CoMPILER CONSTRUCTION
Parsing & Lexing

Hannes Saffrich
Peter Thiemann

University of Freiburg
Department of Computer Science
Programming Languages

28. April 2025

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29

1/24

Parser

A parser checks if a word is part of a language.
An alphabet ¥ is a finite set.

The elements a € X are called letters or terminal symbols.

>
>
| 4
> A word w is a list of letters, i.e., w € ¥*.
> A language L is a set of words, i.e., L C X*.

» We consider languages described by context-free grammars.
» Information provided by a parser:

> if a word is in the language, it produces one (or more) syntax trees;
> if a word is not in the language, it produces an error message
describing why it is not in the language.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 2/24

Lexer

> A lexer is an optional preprocessing step for a parser.

» It translates words from one alphabet to words of another alphabet
lexer : X* — A*

> Typically, ¥ = set of (unicode) characters.

> The output letters t € A are called Tokens.
P> A lexer serves two purposes:

» Allow the parser to be based on a more readable grammar, e.g., by
removing whitespace and comments, and treating numbers or variable
names as single letters;

» Increase performance as some tasks can be done more efficiently in a
lexer.

> We describe a lexer by a mapping from regular expressions to tokens.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 3/24

Running Example: A Circuit Description Language

(prog) = ((expr);)"
(expr) ::= True
| False
| (var)
| expr)
| (expr)(expr)
| (expr) | {expr)

Hannes Saffrich Peter Thiemann Parsing & Lexing

Example Program:

a & b;

la | b & c;
True;

a

b ——
C

X

D,
LY
}.

1

2025-04-29 4/24

Lexer Example
Input String

a & b;
la | b & c;

True;
n

Output Tokens

[
Id(’a’), And(), Id(’b’), Semicolon(),
Not(), Id(’a’), 0r(), Id(’b’), AndQ),
Id(’c’), Semicolon(),
True(), Semicolon(),
]

Lexer Description (Semi-Formal)

Id =
True =
False =
And =
Or =
Not =
Semicolon
Ignorel

Ignore2

"[a-zA-Z] [a-zA-Z0-9] *"
n True n

"False"

ll&ll

n \ | n

n [\t\n] 4"
" [‘\n] *\nu

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 5/24

Lexer Implementation

» Let's write a naive lexer!

> ... or to be more precise: an interpreter for a lexer description!

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 6/24

Context-free Grammars: Definition

» Formally, a context-free grammar is a tuple (N, X, S, P) where

» N is a finite set of non-terminal symbols

> 3 is a set of terminal symbols

> S e N is the start symbol

> PC N x(NUZX)* are the production rules
> Example:

> N = {{prog), (expr), (var)}

> > = {True, False, ;, & |, a, b, ...}

> S = (prog) is the start symbol

» P contains the following rules:

(prog) — (expr) — 1 {expr)
(prog) — (expr);(prog) (expr) — (expr)&(expr)
(expr) — True (expr) — (expr) | {expr)
(expr) — False (var) — Var ()
(expr)y — (var)

Hannes Saffrich Peter Thiemann Parsing & Lexing

7/24

Grammars: Language

> The language of a grammar is the set of words that can be derived

from the start symbol by applying production rules

> Example: (prog) = (expr);{prog)
= (expr); @)
= (expr)&{expr);
= (var)&(expr); (7) ; (1)
= foo&(expr); G & (5
= foo&(var); | |
= foo&bar; foo bar
> Rules:
(prog) — (1) (expr) — ! (expr) (6)
(prog) — (expr); (prog) (2) (expr) — (expr)tlexpr) (7)
(expr) — True (3) (expr) — (expr)|(expr) (8)
(expr) — False (4) (var) — Var(_) (9)
(expr) — (var) (5)

8/24

Grammars: EBNF Notation

» The Extended Backus—Naur form (EBNF) is a concise, but equivalent

notation for writing down the production rules of a grammar.
> Multiple rules with the same left side are combined by writing the

right side of the rule as a regular expression over the alphabet N U X.

» Our example grammar in EBNF notation:

(prog) = ({expr);)*

(expr) ::= True | False | (var) | !(expr) | (expr)&{expr) | (expr)|{expr)

(var) ::= Var(_)

» Our example grammar in rule notation:

(prog) — (expr) — !(expr)
(prog) — (expr);(prog) (expr) — (expr)&{expr)
(expr) — True (expr) — (expr) | (expr)
(expr) — False (var) — Var ()
(expr) — (var)

Hannes Saffrich Peter Thiemann Parsing & Lexing

9/24

Grammars: Ambiguity

> A grammar is ambiguous, if a word can be derived in multiple ways.
» Our example grammar is ambiguous . ..

(prog) = ({expr)3)"
(expr) ::= True | False | (var) | !{expr) | (expr)&{expr) | (expr)|{expr)
(vary = Var(_)

» Theword x & y & z; can be derived as
x&y) &z;andx & (y & 2);

> Even worse, the word x & y | z; can be derived as
(x&y) | z;andx & (y | 2);
where only the first one is valid (“and” binds stronger than “or")

» No problem if the grammar is used to describe abstract syntax tree
data types, but it matters for parsing concrete syntax.

> We amend the grammar to do so.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 10 /24

Grammars: Ambiguity (Fix 1)

» Grammar for abstract syntax (ambiguous):

(prog) = ({(expr);)*
(expr) ::= True | False | (var) | !(expr) | (expr)&({expr) | {expr)|{expr)
(vary = Var(_)

» Grammar for concrete syntax (unambiguous):

(prog) = ((expr))"
(expr) ::= True | False | (var) | (!{expr))n | ({expr)&{expr)) | ({expr)|{expr))
(var) ::= Var(_)

» This forbids 'a & b | c;, but requires us to write

((('a) & b) | ©);

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 11/24

Grammars: Ambiguity

> What we actually want is:
» & binds stronger than |, eg. x & y | zmeans (x & y) | z
P> ! binds stronger than &, e.g. 'x & y means (!x) & y
> & is left-associative, e.g. x & y & zmeans (x & y) & z
> | is left-associative, e.g. x | y | zmeans (x | y) | z
> | is right-associative, e.g. !!x means ! (! x)

> As & and | are associative operators, making them left-associative is
an arbitrary choice, and we could just as well make them
right-associative.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 12 /24

Grammars: Ambiguity (Fix 2)
» Grammar for abstract syntax (ambiguous):

(prog) == ((expr);)*
(expr) := True | False | (var) | !(expr) | (expr)&(expr) | (expr)|{expr)
(var) ::= Var(_)

» Grammar for concrete syntax (unambiguous):

(prog) ::= ((expr);)"

(expr) == (expr) | {exprl) | (exprl)
(exprl) = (exprl)&(expr2) | {expr2)
(expr2) ::= '<expr2> | (expr3)

(expr3) ::= True | False | (var) | ({expr))
(vary == Var(_)

» This change forces 'a & b | c; to be parsed as
(((la) &b) | ¢);

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 13 /24

Grammars: Abstract Syntax vs Concrete Syntax

Example word: 'a & (b | c);

Abstract Syntax Tree:
Prog

EAnd

ENot EOr

EVar EVar EVar
\ \ \
a b [
In most scenarios, we parse the
concrete syntax, but let the

parser generate an abstract
syntax tree.

Hannes Saffrich Peter Thiemann

Parsing & Lexing

Concrete Syntax Tree:

Prog
/\
Expri H
EAnd
Expr2 Expr3
ENot EParen
/\
! Expr3
\
EVar /’\
a Expri Expr2
|
Expr2 Expr3
|
Expr3 EVar
|
EVar c
\
b

2025-04-29

14 /24

Grammars: Classification

The Chomsky Hierarchy classifies languages by the kind of production
rules that are required to describe them.

» Context-free languages can be described by rules of the form:
A=« VAe N,a e (NUX)*

> Parsing with O(n3) worst-case time complexity.

> There are subsets (LL, LR, LALR) that place further restrictions on the
grammar so that it can be parsed in O(n) time. These languages are all
deterministic and hence unambiguous.

> Sufficiently powerful to parse realistic languages.

» Regular languages can be described by rules of the form:
A—a A — aB VA, Be N;ae X
> Parsing with O(n) worst-case time complexity.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 15 /24

The Earley Parser

» Classical parsing algorithm for arbitrary context-free grammars.
Jay Earley. 1970. An efficient context-free parsing algorithm.
Commun. ACM 13, 2 (Feb 1970), 94-102.
https: //doi. org/10. 1145/ 362007. 362035

> Worst-case time complexity:

» O(n%) for ambiguous grammars (we don't care about those)
» O(n?) for unambiguous grammars

Relatively simple (170 lines of Python)

Basically a grammar interpreter

>
>
» Nice for prototyping as it supports general context-free grammars
» Probably too slow for large files

>

Produces multiple syntax trees when used with ambigous grammars

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 16 /24

https://doi.org/10.1145/362007.362035

The Earley Parser: Basic Principle

vvyyvyy

Loops once over each symbol of the input word
Tracks which production rules made how much progress in a chart

A chart maps each symbol index to a set of dotted rules
A dotted rule is a production rule, which
» has a marker (dot) in its right side that denotes how much of that rule
was matched by the input so far
> is annotated with the symbol index at which it was first added to the
chart
chart [0] is initialized with dotted rules derivable from the start
symbol
For each symbol t we compute chart[i+1] from chart[i] by
checking, which rule expects a t after the dot and moving its dot one
symbol to the right [some details omitted]

A word is accepted, if the last entry of chart contains a rule with the
start symbol on the left side and a dot at the end of its right side

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 17 /24

The Earley Parser: Example (1 / 7)

Input word: True & False ;"
> Step 1: Add rules with the start symbol to the chart:
chart [0] = { (0, (prog) — e),
(0, (prog) — e(expr); (prog)) }

» Step 2: For each dotted rule in chart [0], also add the rules for all
non-terminals which come immediately after a dot:

chart[0] = chart[0] U{ (0, (expr) — eTrue),
(0, (expr) — eFalse),
(0, (expr) — e(var)),
(0, (expr) — @ !{expr)),
(0, (expr) — o{expria{expr)),
(0, (expr) — o{expr) 1 {expr)) }

> Step 3: Repeat until the set doesn't change anymore:

chart[0] = chart[0] U{ (0, (var) — eVar()) }

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29

18 /24

The Earley Parser: Example (2 / 7)

Input word: True & False ;"

» Step 4: The first input symbol is True, so search for dotted rules in

chart [0] with True after the dot:
(0, (expr) — eTrue)
» Shift the dot after the matched symbol:
(0, (expr) — Truee)
» Add the modified rules to chart[1]:

chart[1] = { (0, (expr) — Truee) }

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29

19 /24

The Earley Parser: Example (3 / 7)

Input word: True & False ;"

» Step 5: Check for completed rules in chart[1], i.e. rules which have

the dot at the end:

(0, (expr) — Truee)

> This rule was created at the beginning (0), so search for rules in

chart [0], which have (expr) after the dot:

(0, (expr) — o(expr)&{expr))
(0, (expr) — o(expr) | {expr))

» Shift the dot after (expr) and add them to chart[1]:

chart[1] = chart[1] U { (0, (expr) — (expr) e &(expr))
(0, {expr) — (expr) o | {expr)) }

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29

20 /24

The Earley Parser: Example (4 / 7)

Input word: True & False ;"

» Check if there are rules in chart [1] where the dot is in front of a
non-terminal, and add the rules for the non-terminal also to
chart[1] (same as for chart[0] in the beginning).

» There are no such rules.

v

Repeat Step 5 until the chart[1] doesn't change anymore.

» No further additions required for this case.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29

2124

The Earley Parser: Example (5 / 7)

Input word: True & False ;"

» Step 6: The next input symbol at position 1 is & so check for rules in

chart[1] with & after the dot:

(0, (expr) — (expr) ® &(expr}))
> Shift the dot to the right and add to chart[2]:
chart[2] = { (0, (expr) — (expr)& e (expr)) }

» Step 7: Add all reachable dotted rules to chart[2]:

chart[2] = chart[2] U{ (2, (expr) —
expr
expr

(2, (var) —

» There are no complete rules in chart[2].

Hannes Saffrich Peter Thiemann Parsing & Lexing

; (expr) —
; (expr) —
(2, (expr) — o!(expr)),
; (expr) — o(expr)&(expr)),
; (expr) — (

eTrue),

eFalse),

e(var)),

o (expr) |
— oVar()) }

expr)),

2025-04-29

2224

The Earley Parser: Example (6 / 7)

Input word: True & False ;"

> Step 8: The next input symbol at position 2 is False so check for

rules in chart[2] with False after the dot:
(2, (expr) — eFalse)
» Shift the dot to the right and add to chart [3]:

chart[3] = { (2, (expr) — Falsee) }

» This dotted rule is complete, so shift chart[2] on (expr).
» Step 9: Add all reachable dotted rules to chart [3]:

chart[3] = chart[3] U{ (0, (expr) — (expr)&{expr)e),
(2, {expr) — {expr) o &(expr)),
(2, {expr) — {expr) o | (expr)),
(0, {prog) — (expr) ® ;{prog)) }
Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29

23 /24

The Earley Parser: Example (7 / 7)

Input word: True & False ;"

» Step 10: The next input symbol at position 3 is ; so check for rules in
chart [3] with ; after the dot:

(0, {prog) — (expr) @ ;{prog))
» Shift the dot to the right and add to chart[4]:
chart[4] = { (0, (prog) — (expr); e {prog)) }
> Step 11: Add al reachable dotted rules to chart[4]:
chart[4] = chart[4] U{ (4, (prog) — e),

(4, (prog) — e{expr);{prog)),
(4, (expr) — oTrue),

(0, {prog) — (expr);(prog)e) }

» chart[4] contains a completed rule from the beginning (0) with the
start symbol on the left side, hence the input word is in the language.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 24 /24

