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Parser
▶ A parser checks if a word is part of a language.
▶ An alphabet Σ is a finite set.
▶ The elements a ∈ Σ are called letters or terminal symbols.
▶ A word w is a list of letters, i.e., w ∈ Σ∗.
▶ A language L is a set of words, i.e., L ⊆ Σ∗.
▶ We consider languages described by context-free grammars.
▶ Information provided by a parser:

▶ if a word is in the language, it produces one (or more) syntax trees;
▶ if a word is not in the language, it produces an error message

describing why it is not in the language.
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Lexer
▶ A lexer is an optional preprocessing step for a parser.
▶ It translates words from one alphabet to words of another alphabet

lexer : Σ∗ → ∆∗

▶ Typically, Σ = set of (unicode) characters.
▶ The output letters t ∈ ∆ are called Tokens.
▶ A lexer serves two purposes:

▶ Allow the parser to be based on a more readable grammar, e.g., by
removing whitespace and comments, and treating numbers or variable
names as single letters;

▶ Increase performance as some tasks can be done more efficiently in a
lexer.

▶ We describe a lexer by a mapping from regular expressions to tokens.
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Running Example: A Circuit Description Language

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True

| False

| ⟨var⟩
| !⟨expr⟩
| ⟨expr⟩&⟨expr⟩
| ⟨expr⟩|⟨expr⟩

Example Program:

a & b;
!a | b & c;
True;
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Lexer Example
Input String
"
a & b;
!a | b & c;

True;
"

Output Tokens
[

Id(’a’), And(), Id(’b’), Semicolon(),
Not(), Id(’a’), Or(), Id(’b’), And(),

Id(’c’), Semicolon(),
True(), Semicolon(),

]

Lexer Description (Semi-Formal)
Id = "[a-zA-Z][a-zA-Z0-9]*"
True = "True"
False = "False"
And = "&"
Or = "\|"
Not = "!"
Semicolon = ";"
Ignore1 = "[ \t\n]+"
Ignore2 = "#[^\n]*\n"
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Lexer Implementation
▶ Let’s write a naive lexer!
▶ . . . or to be more precise: an interpreter for a lexer description!
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Context-free Grammars: Definition
▶ Formally, a context-free grammar is a tuple (N, Σ, S, P) where

▶ N is a finite set of non-terminal symbols
▶ Σ is a set of terminal symbols
▶ S ∈ N is the start symbol
▶ P ⊆ N × (N ∪ Σ)∗ are the production rules

▶ Example:
▶ N = {⟨prog⟩, ⟨expr⟩, ⟨var⟩}
▶ Σ = {True, False, ;, &, |, a, b, . . .}
▶ S = ⟨prog⟩ is the start symbol
▶ P contains the following rules:

⟨prog⟩ →
⟨prog⟩ → ⟨expr⟩;⟨prog⟩
⟨expr⟩ → True

⟨expr⟩ → False

⟨expr⟩ → ⟨var⟩

⟨expr⟩ → !⟨expr⟩
⟨expr⟩ → ⟨expr⟩&⟨expr⟩
⟨expr⟩ → ⟨expr⟩|⟨expr⟩
⟨var⟩ → Var(_)
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Grammars: Language
▶ The language of a grammar is the set of words that can be derived

from the start symbol by applying production rules
▶ Example: ⟨prog⟩ ⇒ ⟨expr⟩;⟨prog⟩

⇒ ⟨expr⟩;
⇒ ⟨expr⟩&⟨expr⟩;
⇒ ⟨var⟩&⟨expr⟩;
⇒ foo&⟨expr⟩;
⇒ foo&⟨var⟩;
⇒ foo&bar;

(2)

(7)

(5)

foo

& (5)

bar

; (1)

▶ Rules:
⟨prog⟩ → (1)
⟨prog⟩ → ⟨expr⟩;⟨prog⟩ (2)
⟨expr⟩ → True (3)
⟨expr⟩ → False (4)
⟨expr⟩ → ⟨var⟩ (5)

⟨expr⟩ → !⟨expr⟩ (6)
⟨expr⟩ → ⟨expr⟩&⟨expr⟩ (7)
⟨expr⟩ → ⟨expr⟩|⟨expr⟩ (8)
⟨var⟩ → Var(_) (9)
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Grammars: EBNF Notation
▶ The Extended Backus–Naur form (EBNF) is a concise, but equivalent

notation for writing down the production rules of a grammar.
▶ Multiple rules with the same left side are combined by writing the

right side of the rule as a regular expression over the alphabet N ∪ Σ.
▶ Our example grammar in EBNF notation:

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ Our example grammar in rule notation:
⟨prog⟩ →
⟨prog⟩ → ⟨expr⟩;⟨prog⟩
⟨expr⟩ → True

⟨expr⟩ → False

⟨expr⟩ → ⟨var⟩

⟨expr⟩ → !⟨expr⟩
⟨expr⟩ → ⟨expr⟩&⟨expr⟩
⟨expr⟩ → ⟨expr⟩|⟨expr⟩
⟨var⟩ → Var(_)
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Grammars: Ambiguity
▶ A grammar is ambiguous, if a word can be derived in multiple ways.
▶ Our example grammar is ambiguous . . .

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ The word x & y & z; can be derived as
(x & y) & z; and x & (y & z);

▶ Even worse, the word x & y | z; can be derived as
(x & y) | z; and x & (y | z);
where only the first one is valid (“and” binds stronger than “or”)

▶ No problem if the grammar is used to describe abstract syntax tree
data types, but it matters for parsing concrete syntax.

▶ We amend the grammar to do so.
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Grammars: Ambiguity (Fix 1)
▶ Grammar for abstract syntax (ambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ Grammar for concrete syntax (unambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | (!⟨expr⟩)n | (⟨expr⟩&⟨expr⟩) | (⟨expr⟩|⟨expr⟩)
⟨var⟩ ::= Var(_)

▶ This forbids !a & b | c;, but requires us to write
(((!a) & b) | c);
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Grammars: Ambiguity
▶ What we actually want is:

▶ & binds stronger than |, e.g. x & y | z means (x & y) | z
▶ ! binds stronger than &, e.g. !x & y means (!x) & y
▶ & is left-associative, e.g. x & y & z means (x & y) & z
▶ | is left-associative, e.g. x | y | z means (x | y) | z
▶ ! is right-associative, e.g. !!x means ! (! x)

▶ As & and | are associative operators, making them left-associative is
an arbitrary choice, and we could just as well make them
right-associative.
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Grammars: Ambiguity (Fix 2)
▶ Grammar for abstract syntax (ambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= True | False | ⟨var⟩ | !⟨expr⟩ | ⟨expr⟩&⟨expr⟩ | ⟨expr⟩|⟨expr⟩
⟨var⟩ ::= Var(_)

▶ Grammar for concrete syntax (unambiguous):

⟨prog⟩ ::= (⟨expr⟩;)∗

⟨expr⟩ ::= ⟨expr⟩|⟨expr1⟩ | ⟨expr1⟩
⟨expr1⟩ ::= ⟨expr1⟩&⟨expr2⟩ | ⟨expr2⟩
⟨expr2⟩ ::= !⟨expr2⟩ | ⟨expr3⟩
⟨expr3⟩ ::= True | False | ⟨var⟩ | (⟨expr⟩)

⟨var⟩ ::= Var(_)

▶ This change forces !a & b | c; to be parsed as
(((!a) & b) | c);
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Grammars: Abstract Syntax vs Concrete Syntax
Example word: !a & (b | c);

Abstract Syntax Tree:
Prog

EAnd

ENot

EVar

a

EOr

EVar

b

EVar

c

In most scenarios, we parse the
concrete syntax, but let the
parser generate an abstract
syntax tree.

Concrete Syntax Tree:
Prog

Expr1

EAnd

Expr2

ENot

! Expr3

EVar

a

& Expr3

EParen

( EOr

Expr1

Expr2

Expr3

EVar

b

| Expr2

Expr3

EVar

c

)

;
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Grammars: Classification
The Chomsky Hierarchy classifies languages by the kind of production
rules that are required to describe them.
▶ Context-free languages can be described by rules of the form:

A → α ∀A ∈ N, α ∈ (N ∪ Σ)∗

▶ Parsing with O(n3) worst-case time complexity.
▶ There are subsets (LL, LR, LALR) that place further restrictions on the

grammar so that it can be parsed in O(n) time. These languages are all
deterministic and hence unambiguous.

▶ Sufficiently powerful to parse realistic languages.
▶ Regular languages can be described by rules of the form:

A → a A → aB ∀A, B ∈ N, a ∈ Σ

▶ Parsing with O(n) worst-case time complexity.
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The Earley Parser
▶ Classical parsing algorithm for arbitrary context-free grammars.

Jay Earley. 1970. An efficient context-free parsing algorithm.
Commun. ACM 13, 2 (Feb 1970), 94–102.
https: // doi. org/ 10. 1145/ 362007. 362035

▶ Worst-case time complexity:
▶ O(n3) for ambiguous grammars (we don’t care about those)
▶ O(n2) for unambiguous grammars

▶ Relatively simple (170 lines of Python)
▶ Basically a grammar interpreter
▶ Nice for prototyping as it supports general context-free grammars
▶ Probably too slow for large files
▶ Produces multiple syntax trees when used with ambigous grammars
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The Earley Parser: Basic Principle
▶ Loops once over each symbol of the input word
▶ Tracks which production rules made how much progress in a chart
▶ A chart maps each symbol index to a set of dotted rules
▶ A dotted rule is a production rule, which

▶ has a marker (dot) in its right side that denotes how much of that rule
was matched by the input so far

▶ is annotated with the symbol index at which it was first added to the
chart

▶ chart[0] is initialized with dotted rules derivable from the start
symbol

▶ For each symbol t we compute chart[i+1] from chart[i] by
checking, which rule expects a t after the dot and moving its dot one
symbol to the right [some details omitted]

▶ A word is accepted, if the last entry of chart contains a rule with the
start symbol on the left side and a dot at the end of its right side
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The Earley Parser: Example (1 / 7)
Input word: True & False ;"

▶ Step 1: Add rules with the start symbol to the chart:
chart[0] = { (0, ⟨prog⟩ → •),

(0, ⟨prog⟩ → •⟨expr⟩;⟨prog⟩) }

▶ Step 2: For each dotted rule in chart[0], also add the rules for all
non-terminals which come immediately after a dot:

chart[0] = chart[0] ∪ { (0, ⟨expr⟩ → •True),
(0, ⟨expr⟩ → •False),
(0, ⟨expr⟩ → •⟨var⟩),
(0, ⟨expr⟩ → •!⟨expr⟩),
(0, ⟨expr⟩ → •⟨expr⟩&⟨expr⟩),
(0, ⟨expr⟩ → •⟨expr⟩|⟨expr⟩) }

▶ Step 3: Repeat until the set doesn’t change anymore:
chart[0] = chart[0] ∪ { (0, ⟨var⟩ → •Var(_)) }
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The Earley Parser: Example (2 / 7)
Input word: True & False ;"

▶ Step 4: The first input symbol is True, so search for dotted rules in
chart[0] with True after the dot:

(0, ⟨expr⟩ → •True)

▶ Shift the dot after the matched symbol:

(0, ⟨expr⟩ → True•)

▶ Add the modified rules to chart[1]:

chart[1] = { (0, ⟨expr⟩ → True•) }

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 19 / 24



The Earley Parser: Example (3 / 7)
Input word: True & False ;"

▶ Step 5: Check for completed rules in chart[1], i.e. rules which have
the dot at the end:

(0, ⟨expr⟩ → True•)

▶ This rule was created at the beginning (0), so search for rules in
chart[0], which have ⟨expr⟩ after the dot:

(0, ⟨expr⟩ → •⟨expr⟩&⟨expr⟩)
(0, ⟨expr⟩ → •⟨expr⟩|⟨expr⟩)

▶ Shift the dot after ⟨expr⟩ and add them to chart[1]:

chart[1] = chart[1] ∪ { (0, ⟨expr⟩ → ⟨expr⟩ • &⟨expr⟩)
(0, ⟨expr⟩ → ⟨expr⟩ • |⟨expr⟩) }
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The Earley Parser: Example (4 / 7)
Input word: True & False ;"

▶ Check if there are rules in chart[1] where the dot is in front of a
non-terminal, and add the rules for the non-terminal also to
chart[1] (same as for chart[0] in the beginning).

▶ There are no such rules.
▶ Repeat Step 5 until the chart[1] doesn’t change anymore.
▶ No further additions required for this case.

Hannes Saffrich Peter Thiemann Parsing & Lexing 2025-04-29 21 / 24



The Earley Parser: Example (5 / 7)
Input word: True & False ;"

▶ Step 6: The next input symbol at position 1 is & so check for rules in
chart[1] with & after the dot:

(0, ⟨expr⟩ → ⟨expr⟩ • &⟨expr⟩)
▶ Shift the dot to the right and add to chart[2]:

chart[2] = { (0, ⟨expr⟩ → ⟨expr⟩& • ⟨expr⟩) }

▶ Step 7: Add all reachable dotted rules to chart[2]:
chart[2] = chart[2] ∪ { (2, ⟨expr⟩ → •True),

(2, ⟨expr⟩ → •False),
(2, ⟨expr⟩ → •⟨var⟩),
(2, ⟨expr⟩ → •!⟨expr⟩),
(2, ⟨expr⟩ → •⟨expr⟩&⟨expr⟩),
(2, ⟨expr⟩ → •⟨expr⟩|⟨expr⟩),
(2, ⟨var⟩ → •Var(_)) }

▶ There are no complete rules in chart[2].
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The Earley Parser: Example (6 / 7)
Input word: True & False ;"

▶ Step 8: The next input symbol at position 2 is False so check for
rules in chart[2] with False after the dot:

(2, ⟨expr⟩ → •False)

▶ Shift the dot to the right and add to chart[3]:

chart[3] = { (2, ⟨expr⟩ → False•) }

▶ This dotted rule is complete, so shift chart[2] on ⟨expr⟩.
▶ Step 9: Add all reachable dotted rules to chart[3]:

chart[3] = chart[3] ∪ { (0, ⟨expr⟩ → ⟨expr⟩&⟨expr⟩•),
(2, ⟨expr⟩ → ⟨expr⟩ • &⟨expr⟩),
(2, ⟨expr⟩ → ⟨expr⟩ • |⟨expr⟩),
(0, ⟨prog⟩ → ⟨expr⟩ • ;⟨prog⟩) }
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The Earley Parser: Example (7 / 7)
Input word: True & False ;"

▶ Step 10: The next input symbol at position 3 is ; so check for rules in
chart[3] with ; after the dot:

(0, ⟨prog⟩ → ⟨expr⟩ • ;⟨prog⟩)

▶ Shift the dot to the right and add to chart[4]:
chart[4] = { (0, ⟨prog⟩ → ⟨expr⟩; • ⟨prog⟩) }

▶ Step 11: Add al reachable dotted rules to chart[4]:
chart[4] = chart[4] ∪ { (4, ⟨prog⟩ → •),

(4, ⟨prog⟩ → •⟨expr⟩;⟨prog⟩),
(4, ⟨expr⟩ → •True),
. . .

(0, ⟨prog⟩ → ⟨expr⟩;⟨prog⟩•) }

▶ chart[4] contains a completed rule from the beginning (0) with the
start symbol on the left side, hence the input word is in the language.
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