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Loops

Loops are everywhere
⇒ worthwhile target for optimization



Loops

Definition: Loop
A loop with header h is a set L of nodes in a CFG such that

h ∈ L
(∀s ∈ L) exists path from h to s
(∀s ∈ L) exists path from s to h
(∀t /∈ L) (∀s ∈ L) if there is an edge from t to s, then s = h

Special loop nodes
A loop entry node has a predecessor outside the loop.
A loop exit node has a successor outside the loop.



Example Loops



Example Loops
18-1a



Example Loops
18-1b



Example Loops
18-1c



Example Loops
18-1d



Example Loops
18-1e



Program for 18-1e

1 int isPrime (int n) {
2 i = 2;
3 do {
4 j = 2;
5 do {
6 if (i*j==n) {
7 return 0;
8 } else {
9 j = j+1;

10 }
11 } while (j<n);
12 i = i+1;
13 } while (i<n);
14 return 1;
15 }



Reducible Flow Graphs

Arbitrary flow graphs: Spaghetti code
Reducible flow graphs arise from structured control

if-then-else
while-do
repeat-until
for
break (multi-level)



Irreducible Flow Graphs
18-2a: Not a loop



Irreducible Flow Graphs
18-2b: Not a loop



Irreducible Flow Graphs
18-2c: Not a loop

Reduces to 18-2a: collapse edges (x , y) where x is the
only predecessor of y and y not initial
A flow graph is irreducible if exhaustive collapsing leads to
a subgraph like 18-2a.
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Dominators

Objective
Find all loops in a CFG

Assumption
Each CFG has unique entry node s0 without predecessors

Domination relation
A node d dominates a node n if every path from s0 to n must go
through d .

Remark
Domination is reflexive



Algorithm for Finding Dominators

Lemma
Let n be a node with predecessors p1, . . . ,pk and d ̸= n a node.
d dominates n iff (∀1 ≤ i ≤ k) d dominates pi

Domination equation
Let D[n] be the set of nodes that dominate n.

D[n] = {n} ∪
⋂

p∈pred[n]

D[p]

Solve by fixed point iteration
Start with (∀n ∈ N) D[n] = N (all nodes in the CFG)
Observe that D[s0] = {s0} because pred(s0) = ∅
Watch out for unreachable nodes



Immediate Dominators

Theorem
Let G be a connected, rooted graph. If d dominates n and e
dominates n, then either d dominates e or e dominates d .

Proof: by contradiction
Consequence: Each node n ̸= s0 has one immediate
dominator idom(n) such that

1 idom(n) ̸= n
2 idom(n) dominates n
3 idom(n) does not dominate another dominator of n



Dominator Tree

Dominator Tree
The dominator tree is a directed graph where the nodes are the
nodes of the CFG and there is an edge (x , y) if x = idom(y).

back edge in CFG: from n to h so that h dominates n



Finding Loops

Natural Loop
The natural loop of a back edge (n, h) where h dominates n is
the set of nodes x such that

h dominates x
exists path from x to n not containing h

h is the header of this natural loop.



Nested Loops

Nested Loop
If A and B are loops with headers a ̸= b and b ∈ A, then B ⊆ A.
Loop B is nested within A. B is the inner loop.

Algorithm: Loop-nest Tree
1 Compute the dominators of the CFG
2 Compute the dominator tree
3 Find all natural loops with their headers
4 For each loop header h merge all natural loops of h into a

single loop loop[h]
5 Construct the tree of loop headers such that h1 is above h2

if h2 ∈ loop[h1]

Leaves are innermost loops
Procedure body is pseudo-loop at root of loop-nest tree



A Loop-Nest Tree



Adding a Loop Preheader

loop optimizations need a CFG node before the loop as a
target to move code out of the loop

⇒ add preheader node like P in example
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Loop-Invariant Computations

Suppose t ← a⊕ b occurs in a loop.
If a and b have the same value for each iteration of the
loop, then t always gets the same value.

⇒ t ’s definition is loop-invariant, but its computation is
repeated on each iteration

Goals
Detect such loop-invariant definitions
Hoist them out of the loop



Approximation to Loop-Invariance

Loop-Invariance
The definition d : t ← a1 ⊕ a2 is loop-invariant for loop L if d ∈ L
and, for each ai , one of the following conditions holds:

1 ai is a constant,
2 all definitions of ai that reach d are outside of L, or
3 only one definition of ai reaches d and that definition is

loop-invariant.

Algorithm: Loop-Invariance
1 Identify all definitions whose operands are constant or

defined outside the loop
2 Add loop-invariant definitions until a fixed point is reached



Hoisting

Suppose t ← a⊕ b is loop-invariant.
Can we hoist it out of the loop?
L0

t ←0
L1

i ←i + 1
t ←a⊕ b
M[i]←t
if i < N goto L1

L2
x ←t

L0
t ←0

L1
if i ≥ N goto L2
i ←i + 1
t ←a⊕ b
M[i]←t
goto L1

L2
x ←t

L0
t ←0

L1
i ←i + 1
t ←a⊕ b
M[i]←t
t ←0
M[j]←t
if i < N goto L1

L2

L0
t ←0

L1
M[j]←t
i ←i + 1
t ←a⊕ b
M[i]←t
if i < N goto L1

L2
x ←t



Hoisting

Suppose t ← a⊕ b is loop-invariant.
Can we hoist it out of the loop?
L0

t ←0
L1

i ←i + 1
t ←a⊕ b
M[i]←t
if i < N goto L1

L2
x ←t

L0
t ←0

L1
if i ≥ N goto L2
i ←i + 1
t ←a⊕ b
M[i]←t
goto L1

L2
x ←t

L0
t ←0

L1
i ←i + 1
t ←a⊕ b
M[i]←t
t ←0
M[j]←t
if i < N goto L1

L2

L0
t ←0

L1
M[j]←t
i ←i + 1
t ←a⊕ b
M[i]←t
if i < N goto L1

L2
x ←t

yes no no no



Hoisting

Criteria for hoisting
A loop-invariant definition d : t ← a⊕ b can be hoisted to the
end of its loop’s preheader if all of the following hold

1 d dominates all loop exits at which t is live-out
2 there is only one definition of t in the loop
3 t is not live-out at the loop preheader

Attention: arithmetic exceptions, side effects of ⊕
Condition 1 often prevents hoisting from while loops:
transform into repeat-until loops.
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Induction Variables

C-code for summation of a long array

1 long sum(long a[], int n) {
2 long s = 0;
3 int i = 0;
4 while (i<n) {
5 s += a[i];
6 i ++;
7 }
8 return s;
9 }



Induction Variables and Strength Reduction

Consider the corresponding IR

s ← 0
i ← 0

L1 : if i ≥ n goto L2
j ← i ∗ 4
k ← j + a
x ← M[k ]
s ← s + x
i ← i + 1
goto L1

L2

before

s ← 0
k ′ ← a
b ← n · 4
c ← a + b

L1 : if k ′ ≥ c goto L2
x ← M[k ′]

s ← s + x
k ′ ← k ′ + 4
goto L1

L2

after



Induction Variables and Strength Reduction

Consider the corresponding IR

s ← 0
i ← 0

L1 : if i ≥ n goto L2
j ← i ∗ 4
k ← j + a
x ← M[k ]
s ← s + x
i ← i + 1
goto L1

L2

before

s ← 0
k ′ ← a
b ← n · 4
c ← a + b

L1 : if k ′ ≥ c goto L2
x ← M[k ′]

s ← s + x
k ′ ← k ′ + 4
goto L1

L2

after



Induction Variables

Induction-variable analysis:
identify induction variables and relations among them
Strength reduction:
replace expensive operation (e.g., multiplication) by cheap
operation (e.g., addition)
Induction-variable elimination:
remove dependent induction variables



Induction Variables

A basic induction variable is directly incremented
A derived induction variable is computed from other
induction variables
Describe an induction variable b′ by a triple (b,o, f ), where

b is a basic induction variable
o is an offset
f is a factor

so that b′ = o + f ∗ b.
A linear induction variable changes by the same amount in
every iteration.



Induction Variables in the Example

i is a basic induction variable described by (i ,0, 1)
j is a derived induction variable:
after j ← i ∗ 4, it is described by (i , 0, 4)
k is a derived induction variable:
after k ← j + a, it is described by (i , a,4)



Non-linear Induction Variables

s ← 0
L1 : if s > 0 goto L2

i ← i + b
j ← i ∗ 4
x ← M[j]
s ← s − x
goto L1

L2 : i ← i + 1
s ← s + j
if i < n goto L1

before

s ← 0
j ′ ← i ∗ 4
b′ ← b ∗ 4
n′ ← n ∗ 4

L1 : if s > 0 goto L2
j ′ ← j ′ + b′

j ← j ′

x ← M[j]
s ← s − x
goto L1

L2 : j ′ ← j ′ + 4
s ← s + j
if j ′ < n′ goto L1

after



Non-linear Induction Variables

s ← 0
L1 : if s > 0 goto L2

i ← i + b
j ← i ∗ 4
x ← M[j]
s ← s − x
goto L1

L2 : i ← i + 1
s ← s + j
if i < n goto L1

before

s ← 0
j ′ ← i ∗ 4
b′ ← b ∗ 4
n′ ← n ∗ 4

L1 : if s > 0 goto L2
j ′ ← j ′ + b′

j ← j ′

x ← M[j]
s ← s − x
goto L1

L2 : j ′ ← j ′ + 4
s ← s + j
if j ′ < n′ goto L1

after



Detection of Induction Variables

Basic Induction Variable (in the family of i)
Variable i is a basic induction variable if all definitions of i in
loop L have the form i ← i ± c where c is loop-invariant.

Derived Induction Variable
Variable k is a derived ind. var. in the family of i in loop L if

1 there is exactly one definition of k in L of the form k ← j ∗ c
or k ← j + d where j is an induction variable in the family of
i and c, d are loop-invariant

2 if j is a derived induction variable in the family of i , then
only the definition of j in L reaches (the definition of) k
there is no definition of i on any path between the definition
of j and the definition of k

3 If j is described by (i ,a, b), then k is described by
(i , a ∗ c, b ∗ c) or (i , a + d ,b), respectively.



Strength Reduction

Often multiplication is more expensive than addition
⇒ Replace the definition j ← i ∗ c of a derived induction

variable by an addition

Procedure
For each derived induction variable j ∼ (i , a, b) create new
variable j ′

After each assignment i ← i + c to a basic induction
variable, create an assignment j ′ ← j ′ + c ∗ b
Replace assignment to j with j ← j ′

Initialize j ′ ← a + i ∗ b at end of preheader



Example Strength Reduction
Induction Variables j ∼ (i , 0, 4) and k ∼ (i, a, 4)

s ← 0
i ← 0

L1 : if i ≥ n goto L2

j ← i ∗ 4
k ← j + a
x ← M[k ]
s ← s + x
i ← i + 1

goto L1

L2

before

s ← 0
i ← 0
j ′ ← 0
k ′ ← a

L1 : if i ≥ n goto L2

j ← j ′

k ← k ′

x ← M[k ]
s ← s + x
i ← i + 1
j ′ ← j ′ + 4
k ′ ← k ′ + 4
goto L1

L2

after



Elimination

Apply constant propagation, copy propagation, and dead
code elimination
Special case: elimination of induction variables that are

not used in the loop
only used in comparisons with loop-invariant variables
useless

Useless variable
A variable is useless in a loop L if

it is dead at all exits from L
it is only used in its own definitions

Example After removal of j , j ′ is useless



Rewriting Comparisons

Almost useless variable
A variable is almost useless in loop L if

it is only used in comparisons against loop-invariant values
and in definitions of itself and
there is another induction variable in the same family that
is not useless.

An almost useless variable can be made useless by
rewriting the comparisons to use the related induction
variable



Rewriting Comparisons

Coordinated induction variables
Let x ∼ (i ,ax , bx) and y ∼ (i , ay , by ) be induction variables.
x and y are coordinated if

(x − ax)/bx = (y − ay )/by

throughout the execution of the loop, except during a sequence
of statements of the form zi ← zi + ci where ci is loop-invariant.



Rewriting Comparisons

Let j ∼ (i ,aj , bj) and k ∼ (i , ak , bk ) be coordinated induction
variables.
Consider the comparison k < n with n loop-invariant.
Using (j − aj)/bj = (k − ak )/bk the comparison can be
rewritten as follows

bk (j − aj)/bj + ak < n
⇔

bk (j − aj)/bj < n − ak

⇔ j < (n − ak )bj/bk + aj if bj/bk > 0

j > (n − ak )bj/bk + aj if bj/bk < 0

where the right-hand sides are loop-invariant and their
computation can be hoisted to the preheader.



Rewriting Comparisons

Restrictions
1 (n − ak )bj must be a multiple of bk

2 bj and bk must both be constants or loop invariants of
known sign
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Array-Bounds Checks

Safe programming languages check that the subscript is
within the array bounds at each array operation.
Bounds for an array have the form 0 ≤ i < N where N > 0
is the size of the array.
Implemented by i <u N (unsigned comparison).
Bounds checks redundant in well-written programs⇒
slowdown
For better performance: let the compiler prove which
checks are redundant!
In general, this problem is undecidable.



Assumptions for Bounds Check Elimination in Loop L

1 There is an induction variable j and loop-invariant u used
in statement s1 of either of the forms

if j < u goto L1 else goto L2
if j ≥ u goto L2 else goto L1
if u > j goto L1 else goto L2
if u ≥ j goto L2 else goto L1

where L2 is out of the loop L.
2 There is a statement s2 of the form

if k <u n goto L3 else goto L4

where k is an induction variable coordinated with j , n is
loop-invariant, and s1 dominates s2.

3 No loop nested within L contains a definition of k .
4 k increases when j does: bj/bk > 0.



Array-Bounds Checking

Objective
Insert test in preheader so that 0 ≤ k < n in the loop.

Lower Bound
Let ∆k1, . . . ,∆km be the loop-invariant values added to k
inside the loop
k ≥ 0 everywhere in the loop if

k ≥ 0 in the loop preheader
∆k1 ≥ 0 . . .∆km ≥ 0



Array-Bounds Checking

Upper Bound
Let ∆k1, . . . ,∆kp be the set of loop-invariant values added
to k on any path between s1 and s2 that does not go
through s1.
k < n at s2 if k < n − (∆k1 + · · ·+∆kp) at s1

From (k − ak )/bk = (j − aj)/bj this test can be rewritten to
j < bj/bk (n − (∆k1 + · · ·+∆kp)− ak ) + aj

It is sufficient that
u ≤ bj/bk (n − (∆k1 + · · ·+∆kp)− ak ) + aj because the
test j < u dominates the test k < n
All parts of this test are loop-invariant!



Array-Bounds Checking Transformation

Hoist loop-invariants out of the loop
Copy the loop L to a new loop L′ with header label L′

h

Replace the statement “if k <u n goto L′
3 else goto L′

4” by
“goto L′

3”
At the end of L’s preheader put statements equivalent to
if k ≥ 0 ∧∆k1 ≥ 0 ∧ · · · ∧∆km ≥ 0
and u ≤ bj/bk (n − (∆k1 + · · ·+∆kp)− ak ) + aj
goto L′

h else goto Lh



Array-Bounds Checking Transformation

This condition can be evaluated at compile time if
1 all loop-invariants in the condition are constants; or
2 n and u are the same temporary, ak = aj , bk = bj and no

∆k ’s are added to k between s1 and s2.

The second case arises for instance with code like this:

1 int u = a.length;
2 int i = 0;
3 while (i<u) {
4 sum += a[i];
5 i++;
6 }

assuming common subexpression elimination for a.length
Compile-time evaluation of the condition means to
unconditionally use L or L′ and delete the other loop
Clean up with elimination of unreachable and dead code



Array-Bounds Checking Generalization

Comparison of j ≤ u′ instead of j < u
Loop exit test at end of loop body: A test

s2 : if j < u goto L1 else goto L2

where L2 is out of the loop and s2 dominates all loop back
edges; the ∆ki are between s2 and any back edge and
between the loop header and s1

Handle the case bj/bk < 0
Handle the case where j counts downward and the loop
exit tests for j ≥ l (a loop-invariant lower bound)
The increments to the induction variable may be
“undisciplined” with non-obvious increment:

1 while (i<n-1) {
2 if (sum<0) { i++; sum += i; i++ } else { i += 2; }
3 sum += a[i];
4 }
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Loop Unrolling

For loops with small body, some time is spent incrementing
the loop counter and testing the exit condition
Loop unrolling optimizes this situation by putting more than
one copy of the loop body in the loop
To unroll a loop L with header h and back edges si → h:

1 Copy L to a new loop L′ with header h′ and back edges
s′

i → h′

2 Change the back edges in L from si → h to si → h′

3 Change the back edges in L′ from s′
i → h′ to s′

i → h



Loop Unrolling Example (Still Useless)

L1 :

x ← M[i]
s ← s + x
i ← i + 4
if i < n goto L1 else L2

L2

before

L1 :

x ← M[i]
s ← s + x
i ← i + 4
if i < n goto L′

1 else L2
L′

1 :

x ← M[i]
s ← s + x
i ← i + 4
if i < n goto L1 else L2

L2

after



Loop Unrolling Improved

No gain, yet
Needed: induction variable i such that every increment
i ← i +∆ dominates every back edge of the loop

⇒ each iteration increments i by the sum of the ∆s
⇒ increments and tests can be moved to the back edges of

loop
In general, a separate epilogue is needed to cover the
remaining iterations because a loop that is unrolled K
times can only do multiple-of-K iterations.



Loop Unrolling Example

L1 : x ← M[i]
s ← s + x
x ← M[i + 4]
s ← s + x
i ← i + 8
if i < n goto L1 else L2

L2

only even numbers

if i < n − 4 goto L1 else L2
L1 : x ← M[i]

s ← s + x
x ← M[i + 4]
s ← s + x
i ← i + 8
if i < n − 4 goto L1 else L′

2
L′

2 : if i < n goto L2 else L3
L2 :

x ← M[i]
s ← s + x
i ← i + 4

L3

with epilogue
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