Concurrency Theory

Prof. Dr. Peter Thiemann University of Freiburg
Marius Weidner, Leonardo Mieschendahl Winter 2025

Sheet 1
Due: Monday, 2025-11-03

Important Information:
e Exercises are ungraded and do not need to be submitted.
e If you have questions, please post a message in the dedicated chat.
e The solutions will be discussed in the tutorial sessions.
Aufgabe 1.1 (Atomic Parallel Execution)
What are the possible values of x at the end of the execution of the following program:
x:=10; ((x:=x*2; x:=x-11; x:=x+2) || x:=x-5)

You can assume atomic operations.

Aufgabe 1.2 (Labeled Transition Systems)
Consider the following LTS:

1 a
—
a
%
a

2
3

What is the reflexive closure of the binary relation %? (just draw it)

4

Formally define the LTS.

e What is the symmetric closure of the binary relation —? (just draw it)

e What is the transitive closure of the binary relation %? (just draw it)

Aufgabe 1.3 (Informal Specification to CCS)

Consider the following CCS definition of a coffee machine:
CM = coin.coffee.CM

Give a CCS definition that describes a coffee machine which can take money without
returning coffee, and which can fail at any time.

Aufgabe 1.4 (Relating CCS and LTS)
Consider an LTS with a finite number of states and action labels.

e Does this imply that the —s set is finite?

https://chat.laurel.informatik.uni-freiburg.de/invite/mTSmQs

Concurrency Theory Winter 2025

e Draw an example of an LTS with 4 states and two transitions.

e How can your example be described by a sequential fragment of CCS (i.e. no
parallel execution).

e Show that in general, any finite LTS can be described by using a sequential
fragment of CCS.

Aufgabe 1.5 (Formal CCS Semantics)

By using the SOS rules for CCS prove the existence of the following transitions
(assume that A = b.a.B):

o (A b.Nil)\ {b} == (a.B | Nil)\ {b}
o (A b.a.B)+ (b.A)a/b] 2 (A a.B)
o (Al b.a.B)+ (b.A)a/b] = Ala/b]

Aufgabe 1.6 (CSS to LTS using Formal Semantics)
Consider the following CCS defining equations:

CM = coin.coffee.CM

CS = pub.coin.coffee.CS
Uni = (CM || CS) \ {coin, coffee}

Use the rules of the SOS semantics for CCS to derive the labelled transition system
for the process Uni defined above. The proofs can be omitted and a drawing of the
resulting LTS is enough.

Aufgabe 1.7 (Infinite LTS)
Draw (part of) the labelled transition system for the process constant A defined by

A= (a.A)\ {b}.

The resulting LTS should have infinitely many reachable states. Can you think of a
CCS term that generates a finite LTS and intuitively has the same behaviour as A?

Aufgabe 1.8 (LTS Isomorphisms and Trace Equivalence)

(a) Draw the transition graph for the process name Mutex;, whose behaviour is
given by the following defining equations.

Mutex; = (User || Sem) \ {p,v}
User = p.enter.exit.v.User

Sem = p.v.Sem

Concurrency Theory Winter 2025

(b)

(d)
(e)

Draw the transition graph for the process name Mutexs whose behaviour is
given by the defining equation

Mutexs = ((User || Sem) || User) \ {p, v}

where User and Sem are defined as before. Would the behaviour of the process
change if User was defined as

User = p.enter.v.exit.User

Draw the transition graph for the process name FMutex whose behaviour is
given by the defining equation

FMutex = ((User || Sem) || FUser) \ {p, v}

where User and Sem are defined as before, and the behaviour of FUser is given
by the defining equation

FUser = p.enter.(exit.v.FUser + exit.v.Nil)

Do you think that Mutexs and FMutex are offering the same behaviour? Can
you argue informally for your answer?

Are the LTS of Mutexs and FMutex ismorphic?

Are Mutexy and FMutex trace equivalent?

