Concurrency Theory
Winter 2025/26

Lecture 1: Introduction

Thomas Noll, Peter Thiemann
Programming Languages Group
University of Freiburg

Thomas Noll, Peter Thiemann

Winter 2025/26

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 1

@ Preliminaries

Thomas Noll, Peter Thiemann Winter 2025/26 2/19

Staff

@ Lectures:

e Peter Thiemann
@ Exercises:

o Marius Weidner

@ Contact: weidner@informatik.uni-freiburg.de

Thomas Noll, Peter Thiemann Winter 2025/26 3/19

weidner@informatik.uni-freiburg.de

Target Audience

@ Master Computer Science
@ Specialization Cyber-Physical Systems

Thomas Noll, Peter Thiemann Winter 2025/26 4/19

Target Audience

@ Master Computer Science

@ Specialization Cyber-Physical Systems

@ In general:
@ interest in formal models for concurrent (software) systems
e application of mathematical modelling and reasoning methods
e not (in the first place): concurrent programming

@ Expected: basic knowledge in
o essential concepts of operating systems and system software
e formal languages and automata theory
e mathematical logic

Thomas Noll, Peter Thiemann Winter 2025/26 4/19

Course Objectives

Objectives
@ Understand the foundations of concurrent systems

@ Understand the main semantical underpinnings of concurrency

@ Model, reason about, and compare concurrent systems in a rigorous manner

Thomas Noll, Peter Thiemann Winter 2025/26 5/19

Course Objectives

Objectives

@ Understand the foundations of concurrent systems
@ Understand the main semantical underpinnings of concurrency

@ Model, reason about, and compare concurrent systems in a rigorous manner

@ Supporting the design phase of systems

@ “Programming Concurrent Systems”
e synchronisation, scheduling, semaphores, ...

@ Verifying functional correctness properties

e “Model Checking”
e validation of mutual exclusion, fairness, absence of deadlocks, ...

@ Comparing expressivity of models of concurrency

Thomas Noll, Peter Thiemann Winter 2025/26 5/19

@ All material (slides, videos, exercise sheets, ...) made available via lecture website
@ Schedule:

o Lecture Tue 14:00-16:00, R 04 007 Videokonferenz G.-Kohler-Allee 106 (starting Oct 21)
e Exercise Mon 10—-12, R 04 007 Videokonferenz G.-Kéhler-Allee 106 (starting Oct 27)

Thomas Noll, Peter Thiemann Winter 2025/26 6/19

https://proglang.github.io/teaching/25ws/ct.html

@ All material (slides, videos, exercise sheets, ...) made available via lecture website
@ Schedule:

o Lecture Tue 14:00-16:00, R 04 007 Videokonferenz G.-Kohler-Allee 106 (starting Oct 21)
e Exercise Mon 10—-12, R 04 007 Videokonferenz G.-Kéhler-Allee 106 (starting Oct 27)

@ Assignment sheets:

o in weekly intervals, starting Tue Oct 21
@ no submission required, but consider it as exam preparation

Thomas Noll, Peter Thiemann Winter 2025/26 6/19

https://proglang.github.io/teaching/25ws/ct.html

@ All material (slides, videos, exercise sheets, ...) made available via lecture website
@ Schedule:

o Lecture Tue 14:00-16:00, R 04 007 Videokonferenz G.-Kohler-Allee 106 (starting Oct 21)
e Exercise Mon 10—-12, R 04 007 Videokonferenz G.-Kéhler-Allee 106 (starting Oct 27)

@ Assignment sheets:

o in weekly intervals, starting Tue Oct 21
@ no submission required, but consider it as exam preparation

@ Exam (6 CP):

o written
e TBA
@ no specific admission requirements

Thomas Noll, Peter Thiemann Winter 2025/26 6/19

https://proglang.github.io/teaching/25ws/ct.html

Outline of Lecture 1

e Concurrency and Interaction

Thomas Noll, Peter Thiemann Winter 2025/26 7/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x =x+1||x:=x+2)

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x =x+1||x:=x+2)

@ At first glance: x is assigned 3

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X =0;
(x =x+1||x:=x+2)

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

x:=0;
(x =x+1|x:=x+2) value of x: 0

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 0
1

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 0
1 2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1|x:=x+2) value of x: 1
1 2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1|x:=x+2) value of x: 2
2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

x:=0;
(x =x+1|x:=x+2) value of x: 0

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 0
1

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 0
1 2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1|x:=x+2) value of x: 2
1 2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1|x:=x+2) value of x: 1
1

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

x:=0;
(x =x+1|x:=x+2) value of x: 0

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 0
2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1|x:=x+2) value of x: 2
2

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 2
3

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1,

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

X :=0;
(x:=x+1| x:=x+2) value of x: 3
3

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1, or 3

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

x :=0;
(x =x+1||x:=x+2)

@ At first glance: x is assigned 3
@ But: both parallel components might read x before it is written
@ Thus: x is assigned 2, 1, or 3

@ If exclusive access to shared memory and atomic execution of assignments guaranteed
= only possible outcome: 3

Thomas Noll, Peter Thiemann Winter 2025/26 8/19

Concurrency and Interaction

The problem arises due to the combination of
@ concurrency and

@ interaction (here: via shared memory)

Thomas Noll, Peter Thiemann Winter 2025/26 9/19

Concurrency and Interaction

The problem arises due to the combination of
@ concurrency and

@ interaction (here: via shared memory)

When modelling concurrent systems, the precise description of the mechanisms of both
concurrency and interaction is crucially important.

Thomas Noll, Peter Thiemann Winter 2025/26 9/19

Concurrency Everywhere

Herb Sutter: , Dr. Dobb’s Journal, 30(3), 2005

“The biggest sea change in software development since the OO revolution is knocking at the door,
and its name is Concurrency.”

@ Operating systems

@ Embedded/reactive systems wansisors

10,000.000,000 1"
1,000,000,000 i#

100,000,000

o parallelism (at least) between hardware, HOORE' LAl
software, and environment

10000.000

@ High-end parallel hardware infrastructure:

1,000,000

100,000

e high-performance computing - [zl I

o

@ Low-end parallel hardware infrastructure B T T T 3

° mcreas!ng performance onIy achievable by Moore's Law: Transistor density doubles every 2 years "
parallelism

e multi-core computers, GPGPUs, FPGAs

Thomas Noll, Peter Thiemann Winter 2025/26 10/19

http://www.gotw.ca/publications/concurrency-ddj.htm

Problems Everywhere

@ Operating systems:
e mutual exclusion
e fairness (no starvation)
e no deadlocks,

@ Shared-memory systems:
@ memory models

e data races
@ inconsistencies :"‘;‘j
(“sequential consistency” -

vs. relaxed notions) @

@ Embedded systems:
o safety # Bugs Y
o liveness, ...

Multi-threaded Software Shared-memory Multiprocessor

Concurrent Executions

Thomas Noll, Peter Thiemann Winter 2025/26 11/19

Outline of Lecture 1

e A Closer Look at Memory Models

Thomas Noll, Peter Thiemann Winter 2025/26 12/19

Memory Models

An illustrative example

Initially: x =y =0
thread1: thread2:
1:x=1 3:y=1
2:r1 =y 4:r2 =X

Thomas Noll, Peter Thiemann Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
x=0
y=0
x=1
ri=y
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
x=0
y=0
x=1
ri=y
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
X =1
y=0
x=1
ri=y
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T1 Memory T2
X =1
y=0
x=1
r=y
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
X =1
y=0
x=1
ri=y [r1=0]
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
X =1
y=0
x=1
ri=y [r1=0]
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
X =1
y=1
x=1
ri=y [r1=0]
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
X =1
y=1
x=1
ri=y [r1=0]
y=1
r2=x

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
x=1
y=1
x=1
ri=y [r1=0]
y=1
r2=x [r2=1]

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Sequential Consistency (SC)

T Memory T2
x=1
y=1
x=1
ri=y [r1=0]
y=1
r2=x [r2=1]

Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

Total Store Ordering (TSO)

T1 Memory T2
x=0
y=0
x=1
ri=y
y=1
r2=x

Winter 2025/26 13/19

Memory Models

FIFO buffer T1 T1

Thomas Noll, Peter Thiemann

Total Store Ordering (TSO)

Memory - FIFO buffer T2
x=0
y=0
x=1
ri=y
y=1
r2=x
Winter 2025/26 13/19

Memory Models

FIFO buffer T1 T1

Thomas Noll, Peter Thiemann

Total Store Ordering (TSO)

Memory - FIFO buffer T2
x=0
y=0
x=1
ri=y
y=1
r2=x
Winter 2025/26 13/19

Memory Models

Total Store Ordering (TSO)
FIFO buffer T1 Memory o FIFO buffer T2
x x=0
—_ y = 0
x=1
r=y
y=1
r2=x

Thomas Noll, Peter Thiemann Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

FIFO buffer T1

x
1l

—_—

Total Store Ordering (TSO)

Memory - FIFO buffer T2
x=0
y=0
x=1 A
ri=y [r1 =.0]
y=1
r2=x
Winter 2025/26 13/19

Memory Models

Thomas Noll, Peter Thiemann

FIFO buffer T1

x
1l

—_—

Total Store Ordering (TSO)

Memory - FIFO buffer T2

x=0

y=0
x=1 a
ri=y [=.0]

=1
r2=x
Winter 2025/26 13/19

Memory Models

Total Store Ordering (TSO)
FIFO buffer T1 Memory o FIFO buffer T2
<
y =0 3
x=1 o
M=y [=.0]
y=1
r2=x

Thomas Noll, Peter Thiemann Winter 2025/26 13/19

Memory Models

Total Store Ordering (TSO)

FIFO buffer T1 4 Memory T FIFO buffer T2
5
y=0 -
M=y [r1=0]
y=1

r2=x [r2=0]
rf==0and r2 ==

Thomas Noll, Peter Thiemann Winter 2025/26 13/19

Outline of Lecture 1

© A Closer Look at Reactive Systems

Thomas Noll, Peter Thiemann Winter 2025/26 14/19

Reactive Systems |

@ “Classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate

@ Missing: aspect of interaction

Thomas Noll, Peter Thiemann Winter 2025/26 15/19

Reactive Systems |

@ “Classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment
and among themselves

Thomas Noll, Peter Thiemann Winter 2025/26 15/19

Reactive Systems |

@ “Classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment
and among themselves

@ Main interest: not terminating computations but infinite
behaviour (system maintains ongoing interaction with
environment)

@ Examples:

e operating systems
e embedded systems controlling mechanical or
electrical devices (planes, cars, home appliances, ...)

Thomas Noll, Peter Thiemann Winter 2025/26 15/19

Reactive Systems |l

Observation
Reactive systems are often safety critical, thus trustworthiness has to be ensured.
@ Safety properties: “Nothing bad is ever going to happen.”
e e.g., “at most one process in the critical section”
@ Liveness properties: “Eventually something good will happen.”
@ e.g., “every request will finally be answered by the server”
@ Fairness properties: “No component will starve to death.”
@ e.g., “any process requiring entry to the critical section will eventually be admitted”

@ Reliability, performance, survivability, ...

Thomas Noll, Peter Thiemann Winter 2025/26 16/19

Outline of Lecture 1

e Overview of the Course

Thomas Noll, Peter Thiemann Winter 2025/26 17/19

Overview of the Course

(1) Introduction and Motivation

(2) The “Interleaving” Approach

@ Syntax and semantics of CCS

o Hennessy-Milner Logic

o Case study: mutual exclusion

o Extensions, alternative approaches (value passing, mobility, CSP, ACP, ...)

(3) Equivalence, Refinement and Compositionality
e Behavioural equivalences ((bi-)simulation)
Case study: mutual exclusion
(Pre-)congruences and compositional abstraction
HML and bisimilarity

(4) The “True Concurrency” Approach

Petri nets: basic concepts
Case study: mutual exclusion
Branching processes and net unfoldings

@ Analysing Petri nets
Thomas Noll, Peter Thiemann Winter 2025/26 18/19

@ Fundamental:

e Luca Aceto, Anna Ingélfsdéttir, Kim Guldstrand Larsen and Jifi Srba: Reactive Systems:
Modelling, Specification and Verification, Cambridge University Press, 2007

e Wolfgang Reisig: Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case
Studies, Springer Verlag, 2012

@ Supplementary:

e Jan Bergstra, Alban Ponse and Scott Smolka (Eds.): Handbook of Process Algebra, Elsevier,
2001

o Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming, Elsevier, 2008

o Davide Sangiorgi and David Walker: The Pi-Calculus: A Theory of Mobile Processes, Cambridge
University Press, 2001

Thomas Noll, Peter Thiemann Winter 2025/26 19/19

https://rsbook.cs.aau.dk
https://rsbook.cs.aau.dk
https://doi.org/10.1016/B978-0-444-82830-9.X5017-6

	Preliminaries
	Concurrency and Interaction
	A Closer Look at Memory Models
	A Closer Look at Reactive Systems
	Overview of the Course

