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Target Audience

Master Computer Science

Specialization Cyber-Physical Systems

In general:
interest in formal models for concurrent (software) systems
application of mathematical modelling and reasoning methods
not (in the first place): concurrent programming

Expected: basic knowledge in
essential concepts of operating systems and system software
formal languages and automata theory
mathematical logic
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Course Objectives

Objectives
Understand the foundations of concurrent systems

Understand the main semantical underpinnings of concurrency

Model, reason about, and compare concurrent systems in a rigorous manner

Motivation
Supporting the design phase of systems

“Programming Concurrent Systems”
synchronisation, scheduling, semaphores, ...

Verifying functional correctness properties

“Model Checking”
validation of mutual exclusion, fairness, absence of deadlocks, ...

Comparing expressivity of models of concurrency

“interleaving” vs. “true concurrency”
equivalence, refinement, abstraction, ...
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Organisation

All material (slides, videos, exercise sheets, ...) made available via lecture website
Schedule:

Lecture Tue 14:00–16:00, R 04 007 Videokonferenz G.-Köhler-Allee 106 (starting Oct 21)
Exercise Mon 10–12, R 04 007 Videokonferenz G.-Köhler-Allee 106 (starting Oct 27)

Assignment sheets:
in weekly intervals, starting Tue Oct 21
no submission required, but consider it as exam preparation

Exam (6 CP):
written
TBA
no specific admission requirements
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Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

value of x :

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

value of x :

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

value of x :

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2) value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1
value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1 2
value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1 2
value of x : 1

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

2
value of x : 2

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2) value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1
value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1 2
value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1 2
value of x : 2

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

1
value of x : 1

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2) value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

2
value of x : 0

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

2
value of x : 2

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

3
value of x : 2

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

3
value of x : 3

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

value of x :

At first glance: x is assigned 3

But: both parallel components might read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3

Thomas Noll, Peter Thiemann Concurrency Theory Winter 2025/26 8 / 19



Concurrency and Interaction

The problem arises due to the combination of

concurrency and

interaction (here: via shared memory)

Conclusion
When modelling concurrent systems, the precise description of the mechanisms of both
concurrency and interaction is crucially important.
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Concurrency Everywhere

Herb Sutter: The Free Lunch Is Over , Dr. Dobb’s Journal, 30(3), 2005
“The biggest sea change in software development since the OO revolution is knocking at the door,
and its name is Concurrency.”

Operating systems

Embedded/reactive systems

parallelism (at least) between hardware,
software, and environment

High-end parallel hardware infrastructure:

high-performance computing

Low-end parallel hardware infrastructure

increasing performance only achievable by
parallelism
multi-core computers, GPGPUs, FPGAs
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Problems Everywhere

Operating systems:
mutual exclusion
fairness (no starvation)
no deadlocks, ...

Shared-memory systems:
memory models
data races
inconsistencies
(“sequential consistency”
vs. relaxed notions)

Embedded systems:
safety
liveness, ...
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Memory Models

1

                Initially: x = y = 0

         thread1:                      thread2:
         1: x = 1                       3: y = 1

         2: r1 = y                      4: r2 = x

             

     An illustrative example

Tuesday, April 5, 2011
(with global variables x, y and local registers r1, r2)
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Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Sequential Consistency (SC)

Tuesday, April 5, 2011
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Computer Sciences
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Memory Models

3

x=1
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y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Total Store Ordering (TSO)
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Reactive Systems I

“Classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment
and among themselves

Main interest: not terminating computations but infinite
behaviour (system maintains ongoing interaction with
environment)

Examples:

operating systems
embedded systems controlling mechanical or
electrical devices (planes, cars, home appliances, ...)
power plants, production lines, ...
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Reactive Systems II

Observation
Reactive systems are often safety critical, thus trustworthiness has to be ensured.

Safety properties: “Nothing bad is ever going to happen.”
e.g., “at most one process in the critical section”

Liveness properties: “Eventually something good will happen.”
e.g., “every request will finally be answered by the server”

Fairness properties: “No component will starve to death.”
e.g., “any process requiring entry to the critical section will eventually be admitted”

Reliability, performance, survivability, ...
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Overview of the Course

(1) Introduction and Motivation

(2) The “Interleaving” Approach

Syntax and semantics of CCS
Hennessy-Milner Logic
Case study: mutual exclusion
Extensions, alternative approaches (value passing, mobility, CSP, ACP, ...)

(3) Equivalence, Refinement and Compositionality

Behavioural equivalences ((bi-)simulation)
Case study: mutual exclusion
(Pre-)congruences and compositional abstraction
HML and bisimilarity

(4) The “True Concurrency” Approach

Petri nets: basic concepts
Case study: mutual exclusion
Branching processes and net unfoldings
Analysing Petri nets
Alternative models (trace languages, event structures, ...)

(5) Extensions (timed models, ...)
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Literature

Fundamental:
Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen and Jiřı́ Srba: Reactive Systems:
Modelling, Specification and Verification, Cambridge University Press, 2007
Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case
Studies, Springer Verlag, 2012

Supplementary:
Jan Bergstra, Alban Ponse and Scott Smolka (Eds.): Handbook of Process Algebra, Elsevier,
2001
Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming, Elsevier, 2008
Davide Sangiorgi and David Walker: The Pi-Calculus: A Theory of Mobile Processes, Cambridge
University Press, 2001
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