Concurrency Theory

Prof. Dr. Peter Thiemann Marius Weidner, Leonardo Mieschendahl University of Freiburg Winter 2025

Sheet 4

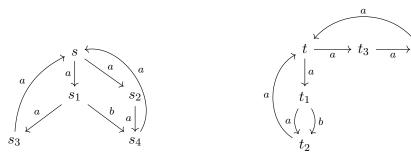
Due: Monday, 2025-11-24

Exercise 4.1 (Complete Lattices)

- (a) Let $M = \{a, b, c\}$. Define a relation R such that (M, R) is a complete lattice.
- (b) For a totally ordered set S, $(\mathcal{P}(S), \subseteq)$ is a complete lattice. Define another relation R such that $(\mathcal{P}(S), R)$ is a complete lattice.
- (c) Is (\mathbb{R}, \leq) a complete lattice? If not, how can you extend \mathbb{R} such that it becomes a complete lattice?

Exercise 4.2 (Fixpoint Charactrization of Strong Bisimularity)

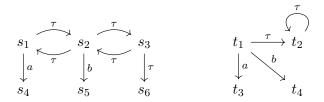
Reconsider the two LTS from Exercise 2.1 below.



Show that $s \sim t$ by **computing** the relation $\rho \subseteq \sim$ as the greatest fixpoint of \mathcal{F}^{1} .

Exercise 4.3 (Fixpoint Charactrization of Weak Bisimularity)

Reconsider the two LTS from Exercise 3.1 below.



Show that $s \approx t$ by **computing** the relation $\rho \subseteq \sim$ as the greatest fixpoint of \mathcal{F} .

If you have questions, please post a message in the dedicated chat.

¹It is okay to enumerate the induced equivalence classes of pairs, as demonstrated in the lecture slides.

Exercise 4.4 (Coinduction)

Show that the infinite list $s_1 = a :: b :: a :: b :: \ldots$, for $a, b \in A$ where A is any set, is a valid infinite list using the coinductive proof method.