Compiler Construction

Optimizations

Albert-Ludwigs-Universitat Freiburg

UNI
1

FREIBURG

Peter Thiemann

University of Freiburg

8. Juli 2025

Outline

Introduction

Peter Thiemann

Compiler Construction

8. Juli 2025

2/20

UNI

FREIBURG

Optimization

Objective: Transform the code to improve its run time,
memory use, energy efficiency, etc.

The transformation must preserve the semantics!
Each optimization has two aspects
a condition under which the optimization is applicable
the actual program transformation
An optimization can happen at any level
Two examples of optimization
m peephole optimization
B common subexpression elimination

Peter Thiemann Compiler Construction 8. Juli 2025

3/20

UNI

FREIBURG

Outline

Peephole Optimizations

Peter Thiemann

Compiler Construction

8. Juli 2025

4/20

UNI

FREIBURG

Constant Folding

Folding expressions

If c = c1 ® ¢ for a binary operation ©®, then

/: x<—c1®cz}ﬁ{/: X 4 C

Peter Thiemann Compiler Construction 8. Juli 2025 5 /20

UNI

FREIBURG

Constant Folding

Folding expressions

If c = c1 ® ¢ for a binary operation ©®, then

l: x<—c1®c2}ﬂ{/: X< C

Folding conditionals

Let ¢c1?c, be a comparison.
I: ifci?c) then helse b } — { |: goto h if c1?¢ is true

I: if ci?cr then helse b } — { /: goto b if c17co is false

Peter Thiemann Compiler Construction 8. Juli 2025 5/ 20

UNI

FREIBURG

Constant Folding (2)

UNI
FREIBURG

Folding across multiple instructions

Suppose @ is associative and ¢ = ¢; D ¢

h: y+<x®ca h: y+<x®&a
—
h: z<y®o h: z+x®c

m sometimes y becomes dead and /; can be eliminated

Peter Thiemann Compiler Construction 8. Juli 2025 6 /20

Constant Folding (2)

Folding across multiple instructions

Suppose @ is associative and ¢ = ¢; D ¢
h: y+<x®ca . h: y+<x®&a
h: z<y®o h: z+x®c

m sometimes y becomes dead and /; can be eliminated

Folding summary

m Very simple

m Classical peephole optimization: can be performed locally

Peter Thiemann Compiler Construction 8. Juli 2025 6 /20

UNI

FREIBURG

Strength Reduction

m Replace an expensive instruction by a cheaper one.

m Usually: exploit arithmetic laws

x+0 = x
x—0 = x
xx0 = 0
x*x1l = x
x*x2" = x<<n

m (more interesting in connection with loops)

Peter Thiemann Compiler Construction 8. Juli 2025

7/20

UNI

FREIBURG

Useless instructions

These instruction sequences look unnatural, but they do arise
after register allocation.

l: X(—x}—>{/:

h: x+vy R h:
h: y<+x b

Peter Thiemann Compiler Construction

nop

X<y
nop

8. Juli 2025

8/ 20

UNI

FREIBURG

Outline

Nonlocal Transformations

Peter Thiemann Compiler Construction

8. Juli 2025

9/20

UNI

FREIBURG

Constant Propagation

Mission

m Explore the consequences of a constant assignment x < c.

m Thus enable constant folding.

Transformation rule

Let a stand for an arbitrary argument. If it is known that x = ¢
at label /, then

l: y<—x®a}—>{l: y<c@a

l: y%a@x}—){ l: y<a®c

Peter Thiemann Compiler Construction 8. Juli 2025 10 / 20

UNI

FREIBURG

Constant Propagation (2)

Applicability

m dataflow analysis (working on CFG)

m recall structure: program point — variable — domain
m domain for liveness: bool (ordered by false < true)

m domain for CP: V|| where V is the set of constants

Peter Thiemann Compiler Construction 8. Juli 2025

11 /20

UNI

FREIBURG

Constant Propagation (2)

Applicability

UNI
FREIBURG

m dataflow analysis (working on CFG)

m recall structure: program point — variable — domain
m domain for liveness: bool (ordered by false < true)

m domain for CP: VI where V is the set of constants

Domain construction: CP lattice

Let & denote disjoint union.
VI o= Ve {Ll}w{T}

Define a partial order on VI by

mforall v: L <vand v<T
mforallv,we Viv<wiffv=w

Peter Thiemann Compiler Construction 8. Juli 2025

11 /20

Constant Propagation (3)

Lattice

] VI is a complete lattice because every subset of elements
has a least upper bound LI and a greatest lower bound 1.
m (Knaster Tarski Theorem)
Every monotone function on VI has a fixed point.

Peter Thiemann Compiler Construction 8. Juli 2025

12 /20

UNI

FREIBURG

Constant Propagation (3)

Lattice

] VI is a complete lattice because every subset of elements
has a least upper bound LI and a greatest lower bound 1.
m (Knaster Tarski Theorem)
Every monotone function on VI has a fixed point.

Structure of the Analysis

m for each label, we have a preCP and a postCP : var — VI.
m Initially, every variable is mapped to | everywhere
(unassigned).
m For each instruction /, we define a monotone transfer
function that maps preCP(/) to postCP(/).
m Moreover, preCP(/) = [|,cpreq() POStCP(p)
= a forward analysis!

Peter Thiemann Compiler Construction 8. Juli 2025

12 /20

UNI

FREIBURG

Constant Propagation (4)

Abstract evaluation

: T : T
eval : (var = V') x expression — V|

eval(p,x) = plx)
eval(p,e1 ® &) = eval(p,e1) @ eval(p, &)

If one argument of & is L, then the result is L.
Otherwise, if both arguments v,w € V, v & w = v & w.
Otherwise, if one argument is T, then the result is T.

(& can be any binary operator including conditional)

(unary operators are analogous)

Peter Thiemann Compiler Construction 8. Juli 2025 13 /20

UNI

FREIBURG

Constant Propagation (5)

Transfer functions

Let p = preCP(/) and p’ = postCP(/).

m [x + e, then p/ = p[x := eval(p, e)]

m /:if x = e then /; else h, then let é = eval(p, €) and
m o} = p[x := &M p(x)] and
m ph =pif é = p(x) I false
m p) = L otherwise

m /:if e then /; else h, then let é = eval(p, €)
m p}j = pif & O true; otherwise L
m p, = pif é J false; otherwise |

Peter Thiemann Compiler Construction 8. Juli 2025 14 /20

UNI

FREIBURG

Constant Propagation (6)

z =3
x =1
while (x > 0) {
if (x = 1) then
y =7
else
y=z+4
x =3
print y

Peter Thiemann

Compiler Construction

8. Juli 2025

15 / 20

UNI

FREIBURG

Outline

Common Subexpression Elimination (CSE)

Peter Thiemann Compiler Construction

8. Juli 2025

16 / 20

UNI

FREIBURG

Motivation

UNI
FREIBURG

Avoid recomputation of the same expression

Transformation

h: y<a®a h: y<a®a
b: z< a1 ®a h: z+vy

m y should not be updated on any path from / to b

m No variable occurring in a; @ a> should be changed on any
path from to b

m Implemented with domain available expressions (AE)
m Enabled by (y, a1 @ a2) € AE(h)

Peter Thiemann Compiler Construction 8. Juli 2025 17 /20

Domain construction: AE lattice

AE = {(y,e) | y € var, e € expression}
m powerset lattice (a complete lattice)

m finite for every program instance because each program
contains finitely many variables and finitely many expressions

= effective computation of the least fixed point

Peter Thiemann Compiler Construction 8. Juli 2025 18 / 20

UNI

FREIBURG

CSE(2)

UNI
FREIBURG

Transfer Functions

Let o = preAE(/) and o/ = postAE(/).
m /:x < e, then
of =(a\{(y,€) |y =xVxee}U{(x e}
B remove prior assignments to x
m remove expressions that (may have) changed due to
assignment to x

Peter Thiemann Compiler Construction 8. Juli 2025 19 /20

CSE(2)

Transfer Functions

Let o = preAE(/) and o/ = postAE(/).
m /:x < e, then
o = (a\{(y,¢) |y =xVxee})u{(x,e)}
B remove prior assignments to x
m remove expressions that (may have) changed due to

assignment to x

Style of analysis

m Forward analysis
m At joins of the control flow we only keep expressions

available in all predecessors
= preAE(/) = ﬂpepred(l) postAE(p)

Peter Thiemann Compiler Construction 8. Juli 2025 19 /20

UNI

FREIBURG

Copy Propagation

UNI
FREIBURG

Special case
If (x,y) € preAE(/), then we could replace uses of x by uses of y
in instruction /.
m Advantage: might be able to eliminate x and thus the
assignment(s) x <y
m Disadvantage: the life range of y gets extended = increased
register pressure

Peter Thiemann Compiler Construction 8. Juli 2025 20 / 20

	Introduction
	Peephole Optimizations
	Nonlocal Transformations
	Common Subexpression Elimination (CSE)

