Concurrency Theory
Winter 2025/26

Lecture 2: Calculus of Communicating Systems (CCS)

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 2

0 The Approach

Thomas Noll, Peter Thiemann Winter 2025/26 2/23

The Calculus of Communicating Systems

@ First development:
Robin Milner: , LNCS 92, Springer, 1980

@ Elaboration and larger case studies:
Robin Milner: Communication and Concurrency, Prentice-Hall, 1989

@ Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the m-calculus, Cambridge University
Press, 1999

Thomas Noll, Peter Thiemann Winter 2025/26 3/23

https://doi.org/10.1007/3-540-10235-3

The Calculus of Communicating Systems

@ First development:
Robin Milner: , LNCS 92, Springer, 1980

@ Elaboration and larger case studies:
Robin Milner: Communication and Concurrency, Prentice-Hall, 1989

@ Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the m-calculus, Cambridge University
Press, 1999

Approach

| A\

Description of concurrency on a simple and abstract level, using only a few basic primitives
@ no explicit storage (variables)
@ no explicit representation of values (numbers, Booleans, ...) or data structures

= concurrent system reduced to communication potential
R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERRRRREEBRRA
Thomas Noll, Peter Thiemann Winter 2025/26 3/23

https://doi.org/10.1007/3-540-10235-3

Outline of Lecture 2

@ syntaxof CCS

Thomas Noll, Peter Thiemann Winter 2025/26 4/23

Syntax of CCS |

Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.

Thomas Noll, Peter Thiemann Winter 2025/26 5/23

Syntax of CCS |

Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.
@ A:={a| ac A} denotes the set of co-names.

Thomas Noll, Peter Thiemann Winter 2025/26 5/23

Syntax of CCS |

Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.
@ A:={a| ac A} denotes the set of co-names.
@ Act := AU AU {7} is the set of actions with the silent (or: unobservable) action 7.

Thomas Noll, Peter Thiemann Winter 2025/26 5/23

Syntax of CCS |

Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.

@ A:= {a| ac A} denotes the set of co-names.

@ Act := AU AU {7} is the set of actions with the silent (or: unobservable) action 7.
@ Let Pid be a set of process identifiers.

Thomas Noll, Peter Thiemann Winter 2025/26 5/23

Syntax of CCS |

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.
A= {a| a € A} denotes the set of co-names.

(*]
(]
@ Act := AU AU {7} is the set of actions with the silent (or: unobservable) action ~
@ Let Pid be a set of process identifiers.

°

The set Prc of process expressions is defined by the following grammarn:

P, Q ::=nil (inaction)
| a.P (prefixing)
| P+Q (choice)
| Pl Q (parallel composition)
| P\L (restriction)
| P[f] (relabelling)
| C (process call)

Thomas Noll, Peter Thiemann Winter 2025/26 5/23

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.F can execute « and then behaves as F.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.F can execute « and then behaves as F.

@ Anaction 2 © A (a © A)is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.F can execute « and then behaves as F.

@ Anaction 2 © A (a © A)is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.

@ P + Q represents the nondeterministic choice between P and Q.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«.P can execute o and then behaves as F.

An action 2 © A (a < A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.

P + @ represents the nondeterministic choice between P and Q.

P || Q denotes the parallel execution of ~ and (), involving interleaving or communication.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«.P can execute o and then behaves as F.

An action 2 © A (a < A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.

P + @ represents the nondeterministic choice between P and Q.

P || Q denotes the parallel execution of ~ and (), involving interleaving or communication.

The restriction P\ L declares each a < L as a local name which is only known within 7.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.F can execute « and then behaves as F.

@ Anaction 2 © A (a © A)is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.

P + @ represents the nondeterministic choice between P and Q.
P || Q denotes the parallel execution of ~ and (), involving interleaving or communication.
The restriction P\ L declares each a < L as a local name which is only known within 7.

The relabelling P|[f] allows to adapt the naming of actions.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

@ «.P can execute o and then behaves as F.

@ Anaction 2 © A (a © A)is interpreted as an input (output, resp.) operation. Both are

complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.
P + @ represents the nondeterministic choice between P and Q.

P || Q denotes the parallel execution of ~ and (), involving interleaving or communication.
The restriction P\ L declares each a < L as a local name which is only known within 7.
The relabelling P|[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Winter 2025/26 6/23

Syntax of CCS Il

Definition 2.1 (continued)
@ A (recursive) process definition is an equation system of the form
(Ci=P|1<i<k)
where k > 1, C; € Pid (pairwise distinct), and ~; © Prc (with identifiers from {Ci. ... Cx}).

Thomas Noll, Peter Thiemann Winter 2025/26 7/23

Syntax of CCS Il

Definition 2.1 (continued)
@ A (recursive) process definition is an equation system of the form

(Ci=P;|1<i<k)

where k > 1, C; € Pid (pairwise distinct), and ~; © Prc (with identifiers from {Ci. ... Cx}).

Notational Conventions:

@ ameans a

@) P(ncN)ymeans P, + ... + P, (where> . P = ni)
@ P\ aabbreviates P\ {a}
® [a;— by,..., a, — by stands for f : Act — Act with

fla;) = bifori € [n] and f(a)= o otherwise
@ restriction and relabelling bind stronger than prefixing, prefixing stronger than parallel composition,
parallel composition stronger than choice:

P\a+bQ| R means (P\a)+ ((b.Q)] R)

Thomas Noll, Peter Thiemann Winter 2025/26 7/23

Outline of Lecture 2

@ CCS Examples

Thomas Noll, Peter Thiemann Winter 2025/26 8/23

CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:
B = in.out.B

Thomas Noll, Peter Thiemann Winter 2025/26 9/23

CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:

B = in.out.B
(2) Two-place buffer:
BO = /'n.B1
B1 = wBO 4F /n.Bg
82 - mb

Thomas Noll, Peter Thiemann Winter 2025/26 9/23

CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:

B = in.out.B
(2) Two-place buffer:
BO = /'n.B1
B1 = wBO 4F /n.Bg
82 - mb

(3) Parallel two-place buffer:
B, = (B[out — com] || Blin — com]) \ com
B = in.out.B

“Interaction diagram”:

out out
— | —

B B —

in in in out
— | — —

com in out
— | —=

Thomas Noll, Peter Thiemann Winter 2025/26 9/23

Outline of Lecture 2

e Formal Semantics of CCS

Thomas Noll, Peter Thiemann Winter 2025/26 10/23

Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
@ nodes = system states
@ edges = transitions between states

Thomas Noll, Peter Thiemann Winter 2025/26 11/23

Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
@ nodes = system states
@ edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S, Act, —) consisting of
@ aset S of states
@ aset Act of (action) labels
@ atransition relation — C S x Act x S

For (s.c.8') ¢ —— wewrite s s'. An LTS is called finite if S is so.

Thomas Noll, Peter Thiemann Winter 2025/26 11/23

Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
@ nodes = system states
@ edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S, Act, —) consisting of
@ aset S of states
@ aset Act of (action) labels
@ atransition relation — C S x Act x S

For (s.c.8') ¢ —— wewrite s s'. An LTS is called finite if S is so.

Remarks:
@ Sometimes an initial state sy « S is distinguished (“L7S(sp)”).
@ (Finite) LTSs correspond to (finite) automata without final states.

Thomas Noll, Peter Thiemann Winter 2025/26 11/23

Semantics of CCS |

We define the assignment

syntax — semantics

process definition +— LTS

by induction over the syntactic structure of process expressions.

Here we employ derivation rules of the form
premise(s)
conclusion

whose instances are composed to form derivation trees (where axioms, i.e., rules without premises,
correspond to leaves).

(rule name)

Thomas Noll, Peter Thiemann Winter 2025/26 12/23

Semantics of CCS I
Reminder: P, Q = nil | a.P|P+Q|P| Q| P\L P[f]|C
Definition 2.4 (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS (Prc. Act, —) whose transitions can be
inferred from the following rules (P, P’. Q. Q' € Prc, oo € Act, \ € AUA, L C A, f: Act — Act):
« / fo!, /
(Act) ————— (sumy)——F__ (Sump)— 92— _
a.P— P P+-Q— P P+Q-%
a / « / A / A /
(Pary) P? £ (Parz) O? Q Com (i~ PTOH ©
PllQ— P | Q PlQ—P| Q PllQ— P | Q@
PP (a,ag¢l a, pr PP (C=P
(Res) ”((af¢l) (Rel)i (Call) - ()
P\L— P'\L P[] () P'[f] cC— P

Thomas Noll, Peter Thiemann Winter 2025/26 13/23

Semantics of CCS llI

Example 2.5 (Bounded buffers; cf. Example =)

(1) One-place buffer: B = in.out.B

o First step:

(Act)

P n s
(Call) in.out.B — out.B

B - out.B

Thomas Noll, Peter Thiemann Winter 2025/26 14/23

Semantics of CCS llI

Example 2.5 (Bounded buffers; cf. Example =)

(1) One-place buffer: B = in.out.B

o First step:
(Act) —— —
(Call in.out.B — out.B
B - out.B
e Second step:
(Act) —
out.B 2% B

Thomas Noll, Peter Thiemann Winter 2025/26 14/23

Semantics of CCS llI

Example 2.5 (Bounded buffers; cf. Example =)

(1) One-place buffer: B = in.out.B
o First step:
(Act)
(Call) in.out.B —= out.B
B - out.B
e Second step:
(Act) —
out.B 2% B
= Complete LTS:
in
~ >
E
~____—
out

Thomas Noll, Peter Thiemann Winter 2025/26 14/23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;

o First step:

(Act) :
(Cal) in.By - B,

n

BO 7 B1

Thomas Noll, Peter Thiemann Winter 2025/26 15/23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;
o First step:
(Act) ‘ p
(Call) Iﬂ.B1 — 51
BO /n> B,
e Second step:
(Act) —
(sumy) out.By 2% B,
umy —
(Gall) out.By + in.B, 2% B,
B, % B,

Thomas Noll, Peter Thiemann Winter 2025/26 15/23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;
o First step: o Like first step: B> ol g
(Act) :
cal) in.B; = B;
BO /n> B,
e Second step:
(Act) —
(sumy) out.By 2% B,
umy —
(Gall) out.By + in.B, 2% B,
B, 2% B,

Thomas Noll, Peter Thiemann Winter 2025/26 15/23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;
o First step: o Like first step: B> ol g
(Act) :
cal) in.B; = B;
By =™ B, o Complete LTS:
e Second step: i 7
— out 1 2
(Sum) G iBO ~— S~
(Gall) out.By + in.B, 2% B, out out
B, 2% B,

Thomas Noll, Peter Thiemann Winter 2025/26 15/23

Semantics of CCS V

Example 2.5 (continued)

3) Parallel two-place buffer (f := [out > com|, g := [in > coml|):
p
By = (B[] || Bla]) \ com
B = in.out.B
First step:
(Act)
(Call) in.out.B - out.B
(Rel) B - out.B
(Pah) B[] = (out.B)[/]
(Res) 8l || Blg] % (eut.B)[1] || Bla]
(Call) (Bl || Blal) \ com > ((eut.B)[1] || Bla]) \ com
B — ((out.B)[f] || Blg]) \ com

Thomas Noll, Peter Thiemann Winter 2025/26 16/23

Semantics of CCS V

Example 2.5 (continued)

3) Parallel two-place buffer (f := [out > com|, g := [in > coml|):

p

By = (B[] || Blg]) \ com
B = in.out.B
First step: A failing attempt:
(Act) —————— (Act)
(Call) in.out.B — out.B (CaII) in.out.B — out.B
(Rel) B - out.B (Rel) B - out.B
(Pah) B[f] — (out.B)[1] (Pan) Blg] =% (out.B)[g]
B[] || Blg] — (out.B)[f] || Blg] B[] || Bla] < BI1] || (out.B)[q]
(Res) : (Res) .
(Call) (Bl || Blal) \ com > ((eut.B)[1] || Bla]) \ com (Call) (B[|| Bla)) \ com —?
By % ((out.B)If] || Blal) \ com By~

Thomas Noll, Peter Thiemann Winter 2025/26 16/23

Semantics of CCS VI

Example 2.5 (continued)

(3) Parallel two-place buffer: B = (B[f] || B[g]) \ com (f := [out — com], g := [in — com])
B = in.out.B
Complete LTS:

- . f1 1| Blg]) \ com empty

-

[((out B)[f] || Blg com B[f] out.B)| com] one entry
((out.B)[f] || (out.B)[g]) \com full

Thomas Noll, Peter Thiemann Winter 2025/26 17/23

Outline of Lecture 2

e Infinite State Spaces

Thomas Noll, Peter Thiemann Winter 2025/26 18/23

The Power of Recursive Definitions

So far: only finite state spaces

Thomas Noll, Peter Thiemann Winter 2025/26 19/23

The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C || down.nil)

g =

Thomas Noll, Peter Thiemann Winter 2025/26 19/23

The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

_>“—p>“—p>[c [down || down]“—p>@

ldown ldown
~ Uup [C || down || nil “=” up
C | il [C || nil || down @
| down

CIEIED ey

Thomas Noll, Peter Thiemann Winter 2025/26 19/23

The Power of Recursive Definitions
So far: only finite state spaces
Example 2.6 (Counter)

C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

~((6)—=L—(C || down)—"~(C || down || down)——— ()

down | down
~ Uup [C || down || nil “=” up
| e C | nil ’[c i | down | (]
Sequential “specification”:
| down

CO = up. C1

— up
Cn= Up.Coi1 + down.Coy (n>0) C | nil | nil) ——— -]

Thomas Noll, Peter Thiemann Winter 2025/26

19/23

Outline of Lecture 2

© The CaaL Tool

Thomas Noll, Peter Thiemann Winter 2025/26 20/23

The CAAL Tool

= o

Untitled Project

CaAL (Concurrency Workbench, Aalborg Edition;
@ Smart editor

Visualisation of generated LTS

Equivalence checking w.r.t. several bisimulation, simulation and trace equivalences

Generation of distinguishing formulae for non-equivalent processes

°
°
@ Model checking of (recursive) HML formulae
°
°

(Bi)simulation and model checking games

) = = — e

Thomas Noll, Peter Thiemann Winter 2025/26 21/23

https://caal.cs.aau.dk/

Outline of Lecture 2

e Epilogue

Thomas Noll, Peter Thiemann Winter 2025/26 22/23

Summary: CCS

Summary

@ Process behaviour defined by (synchronising) actions
@ Syntax given by recursive definitions of processes
@ inaction nil
prefixing .. P
choice P + Q
parallel composition 7 || Q
restriction P\ L
relabelling P|f]

@ Semantics given by (finite or infinite) labelled transition system

@ Implemented by CAAL Tool

Thomas Noll, Peter Thiemann Winter 2025/26 23/23

	The Approach
	Syntax of CCS
	CCS Examples
	Formal Semantics of CCS
	Infinite State Spaces
	The Caal Tool
	Epilogue

