
Concurrency Theory
Winter 2025/26

Lecture 2: Calculus of Communicating Systems (CCS)

Thomas Noll, Peter Thiemann
Programming Languages Group

University of Freiburg

https://proglang.github.io/teaching/25ws/ct.html

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 2 / 23

The Calculus of Communicating Systems

History
First development:
Robin Milner: A Calculus of Communicating Systems, LNCS 92, Springer, 1980

Elaboration and larger case studies:
Robin Milner: Communication and Concurrency , Prentice-Hall, 1989

Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the π-calculus, Cambridge University
Press, 1999

Approach
Description of concurrency on a simple and abstract level, using only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...) or data structures

⇒ concurrent system reduced to communication potential

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 3 / 23

https://doi.org/10.1007/3-540-10235-3

The Calculus of Communicating Systems

History
First development:
Robin Milner: A Calculus of Communicating Systems, LNCS 92, Springer, 1980

Elaboration and larger case studies:
Robin Milner: Communication and Concurrency , Prentice-Hall, 1989

Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the π-calculus, Cambridge University
Press, 1999

Approach
Description of concurrency on a simple and abstract level, using only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...) or data structures

⇒ concurrent system reduced to communication potential
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 3 / 23

https://doi.org/10.1007/3-540-10235-3

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 4 / 23

Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following grammarn:

P,Q ::= nil (inaction)
| α.P (prefixing)
| P + Q (choice)
| P ∥ Q (parallel composition)
| P \ L (restriction)
| P[f] (relabelling)
| C (process call)

where α ∈ Act , ∅ ̸= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a)
for each a ∈ A.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 23

Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following grammarn:

P,Q ::= nil (inaction)
| α.P (prefixing)
| P + Q (choice)
| P ∥ Q (parallel composition)
| P \ L (restriction)
| P[f] (relabelling)
| C (process call)

where α ∈ Act , ∅ ̸= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a)
for each a ∈ A.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 23

Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following grammarn:

P,Q ::= nil (inaction)
| α.P (prefixing)
| P + Q (choice)
| P ∥ Q (parallel composition)
| P \ L (restriction)
| P[f] (relabelling)
| C (process call)

where α ∈ Act , ∅ ̸= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a)
for each a ∈ A.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 23

Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following grammarn:

P,Q ::= nil (inaction)
| α.P (prefixing)
| P + Q (choice)
| P ∥ Q (parallel composition)
| P \ L (restriction)
| P[f] (relabelling)
| C (process call)

where α ∈ Act , ∅ ̸= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a)
for each a ∈ A.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 23

Syntax of CCS I

Definition 2.1 (Syntax of CCS)

Let A be a set of (action) names.

A := {a | a ∈ A} denotes the set of co-names.

Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following grammarn:

P,Q ::= nil (inaction)
| α.P (prefixing)
| P + Q (choice)
| P ∥ Q (parallel composition)
| P \ L (restriction)
| P[f] (relabelling)
| C (process call)

where α ∈ Act , ∅ ̸= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ) = τ and f (a) = f (a)
for each a ∈ A.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 5 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are
complementary: if performed in parallel (i.e., in P ∥ Q), they are merged into a τ -action.

P + Q represents the nondeterministic choice between P and Q.

P ∥ Q denotes the parallel execution of P and Q, involving interleaving or communication.

The restriction P \ L declares each a ∈ L as a local name which is only known within P.

The relabelling P[f] allows to adapt the naming of actions.

The behaviour of a process call C is given by the right-hand side of the corresponding
equation.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 6 / 23

Syntax of CCS II
Definition 2.1 (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with identifiers from {C1, . . . ,Ck}).

Notational Conventions:

a means a∑n
i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where

∑0
i=1 Pi := nil)

P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with

f (ai) = bi for i ∈ [n] and f (α) = α otherwise

restriction and relabelling bind stronger than prefixing, prefixing stronger than parallel composition,
parallel composition stronger than choice:

P \ a + b.Q ∥ R means (P \ a) + ((b.Q) ∥ R)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 7 / 23

Syntax of CCS II
Definition 2.1 (continued)

A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with identifiers from {C1, . . . ,Ck}).

Notational Conventions:

a means a∑n
i=1 Pi (n ∈ N) means P1 + . . .+ Pn (where

∑0
i=1 Pi := nil)

P \ a abbreviates P \ {a}
[a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with

f (ai) = bi for i ∈ [n] and f (α) = α otherwise

restriction and relabelling bind stronger than prefixing, prefixing stronger than parallel composition,
parallel composition stronger than choice:

P \ a + b.Q ∥ R means (P \ a) + ((b.Q) ∥ R)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 7 / 23

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 23

CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:
B = in.out.B

(2) Two-place buffer:
B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

(3) Parallel two-place buffer:
B∥ = (B[out 7→ com] ∥ B[in 7→ com]) \ com
B = in.out.B

“Interaction diagram”:

in−→ in−→ in−→ B
out−→ com−→ in−→ B

out−→ out−→ out−→

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 23

CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:
B = in.out.B

(2) Two-place buffer:
B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

(3) Parallel two-place buffer:
B∥ = (B[out 7→ com] ∥ B[in 7→ com]) \ com
B = in.out.B

“Interaction diagram”:

in−→ in−→ in−→ B
out−→ com−→ in−→ B

out−→ out−→ out−→

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 23

CCS Examples

Example 2.2 (Bounded buffers)

(1) One-place buffer:
B = in.out.B

(2) Two-place buffer:
B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

(3) Parallel two-place buffer:
B∥ = (B[out 7→ com] ∥ B[in 7→ com]) \ com
B = in.out.B

“Interaction diagram”:

in−→ in−→ in−→ B
out−→ com−→ in−→ B

out−→ out−→ out−→

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 9 / 23

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 10 / 23

Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
nodes = system states
edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S,Act,−→) consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:
Sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”).
(Finite) LTSs correspond to (finite) automata without final states.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 23

Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
nodes = system states
edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S,Act,−→) consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:
Sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”).
(Finite) LTSs correspond to (finite) automata without final states.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 23

Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
nodes = system states
edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S,Act,−→) consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:
Sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”).
(Finite) LTSs correspond to (finite) automata without final states.

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 11 / 23

Semantics of CCS I

We define the assignment

syntax → semantics

process definition 7→ LTS

by induction over the syntactic structure of process expressions.

Here we employ derivation rules of the form

(rule name)
premise(s)
conclusion

whose instances are composed to form derivation trees (where axioms, i.e., rules without premises,
correspond to leaves).

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 12 / 23

Semantics of CCS II

Reminder: P,Q ::= nil | α.P | P + Q | P ∥ Q | P \ L | P[f] | C

Definition 2.4 (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS (Prc,Act,−→) whose transitions can be
inferred from the following rules (P,P′,Q,Q′ ∈ Prc, α ∈ Act , λ ∈ A ∪ A, L ⊆ A, f : Act → Act):

(Act)
α.P

α−→ P
(Sum1)

P
α−→ P′

P + Q
α−→ P′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P′

P ∥ Q
α−→ P′ ∥ Q

(Par2)
Q

α−→ Q′

P ∥ Q
α−→ P ∥ Q′

(Com)
P

λ−→ P′ Q
λ−→ Q′

P ∥ Q
τ−→ P′ ∥ Q′

(Res)
P

α−→ P′ (α, α /∈ L)

P \ L
α−→ P′ \ L

(Rel) P
α−→ P′

P[f]
f (α)−→ P′[f]

(Call)
P

α−→ P′ (C = P)

C
α−→ P′

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 13 / 23

Semantics of CCS III

Example 2.5 (Bounded buffers; cf. Example 2.2)

(1) One-place buffer: B = in.out.B

First step:

(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

Second step:
(Act)

out.B
out−→ B

⇒ Complete LTS:

B out.B

in

out

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 14 / 23

Semantics of CCS III

Example 2.5 (Bounded buffers; cf. Example 2.2)

(1) One-place buffer: B = in.out.B

First step:

(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

Second step:
(Act)

out.B
out−→ B

⇒ Complete LTS:

B out.B

in

out

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 14 / 23

Semantics of CCS III

Example 2.5 (Bounded buffers; cf. Example 2.2)

(1) One-place buffer: B = in.out.B

First step:

(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

Second step:
(Act)

out.B
out−→ B

⇒ Complete LTS:

B out.B

in

out
Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 14 / 23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

First step:

(Call)

(Act)
in.B1

in−→ B1

B0
in−→ B1

Second step:

(Call)

(Sum1)

(Act)
out.B0

out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

Like second step (with (Sum2)): B1
in−→ B2

Like first step: B2
out−→ B1

Complete LTS:

B0 B1 B2

empty one entry full

in in

out out

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

First step:

(Call)

(Act)
in.B1

in−→ B1

B0
in−→ B1

Second step:

(Call)

(Sum1)

(Act)
out.B0

out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

Like second step (with (Sum2)): B1
in−→ B2

Like first step: B2
out−→ B1

Complete LTS:

B0 B1 B2

empty one entry full

in in

out out

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

First step:

(Call)

(Act)
in.B1

in−→ B1

B0
in−→ B1

Second step:

(Call)

(Sum1)

(Act)
out.B0

out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

Like second step (with (Sum2)): B1
in−→ B2

Like first step: B2
out−→ B1

Complete LTS:

B0 B1 B2

empty one entry full

in in

out out

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 23

Semantics of CCS IV

Example 2.5 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out.B0 + in.B2

B2 = out.B1

First step:

(Call)

(Act)
in.B1

in−→ B1

B0
in−→ B1

Second step:

(Call)

(Sum1)

(Act)
out.B0

out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

Like second step (with (Sum2)): B1
in−→ B2

Like first step: B2
out−→ B1

Complete LTS:

B0 B1 B2

empty one entry full

in in

out out

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 15 / 23

Semantics of CCS V

Example 2.5 (continued)
(3) Parallel two-place buffer (f := [out 7→ com], g := [in 7→ com]):

B∥ = (B[f] ∥ B[g]) \ com
B = in.out.B

First step:

(Call)

(Res)

(Par1)

(Rel)
(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

B[f]
in−→ (out.B)[f]

B[f] ∥ B[g]
in−→ (out.B)[f] ∥ B[g]

(B[f] ∥ B[g]) \ com
in−→ ((out.B)[f] ∥ B[g]) \ com

B∥
in−→ ((out.B)[f] ∥ B[g]) \ com

A failing attempt:

(Call)

(Res)
(Par1)

(Rel)
(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

B[g]
com−→ (out.B)[g]

B[f] ∥ B[g]
com−→ B[f] ∥ (out.B)[g]

(B[f] ∥ B[g]) \ com
?−→ ?

B∥
?−→ ?

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 23

Semantics of CCS V

Example 2.5 (continued)
(3) Parallel two-place buffer (f := [out 7→ com], g := [in 7→ com]):

B∥ = (B[f] ∥ B[g]) \ com
B = in.out.B

First step:

(Call)

(Res)

(Par1)

(Rel)
(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

B[f]
in−→ (out.B)[f]

B[f] ∥ B[g]
in−→ (out.B)[f] ∥ B[g]

(B[f] ∥ B[g]) \ com
in−→ ((out.B)[f] ∥ B[g]) \ com

B∥
in−→ ((out.B)[f] ∥ B[g]) \ com

A failing attempt:

(Call)

(Res)
(Par1)

(Rel)
(Call)

(Act)
in.out.B

in−→ out.B

B
in−→ out.B

B[g]
com−→ (out.B)[g]

B[f] ∥ B[g]
com−→ B[f] ∥ (out.B)[g]

(B[f] ∥ B[g]) \ com
?−→ ?

B∥
?−→ ?

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 16 / 23

Semantics of CCS VI

Example 2.5 (continued)

(3) Parallel two-place buffer: B∥ = (B[f] ∥ B[g]) \ com
B = in.out.B

(f := [out 7→ com], g := [in 7→ com])

Complete LTS:

B∥

((out.B)[f] ∥ B[g]) \ com

((out.B)[f] ∥ (out.B)[g]) \ com

(B[f] ∥ (out.B)[g]) \ com

(B[f] ∥ B[g]) \ com empty

one entry

full

in
in

τ

out

inout

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 17 / 23

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 18 / 23

The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C ∥ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ∥ down C ∥ down ∥ down . . .

C ∥ nil
C ∥ down ∥ nil “=”
C ∥ nil ∥ down

. . .

C ∥ nil ∥ nil . . .

up up up

up up

up

down down

down
Sequential “specification”:

C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 23

The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C ∥ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ∥ down C ∥ down ∥ down . . .

C ∥ nil
C ∥ down ∥ nil “=”
C ∥ nil ∥ down

. . .

C ∥ nil ∥ nil . . .

up up up

up up

up

down down

down
Sequential “specification”:

C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 23

The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C ∥ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ∥ down C ∥ down ∥ down . . .

C ∥ nil
C ∥ down ∥ nil “=”
C ∥ nil ∥ down

. . .

C ∥ nil ∥ nil . . .

up up up

up up

up

down down

down

Sequential “specification”:

C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 23

The Power of Recursive Definitions

So far: only finite state spaces

Example 2.6 (Counter)

C = up.(C ∥ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ∥ down C ∥ down ∥ down . . .

C ∥ nil
C ∥ down ∥ nil “=”
C ∥ nil ∥ down

. . .

C ∥ nil ∥ nil . . .

up up up

up up

up

down down

down
Sequential “specification”:

C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 19 / 23

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 20 / 23

The CAAL Tool

CAAL (Concurrency Workbench, Aalborg Edition; https://caal.cs.aau.dk/)
Smart editor

Visualisation of generated LTS

Equivalence checking w.r.t. several bisimulation, simulation and trace equivalences

Model checking of (recursive) HML formulae

Generation of distinguishing formulae for non-equivalent processes

(Bi)simulation and model checking games

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 21 / 23

https://caal.cs.aau.dk/

Outline of Lecture 2

1 The Approach

2 Syntax of CCS

3 CCS Examples

4 Formal Semantics of CCS

5 Infinite State Spaces

6 The CAAL Tool

7 Epilogue

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 22 / 23

Summary: CCS

Summary
Process behaviour defined by (synchronising) actions
Syntax given by recursive definitions of processes

inaction nil
prefixing α.P
choice P + Q
parallel composition P ∥ Q
restriction P \ L
relabelling P[f]

Semantics given by (finite or infinite) labelled transition system

Implemented by CAAL Tool

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 23 / 23

	The Approach
	Syntax of CCS
	CCS Examples
	Formal Semantics of CCS
	Infinite State Spaces
	The Caal Tool
	Epilogue

