCS process fragment C(□) with a “hole” in it, for example:

□ (empty context)

a.nil +□

(□[a 7→ b] ∥ B) \ b

CCS congruences informally

Equivalence relation ≡ is a CCS congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every
CCS context C.
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The Importance of Congruences

CCS congruences informally

Equivalence relation ≡ is a CCS congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every
CCS context C.

Example 3.6 (Congruence)
Let a ≡ b for a, b ∈ Z whenever a mod k = b mod k , for some k ∈ N+.
Equivalence relation ≡ is a congruence for addition and multiplication.

Important motivations for requiring ≡ to be a congruence on processes:

(1) Model-based development through refinement:
Replacing (part of) an abstract model Spec by a more detailed model Impl .

(2) Optimisation:
Replacing (part of) an implementation Impl by a more efficient implementation Impl ′.
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CCS Congruences Formally

Definition 3.7 (CCS congruence)

An equivalence relation ≡ ⊆ Prc × Prc is a CCS congruence if it is preserved by all CCS
constructs, i.e., if P,Q ∈ Prc with P ≡ Q then:

α.P ≡ α.Q for every α ∈ Act
P + R ≡ Q + R for every R ∈ Prc
P ∥ R ≡ Q ∥ R for every R ∈ Prc
P \ L ≡ Q \ L for every L ⊆ A
P[f ] ≡ Q[f ] for every f : A → A

Thus, a CCS congruence is substitutive for all possible CCS contexts.
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Deadlocks

Definition 3.8 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that

P
w−→ Q and Q ̸−→ .

Then Q is called a w-deadlock of P.

Example 3.9
P = a.b.nil + a.nil has an a-deadlock, whereas Q = a.b.nil has not.
Such properties are important as it can be crucial that a certain action is eventually enabled.

Definition 3.10 (Deadlock sensitivity)

Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗ : P has a w-deadlock iff Q has a w-deadlock) .
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Outline of Lecture 3

1 Recap: Milner’s Calculus of Communicating Systems

2 Why Behavioural Equivalences?

3 LTS Isomorphism

4 Trace Equivalence

5 Requirements on Behavioural Equivalences

6 Properties of Trace Equivalence

7 Completed Trace Equivalence

8 Epilogue
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Checking Trace Equivalence

Traces by automata

For finite-state P ∈ Prc, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P and making all
states accepting (final).

Theorem 3.11
Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.
Checking whether Tr(P) = Tr(Q), for finite-state P and Q, boils down to deciding whether their
non-deterministic automata accept the same language. As this problem in automata theory is
PSPACE-complete, it follows that checking Tr(P) = Tr(Q) is PSPACE-complete.
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Trace Equivalence is a Congruence

Theorem 3.12
Trace equivalence is a CCS congruence.

Proof.
By structural induction over the syntax of CCS processes.
For + the proof proceeds as follows:

Let P,Q ∈ Prc with Tr(P) = Tr(Q).

Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
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Trace Equivalence is not Deadlock Sensitive

Example 3.13 (Coffee/tea machines)

Consider the coffee/tea machine CTM and its variant CTM ′:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM ′ = coin.coffee.CTM ′ + coin.tea.CTM ′.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM ′).

Are we satisfied?

No, as CTM and CTM ′ differ in the context:

C(□) = ( □︸︷︷︸
hole

∥ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM ′) may yield a deadlock, but C(CTM) does not.
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Traces and Deadlocks

Example 3.14 (Traces and deadlocks)
Traces and deadlocks are independent in the following sense:

P Q P Q
a ↙↘ a ↓ a a ↙↘ b a ↙↘ c
b ↓ ↓ b ⟲ b ⟲ c

same traces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace equivalent (since every trace
is a prefix of some deadlock).
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Outline of Lecture 3

1 Recap: Milner’s Calculus of Communicating Systems

2 Why Behavioural Equivalences?
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Completed Trace Equivalence

An attempt to fix the deadlock sensitivity flaw:

Definition 3.15 (Completed traces)
A completed trace of P ∈ Prc is a sequence w ∈ Act∗ such that:

P
w−→ Q and Q ̸−→

for some Q ∈ Prc.

The completed traces of process P may be seen as capturing its deadlock behaviour, as they are
precisely the action sequences that can lead to a process from which no transition is possible (i.e.,
a deadlock).

Example 3.16

P = a.b.nil + a.c.nil and Q = a.(b.nil + c.nil) have the same completed traces: {ab, ac}.

However this does not apply to P \ b: {a, ac} and Q \ b: {ac}.

Thus, completed trace equivalence is not a CCS congruence.
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Summary

(1) Behavioural equivalences should be
(a) less distinctive than isomorphism
(b) more distinctive than trace equivalence
(c) CCS congruences
(d) deadlock sensitive

(2) Trace equivalence
(a) equates processes that have the same traces, i.e., action sequences
(b) is implied by LTS isomorphism
(c) is a CCS congruence
(d) is not deadlock sensitive
(e) checking trace equivalence is PSPACE-complete
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