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The Calculus of Communicating Systems

@ First development:
Robin Milner: , LNCS 92, Springer, 1980

@ Elaboration and larger case studies:
Robin Milner: Communication and Concurrency, Prentice-Hall, 1989

@ Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the m-calculus, Cambridge University
Press, 1999
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The Calculus of Communicating Systems

@ First development:
Robin Milner: , LNCS 92, Springer, 1980

@ Elaboration and larger case studies:
Robin Milner: Communication and Concurrency, Prentice-Hall, 1989

@ Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the m-calculus, Cambridge University
Press, 1999

Approach

| A\

Description of concurrency on a simple and abstract level, using only a few basic primitives
@ no explicit storage (variables)
@ no explicit representation of values (numbers, Booleans, ...) or data structures

= concurrent system reduced to communication potential
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Outline of Lecture 2

@ syntaxof CCS
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Syntax of CCS |

Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.
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Definition 2.1 (Syntax of CCS)

@ Let A be a set of (action) names.

@ A:= {a| ac A} denotes the set of co-names.

@ Act := AU AU {7} is the set of actions with the silent (or: unobservable) action 7.
@ Let Pid be a set of process identifiers.
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Syntax of CCS |

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.
A= {a| a € A} denotes the set of co-names.

(*]
(]
@ Act := AU AU {7} is the set of actions with the silent (or: unobservable) action ~
@ Let Pid be a set of process identifiers.

°

The set Prc of process expressions is defined by the following grammarn:

P, Q ::=nil (inaction)
| a.P (prefixing)
| P+Q (choice)
| Pl Q (parallel composition)
| P\L (restriction)
| P[f] (relabelling)
| C (process call)
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Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.

@ «.P can execute o and then behaves as F.

@ Anaction 2 © A (a © A)is interpreted as an input (output, resp.) operation. Both are

complementary: if performed in parallel (i.e., in P || Q), they are merged into a 7-action.
P + @ represents the nondeterministic choice between P and Q.

P || Q denotes the parallel execution of ~ and (), involving interleaving or communication.
The restriction P\ L declares each a < L as a local name which is only known within 7.
The relabelling P|[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.
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Syntax of CCS Il

Definition 2.1 (continued)
@ A (recursive) process definition is an equation system of the form
(Ci=P|1<i<k)
where k > 1, C; € Pid (pairwise distinct), and ~; © Prc (with identifiers from {Ci. ... Cx}).
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Syntax of CCS Il

Definition 2.1 (continued)
@ A (recursive) process definition is an equation system of the form

(Ci=P;|1<i<k)

where k > 1, C; € Pid (pairwise distinct), and ~; © Prc (with identifiers from {Ci. ... Cx}).

Notational Conventions:

@ ameans a

@ ) P(ncN)ymeans P, + ... + P, (where> . P = ni)
@ P\ aabbreviates P\ {a}
® [a;— by,..., a, — by stands for f : Act — Act with

fla;) = bifori € [n] and f(a)= o otherwise
@ restriction and relabelling bind stronger than prefixing, prefixing stronger than parallel composition,
parallel composition stronger than choice:

P\a+bQ| R means (P\a)+ ((b.Q)] R)
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Outline of Lecture 2

@ CCS Examples
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CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:
B = in.out.B
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CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:

B = in.out.B
(2) Two-place buffer:
BO = /'n.B1
B1 = wBO 4F /n.Bg
82 - mb

(3) Parallel two-place buffer:
B, = (B[out — com] || Blin — com]) \ com
B = in.out.B

“Interaction diagram”:

out out
— | —

B B —

in in in out
— | — —

com in out
— | —=
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Outline of Lecture 2

e Formal Semantics of CCS
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Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
@ nodes = system states
@ edges = transitions between states
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Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
@ nodes = system states
@ edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S, Act, —) consisting of
@ aset S of states
@ aset Act of (action) labels
@ atransition relation — C S x Act x S

For (s.c.8') ¢ —— wewrite s s'. An LTS is called finite if S is so.
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Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
@ nodes = system states
@ edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S, Act, —) consisting of
@ aset S of states
@ aset Act of (action) labels
@ atransition relation — C S x Act x S

For (s.c.8') ¢ —— wewrite s s'. An LTS is called finite if S is so.

Remarks:
@ Sometimes an initial state sy « S is distinguished (“L7S(sp)”).
@ (Finite) LTSs correspond to (finite) automata without final states.
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Semantics of CCS |

We define the assignment

syntax — semantics

process definition +— LTS

by induction over the syntactic structure of process expressions.

Here we employ derivation rules of the form
premise(s)
conclusion

whose instances are composed to form derivation trees (where axioms, i.e., rules without premises,
correspond to leaves).

(rule name)
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Semantics of CCS I
Reminder: P, Q = nil | a.P|P+Q|P| Q| P\L P[f]|C
Definition 2.4 (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS (Prc. Act, —) whose transitions can be
inferred from the following rules (P, P’. Q. Q' € Prc, oo € Act, \ € AUA, L C A, f: Act — Act):
« / fo!, /
(Act) ————— (sumy)——F__ (Sump)— 92— _
a.P— P P+-Q— P P+Q-%
a / « / A / A /
(Pary) P? £ (Parz) O? Q Com (i~ PTOH ©
PllQ— P | Q PlQ—P| Q PllQ— P | Q@
PP (a,ag¢l a, pr PP (C=P
(Res) ”(( af¢l) (Rel)i (Call) - ( )
P\L— P'\L P[] () P'[f] cC— P

Thomas Noll, Peter Thiemann Winter 2025/26 13/23



Semantics of CCS llI

Example 2.5 (Bounded buffers; cf. Example = )

(1) One-place buffer: B = in.out.B

o First step:

(Act)

P n s
(Call) in.out.B — out.B

B - out.B
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Semantics of CCS llI

Example 2.5 (Bounded buffers; cf. Example = )

(1) One-place buffer: B = in.out.B

o First step:
(Act) —— —
(Call in.out.B — out.B
B - out.B
e Second step:
(Act) —
out.B 2% B
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Semantics of CCS llI

Example 2.5 (Bounded buffers; cf. Example = )

(1) One-place buffer: B = in.out.B
o First step:
(Act)
(Call) in.out.B —= out.B
B - out.B
e Second step:
(Act) —
out.B 2% B
= Complete LTS:
in
~ >
E
~____—
out
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Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;

o First step:

(Act) :
(Cal) in.By - B,

n

BO 7 B1
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Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;
o First step:
(Act) ‘ p
(Call) Iﬂ.B1 — 51
BO /n> B,
e Second step:
(Act) —
(sumy) out.By 2% B,
umy —
(Gall) out.By + in.B, 2% B,
B, % B,
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Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;
o First step: o Like first step: B> ol g
(Act) :
cal) in.B; = B;
BO /n> B,
e Second step:
(Act) —
(sumy) out.By 2% B,
umy —
(Gall) out.By + in.B, 2% B,
B, 2% B,
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Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: By = in.B;
B1 = wBO =F /n.Bg
B, = out.B;
o First step: o Like first step: B> ol g
(Act) :
cal) in.B; = B;
By =™ B, o Complete LTS:
e Second step: i 7
— out 1 2
(Sum) G iBO ~— S~
(Gall) out.By + in.B, 2% B, out out
B, 2% B,
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Semantics of CCS V

Example 2.5 (continued)

3) Parallel two-place buffer (f := [out > com|, g := [in > coml|):
p
By = (B[] || Bla]) \ com
B = in.out.B
First step:
(Act)
(Call) in.out.B - out.B
(Rel) B - out.B
(Pah) B[] = (out.B)[/]
(Res) 8l || Blg] % (eut.B)[1] || Bla]
(Call) (Bl || Blal) \ com > ((eut.B)[1] || Bla]) \ com
B — ((out.B)[f] || Blg]) \ com
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Semantics of CCS V

Example 2.5 (continued)

3) Parallel two-place buffer (f := [out > com|, g := [in > coml|):

p

By = (B[] || Blg]) \ com
B = in.out.B
First step: A failing attempt:
(Act) —————— (Act)
(Call) in.out.B — out.B (CaII) in.out.B — out.B
(Rel) B - out.B (Rel) B - out.B
(Pah) B[f] — (out.B)[1] (Pan) Blg] =% (out.B)[g]
B[] || Blg] — (out.B)[f] || Blg] B[] || Bla] < BI1] || (out.B)[q]
(Res) : (Res) .
(Call) (Bl || Blal) \ com > ((eut.B)[1] || Bla]) \ com (Call) (B[ || Bla)) \ com —?
By % ((out.B)If] || Blal) \ com By~
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Semantics of CCS VI

Example 2.5 (continued)

(3) Parallel two-place buffer: B = (B[f] || B[g]) \ com (f := [out — com], g := [in — com])
B = in.out.B
Complete LTS:

- . f1 1| Blg]) \ com empty

-

[((out B)[f] || Blg com B[f] out.B)| com] one entry
((out.B)[f] || (out.B)[g]) \com full
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Outline of Lecture 2

e Infinite State Spaces
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The Power of Recursive Definitions

So far: only finite state spaces
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The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C || down.nil)

g =
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The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

_>“—p>“—p>[c [ down || down]“—p>@

ldown ldown
~ Uup [C || down || nil “=” up
C | il [C || nil || down @
| down

CIEIED ey
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The Power of Recursive Definitions
So far: only finite state spaces
Example 2.6 (Counter)

C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

~((6)—=L—(C || down)—"~(C || down || down)——— ()

down | down
~ Uup [C || down || nil “=” up
| e C | nil ’[c i | down | (]
Sequential “specification”:
| down

CO = up. C1

— up
Cn= Up.Coi1 + down.Coy  (n>0) C | nil | nil) ——— -]
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Outline of Lecture 2

© The CaaL Tool
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The CAAL Tool

= o

Untitled Project

CaAL (Concurrency Workbench, Aalborg Edition;
@ Smart editor

Visualisation of generated LTS

Equivalence checking w.r.t. several bisimulation, simulation and trace equivalences

Generation of distinguishing formulae for non-equivalent processes

°
°
@ Model checking of (recursive) HML formulae
°
°

(Bi)simulation and model checking games

) = = — e
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e Epilogue
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Summary: CCS

Summary

@ Process behaviour defined by (synchronising) actions
@ Syntax given by recursive definitions of processes
@ inaction nil
prefixing .. P
choice P + Q
parallel composition 7 || Q
restriction P\ L
relabelling P|f]

@ Semantics given by (finite or infinite) labelled transition system

@ Implemented by CAAL Tool

Thomas Noll, Peter Thiemann Winter 2025/26 23/23



	The Approach
	Syntax of CCS
	CCS Examples
	Formal Semantics of CCS
	Infinite State Spaces
	The Caal Tool
	Epilogue

