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Optimization

Objective: Transform the code to improve its run time,
memory use, energy efficiency, etc.

The transformation must preserve the semantics!

Each optimization has two aspects

1 a condition under which the optimization is applicable
2 the actual program transformation

An optimization can happen at any level

Two examples of optimization

peephole optimization
common subexpression elimination
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Constant Folding

Folding expressions

If c = c1 ⊙ c2 for a binary operation ⊙, then

l : x ← c1 ⊙ c2
}
−→

{
l : x ← c

Folding conditionals

Let c1?c2 be a comparison.

l : if c1?c2 then l1 else l2
}
−→

{
l : goto l1 if c1?c2 is true

l : if c1?c2 then l1 else l2
}
−→

{
l : goto l2 if c1?c2 is false
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Constant Folding (2)

Folding across multiple instructions

Suppose ⊕ is associative and c = c1 ⊕ c2

l1 : y ← x ⊕ c1
l2 : z ← y ⊕ c2

}
−→

{
l1 : y ← x ⊕ c1
l2 : z ← x ⊕ c

sometimes y becomes dead and l1 can be eliminated

Folding summary

Very simple

Classical peephole optimization: can be performed locally
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Strength Reduction

Replace an expensive instruction by a cheaper one.

Usually: exploit arithmetic laws

x + 0 = x

x − 0 = x

x ∗ 0 = 0

x ∗ 1 = x

x ∗ 2n = x<<n

(more interesting in connection with loops)
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Useless instructions

These instruction sequences look unnatural, but they do arise
after register allocation.

l : x ← x
}
−→

{
l : nop

l1 : x ← y
l2 : y ← x

}
−→

{
l1 : x ← y
l2 : nop
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Constant Propagation

Mission

Explore the consequences of a constant assignment x ← c.

Thus enable constant folding.

Transformation rule

Let a stand for an arbitrary argument. If it is known that x = c
at label l , then

l : y ← x ⊙ a
}
−→

{
l : y ← c ⊙ a

l : y ← a⊙ x
}
−→

{
l : y ← a⊙ c
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Constant Propagation (2)

Applicability

dataflow analysis (working on CFG)
recall structure: program point → variable → domain
domain for liveness: bool (ordered by false < true)
domain for CP: V⊤

⊥ where V is the set of constants

Domain construction: CP lattice

Let ⊎ denote disjoint union.

V⊤
⊥ := V ⊎ {⊥} ⊎ {⊤}

Define a partial order on V⊤
⊥ by

for all v̂ : ⊥ ≤ v̂ and v̂ ≤ ⊤
for all v ,w ∈ V : v ≤ w iff v = w
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Constant Propagation (3)

Lattice

V⊤
⊥ is a complete lattice because every subset of elements

has a least upper bound ⊔ and a greatest lower bound ⊓.
(Knaster Tarski Theorem)
Every monotone function on V⊤

⊥ has a fixed point.

Structure of the Analysis

for each label, we have a preCP and a postCP : var → V⊤
⊥ .

Initially, every variable is mapped to ⊥ everywhere
(unassigned).
For each instruction l , we define a monotone transfer
function that maps preCP(l) to postCP(l).
Moreover, preCP(l) =

⊔
p∈pred(l) postCP(p)

⇒ a forward analysis!
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Constant Propagation (4)

Abstract evaluation

eval : (var→ V⊤
⊥ )× expression→ V⊤

⊥

eval(ρ, x) = ρ(x)

eval(ρ, e1 ⊕ e2) = eval(ρ, e1) ⊕̂ eval(ρ, e2)

If one argument of ⊕̂ is ⊥, then the result is ⊥.
Otherwise, if both arguments v ,w ∈ V , v ⊕̂ w = v ⊕ w .

Otherwise, if one argument is ⊤, then the result is ⊤.
(⊕ can be any binary operator including conditional)

(unary operators are analogous)
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Constant Propagation (5)

Transfer functions

Let ρ = preCP(l) and ρ′ = postCP(l).

l : x ← e, then ρ′ = ρ[x := eval(ρ, e)]

l : if x = e then l1 else l2, then let ê = eval(ρ, e) and

ρ′1 = ρ[x := ê ⊓ ρ(x)] and
ρ′2 = ρ if ê =̂ ρ(x) ⊒ false
ρ′2 = ⊥ otherwise

l : if e then l1 else l2, then let ê = eval(ρ, e)

ρ′1 = ρ if ê ⊒ true; otherwise ⊥
ρ′2 = ρ if ê ⊒ false; otherwise ⊥
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Constant Propagation (6)

z = 3

x = 1

while (x > 0) {

if (x = 1) then

y = 7

else

y = z + 4

x = 3

print y

}
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Motivation

Avoid recomputation of the same expression

Transformation

l1 : y ← a1 ⊕ a2
. . .

l2 : z ← a1 ⊕ a2

 −→


l1 : y ← a1 ⊕ a2
. . .

l2 : z ← y

Conditions

y should not be updated on any path from l1 to l2

No variable occurring in a1 ⊕ a2 should be changed on any
path from l1 to l2

Implemented with domain available expressions (AE)

Enabled by (y , a1 ⊕ a2) ∈ AE (l2)
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CSE (1)

Domain construction: AE lattice

AE = {(y , e) | y ∈ var, e ∈ expression}
powerset lattice (a complete lattice)

finite for every program instance because each program
contains finitely many variables and finitely many expressions

⇒ effective computation of the least fixed point
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CSE(2)

Transfer Functions

Let α = preAE(l) and α′ = postAE(l).

l : x ← e, then
α′ = (α \ {(y , e ′) | y = x ∨ x ∈ e ′}) ∪ {(x , e)}

remove prior assignments to x
remove expressions that (may have) changed due to
assignment to x

Style of analysis

Forward analysis
At joins of the control flow we only keep expressions
available in all predecessors

⇒ preAE(l) =
⋂

p∈pred(l) postAE(p)
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Copy Propagation

Special case

If (x , y) ∈ preAE(l), then we could replace uses of x by uses of y
in instruction l .

Advantage: might be able to eliminate x and thus the
assignment(s) x ← y

Disadvantage: the life range of y gets extended ⇒ increased
register pressure
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