
Fundamentals of Session Types
Based on the paper by Vasco T. Vasconcelos

Bas van den Heuvel and Peter Thiemann

2024-07-10

Introduction

▶ The π-calculus allows all sorts of unexpected, wild behavior.

▶ We will use types to “tame” processes.

▶ The idea is that every channel is assigned a communication protocol expressed as
a session type.

▶ Typing ensures that well-typed processes satisfy. . .
▶ Protocol fidelity: a process uses every channel according to its session type.
▶ Communication safety: no communication errors can occur.

Process syntax

Processes: Values:
P,Q ::= xv.P send v ::= x variable

x(y).P receive true | false boolean values
P |Q parallel composition
if v thenP elseQ conditional
0 inaction
(νxy)P scope restriction

▶ Channels consist of two ends: in (νxy)P , x is the server end and y the client end.
We call x and y co-variables.

▶ Variable y occurs bound in x(y).P and (νxy)P . Variable x occurs bound in (νxy)P .
▶ Non-bound variables are free: fv(P).
▶ Capture-free substitution of x by v in P : P [v/x].
▶ Process equality holds up to alpha conversion.
▶ Barendregt’s variable convention: bound variables are pairwise distinct and distinct from

free variables.
▶ We omit trailing “.0”.

Operational semantics
Structural congruence [P ≡ Q]:

P |Q ≡ Q | P (P |Q) |R ≡ P | (Q |R) P | 0 ≡ P

(νxy)P |Q ≡ (νxy)(P |Q)1 (νxy)0 ≡ 0 (νwx)(νyz)P ≡ (νyz)(νwx)P

Reduction rules (P → P):

[R-Com]

(νxy)(xv.P | y(z).Q |R) → (νxy)(P |Q[v/z] |R)

[R-IfT]

if true thenP elseQ → P

[R-IfF]

if false thenP elseQ → Q

[R-Res]

P → Q

(νxy)P → (νxy)Q

[R-Par]

P → Q

P |R → Q |R

[R-Struct]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

1Condition x, y /∈ fv(Q) not necessary by variable convention.

Undefined behavior

▶ (νx1x2)(x1 true | x2(y).y false)

Substitution [true /y] yields a stuck process: cannot send on a boolean value.

▶ (νx1x2) ifx1 then 0 else 0

Cannot test a channel end rather than a boolean value.

▶ x true | x(y)

Both threads try to write and read simultaneously on the same channel end.

Undefined behavior

▶ (νx1x2)(x1 true | x2(y).y false)
Substitution [true /y] yields a stuck process: cannot send on a boolean value.

▶ (νx1x2) ifx1 then 0 else 0

Cannot test a channel end rather than a boolean value.

▶ x true | x(y)

Both threads try to write and read simultaneously on the same channel end.

Undefined behavior

▶ (νx1x2)(x1 true | x2(y).y false)
Substitution [true /y] yields a stuck process: cannot send on a boolean value.

▶ (νx1x2) ifx1 then 0 else 0
Cannot test a channel end rather than a boolean value.

▶ x true | x(y)

Both threads try to write and read simultaneously on the same channel end.

Undefined behavior

▶ (νx1x2)(x1 true | x2(y).y false)
Substitution [true /y] yields a stuck process: cannot send on a boolean value.

▶ (νx1x2) ifx1 then 0 else 0
Cannot test a channel end rather than a boolean value.

▶ x true | x(y)
Both threads try to write and read simultaneously on the same channel end.

Types

Qualifiers: Pretypes:
q ::= lin linear p ::= ?T.S receive

un unrestricted !T.S send

Types: Contexts:
S, T, U ::= bool boolean Γ ::= ∅ empty context

end termination Γ, x : T assumption
qp qualified pretype

▶ Linearity: value of type linT must be used exactly once.
▶ Unrestricted: value of type unT can be used zero or more times.

▶ We can freely reorder assumptions in a context.
▶ We omit all linear type qualifier and only annotate unrestricted types.
▶ We omit trailing “. end”.
▶ Co-variables, even if not explicitly under restriction, are annotated, e.g., (x1, x2).
▶ Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Types

Qualifiers: Pretypes:
q ::= lin linear p ::= ?T.S receive

un unrestricted !T.S send

Types: Contexts:
S, T, U ::= bool boolean Γ ::= ∅ empty context

end termination Γ, x : T assumption
qp qualified pretype

▶ Linearity: value of type linT must be used exactly once.
▶ Unrestricted: value of type unT can be used zero or more times.
▶ We can freely reorder assumptions in a context.
▶ We omit all linear type qualifier and only annotate unrestricted types.
▶ We omit trailing “. end”.
▶ Co-variables, even if not explicitly under restriction, are annotated, e.g., (x1, x2).
▶ Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Types

▶ Linearity: value of type linT must be used exactly once.
▶ Unrestricted: value of type unT can be used zero or more times.
▶ We can freely reorder assumptions in a context.
▶ We omit all linear type qualifier and only annotate unrestricted types.
▶ We omit trailing “. end”.
▶ Co-variables, even if not explicitly under restriction, are annotated, e.g., (x1, x2).
▶ Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Well formed?

▶ a true | a true | a false

Yes.

▶ c true | c false

No.

Types

▶ Linearity: value of type linT must be used exactly once.
▶ Unrestricted: value of type unT can be used zero or more times.
▶ We can freely reorder assumptions in a context.
▶ We omit all linear type qualifier and only annotate unrestricted types.
▶ We omit trailing “. end”.
▶ Co-variables, even if not explicitly under restriction, are annotated, e.g., (x1, x2).
▶ Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Well formed?

▶ a true | a true | a false
Yes.

▶ c true | c false

No.

Types

▶ Linearity: value of type linT must be used exactly once.
▶ Unrestricted: value of type unT can be used zero or more times.
▶ We can freely reorder assumptions in a context.
▶ We omit all linear type qualifier and only annotate unrestricted types.
▶ We omit trailing “. end”.
▶ Co-variables, even if not explicitly under restriction, are annotated, e.g., (x1, x2).
▶ Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Well formed?

▶ a true | a true | a false
Yes.

▶ c true | c false
No.

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Should we accept these processes?

▶ x1 true | x2(z)

Yes: x1 : q! bool , x2 : q? bool = q! bool.

▶ c1 true .c1(w) | c2(z).c2 false

Yes: c1 : lin ! bool . lin ? bool , c2 : lin ? bool . lin ! bool = lin ! bool . lin ? bool.

▶ x1 true | x2 false

No: x1 : q! bool , x2 : q! bool ̸= q! bool.

▶ c1 true .c1(w) | c2(z).c2(t)

No: c1 : lin ! bool . lin ?T, c2 : lin ? bool . lin ?U ̸= lin ! bool . lin ?T .

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Should we accept these processes?

▶ x1 true | x2(z)
Yes: x1 : q! bool , x2 : q? bool = q! bool.

▶ c1 true .c1(w) | c2(z).c2 false

Yes: c1 : lin ! bool . lin ? bool , c2 : lin ? bool . lin ! bool = lin ! bool . lin ? bool.

▶ x1 true | x2 false

No: x1 : q! bool , x2 : q! bool ̸= q! bool.

▶ c1 true .c1(w) | c2(z).c2(t)

No: c1 : lin ! bool . lin ?T, c2 : lin ? bool . lin ?U ̸= lin ! bool . lin ?T .

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Should we accept these processes?

▶ x1 true | x2(z)
Yes: x1 : q! bool , x2 : q? bool = q! bool.

▶ c1 true .c1(w) | c2(z).c2 false
Yes: c1 : lin ! bool . lin ? bool , c2 : lin ? bool . lin ! bool = lin ! bool . lin ? bool.

▶ x1 true | x2 false

No: x1 : q! bool , x2 : q! bool ̸= q! bool.

▶ c1 true .c1(w) | c2(z).c2(t)

No: c1 : lin ! bool . lin ?T, c2 : lin ? bool . lin ?U ̸= lin ! bool . lin ?T .

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Should we accept these processes?

▶ x1 true | x2(z)
Yes: x1 : q! bool , x2 : q? bool = q! bool.

▶ c1 true .c1(w) | c2(z).c2 false
Yes: c1 : lin ! bool . lin ? bool , c2 : lin ? bool . lin ! bool = lin ! bool . lin ? bool.

▶ x1 true | x2 false
No: x1 : q! bool , x2 : q! bool ̸= q! bool.

▶ c1 true .c1(w) | c2(z).c2(t)

No: c1 : lin ! bool . lin ?T, c2 : lin ? bool . lin ?U ̸= lin ! bool . lin ?T .

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Should we accept these processes?

▶ x1 true | x2(z)
Yes: x1 : q! bool , x2 : q? bool = q! bool.

▶ c1 true .c1(w) | c2(z).c2 false
Yes: c1 : lin ! bool . lin ? bool , c2 : lin ? bool . lin ! bool = lin ! bool . lin ? bool.

▶ x1 true | x2 false
No: x1 : q! bool , x2 : q! bool ̸= q! bool.

▶ c1 true .c1(w) | c2(z).c2(t)
No: c1 : lin ! bool . lin ?T, c2 : lin ? bool . lin ?U ̸= lin ! bool . lin ?T .

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Why not q?T.U = q!T .U? Let’s assume this (wrong) setting for this example

▶ P = x1y2 | x2(z).z true | y1 false
▶ Typed at context x1 : !(! bool), x2 : ?(? bool), y1 : ! bool , y2 : ! bool.

▶ Type of y2 in send on x1 is dual to type of z in receive on x2: ! bool = ? bool.

▶ P → y2 true | y1 false: an illegal process!

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Why not q?T.U = q!T .U? Let’s assume this (wrong) setting for this example

▶ P = x1y2 | x2(z).z true | y1 false
▶ Typed at context x1 : !(! bool), x2 : ?(? bool), y1 : ! bool , y2 : ! bool.

▶ Type of y2 in send on x1 is dual to type of z in receive on x2: ! bool = ? bool.

▶ P → y2 true | y1 false: an illegal process!

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Duality is not total:

▶ Not defined on bool (or any similar “base” types).

▶ Only defined on session types: send, receive, and end.

▶ Suppose bool = bool.

▶ We could type illegal process (νxy) ifx then 0 else 0.

Duality

Motto
The server’s type is dual to the client’s type.

q?T.U = q!T.U q!T.U = q?T.U end = end

Duality is not total:

▶ Not defined on bool (or any similar “base” types).

▶ Only defined on session types: send, receive, and end.

▶ Suppose bool = bool.

▶ We could type illegal process (νxy) ifx then 0 else 0.

Type system

Invariants:

▶ Linear channel ends occur in exactly one thread.

Enforced by context split.

▶ Co-variables have dual types.

Enforced by typing rule for restriction.

Qualifier predicates:

▶ un(T) iff T = bool or T = end or T = un p.

▶ lin(T) iff true.

▶ q(Γ) iff (x : T) ∈ Γ implies q(T).

Type system

Invariants:

▶ Linear channel ends occur in exactly one thread.
Enforced by context split.

▶ Co-variables have dual types.

Enforced by typing rule for restriction.

Qualifier predicates:

▶ un(T) iff T = bool or T = end or T = un p.

▶ lin(T) iff true.

▶ q(Γ) iff (x : T) ∈ Γ implies q(T).

Type system

Invariants:

▶ Linear channel ends occur in exactly one thread.
Enforced by context split.

▶ Co-variables have dual types.
Enforced by typing rule for restriction.

Qualifier predicates:

▶ un(T) iff T = bool or T = end or T = un p.

▶ lin(T) iff true.

▶ q(Γ) iff (x : T) ∈ Γ implies q(T).

Type system

Invariants:

▶ Linear channel ends occur in exactly one thread.
Enforced by context split.

▶ Co-variables have dual types.
Enforced by typing rule for restriction.

Qualifier predicates:

▶ un(T) iff T = bool or T = end or T = un p.

▶ lin(T) iff true.

▶ q(Γ) iff (x : T) ∈ Γ implies q(T).

Type system: context split and update

Context split (Γ = Γ ◦ Γ):

∅ = ∅ ◦ ∅
Γ = Γ1 ◦ Γ2 un(T)

Γ, x : T = (Γ1, x : T) ◦ (Γ2, x : T)

Γ = Γ1 ◦ Γ2

Γ, x : lin p = (Γ1, x : lin p) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : lin p = Γ1 ◦ (Γ2, x : lin p)

Context update (Γ + x : T = Γ):

x : U /∈ Γ
Γ + x : T = Γ, x : T

un(T)

(Γ, x : T) + x : T = (Γ, x : T)

Type system: typing rules for values

Typing rules for values (Γ ⊢ v : T):

[T-True]

un(Γ)

Γ ⊢ true : bool

[T-False]

un(Γ)

Γ ⊢ false : bool

[T-Var]

un(Γ)

Γ, x : T ⊢ x : T

Type system: typing rules for processes
Typing rules for processes (Γ ⊢ P):

[T-Inact]

un(Γ)

Γ ⊢ 0

[T-Par]

Γ1 ⊢ P Γ2 ⊢ Q

Γ1 ◦ Γ2 ⊢ P |Q

[T-Res]

Γ, x : S, y : S ⊢ P

Γ ⊢ (νxy)P

[T-If]

Γ1 ⊢ v : bool Γ2 ⊢ P Γ2 ⊢ Q

Γ1 ◦ Γ2 ⊢ if v thenP elseQ

[T-Recv]

Γ1 ⊢ x : q?T.S (Γ2 + x : S), y : T ⊢ P

Γ1 ◦ Γ2 ⊢ x(y).P

[T-Send]

Γ1 ⊢ x : q!T.S Γ2 ⊢ v : T Γ3 + x : S ⊢ P

Γ1 ◦ Γ2 ◦ Γ3 ⊢ xv.P

Type system: some thoughts

▶ Cannot use unrestricted channels (yet).

▶ Deadlock is possible, even when well typed.

Type system: some thoughts

▶ Cannot use unrestricted channels (yet).
To type x true | x true, we seek context with x : un ! bool .T . But rule [T-Send]
requires (x : un ! bool .T) + (x : T): impossible!

▶ Deadlock is possible, even when well typed.

Type system: some thoughts

▶ Cannot use unrestricted channels (yet).

▶ Deadlock is possible, even when well typed.
x1 true .y1 false | y2(x).x2(w)

Type system: some thoughts

▶ Cannot use unrestricted channels (yet).

▶ Deadlock is possible, even when well typed.
x1 true .y1 false | y2(x).x2(w)
x1y1 | x2(z).z true .y2(w)

Recursive types

New syntactic forms:
Types:
T ::= . . .

a type variable
µa.T recursive type

▶ µ is a binder, giving rise to bound and free type variables, and alpha equivalence.

▶ Capture-avoiding substitution of a by U in T : T [U/a].

▶ Two types are equal if their infinite unfoldings are syntactically equal:
µa.T ≡ T [µa.T/a] until the type does not start with µ.

▶ Therefore, q(µa.T) = q(T).

New duality rules:

µa.T = µa.T a = a

Recursive types: example

▶ Now we can derive

x2 : un ?(! bool).T ⊢ x2(z).z true | x2(w).w false .

▶ For which T?

▶ For example, T ≡ µa. un ?(! bool).a.

▶ Abbreviation for this form of type: ∗U ≜ µa.U.a.

Recursive types: example

▶ Now we can derive

x2 : un ?(! bool).T ⊢ x2(z).z true | x2(w).w false .

▶ For which T?

▶ For example, T ≡ µa. un ?(! bool).a.

▶ Abbreviation for this form of type: ∗U ≜ µa.U.a.

Recursive types: example

▶ Now we can derive

x2 : un ?(! bool).T ⊢ x2(z).z true | x2(w).w false .

▶ For which T?

▶ For example, T ≡ µa. un ?(! bool).a.

▶ Abbreviation for this form of type: ∗U ≜ µa.U.a.

Tuples

▶ No primitive tuple passing.
▶ For linear x:

▶ x⟨u, v⟩.P ≜ xu.xv.P
▶ Given u : T, v : U , typable x : !T.!U .

▶ For unrestricted x1, x2:

▶ x1⟨u, v⟩.P ≜ (νy1y2)x1y2.y1u.y1.v.P

x2(w, t).P ≜ x2(z).z(w).z(t).P
▶ y1 linear, typed y1 : !T.!U , and y2 dually.
▶ Then x1 : ∗!(?T.?U), and x2 dually.
▶ ∗!⟨T,U⟩ ≜ ∗!(?T.?U) and ∗?⟨T,U⟩ ≜ ∗!⟨T,U⟩.

Tuples: example

▶ We own p2 : ! bool .! bool .? bool.

▶ Want to delegate sending to another process, then read the result.

▶ Writer: p1(z, w).z true .z true .wz.

▶ Reader: (νx1x2)p2⟨c, x1⟩.x2(z).z(y).
▶ p1 : ∗?⟨! bool .! bool .? bool , !(? bool)⟩.

Tuples: example

▶ We own p2 : ! bool .! bool .? bool.

▶ Want to delegate sending to another process, then read the result.

▶ Writer: p1(z, w).z true .z true .wz.

▶ Reader: (νx1x2)p2⟨c, x1⟩.x2(z).z(y).
▶ p1 : ∗?⟨! bool .! bool .? bool , !(? bool)⟩.

Tuples: example

▶ We own p2 : ! bool .! bool .? bool.

▶ Want to delegate sending to another process, then read the result.

▶ Writer: p1(z, w).z true .z true .wz.

▶ Reader: (νx1x2)p2⟨c, x1⟩.x2(z).z(y).

▶ p1 : ∗?⟨! bool .! bool .? bool , !(? bool)⟩.

Tuples: example

▶ We own p2 : ! bool .! bool .? bool.

▶ Want to delegate sending to another process, then read the result.

▶ Writer: p1(z, w).z true .z true .wz.

▶ Reader: (νx1x2)p2⟨c, x1⟩.x2(z).z(y).
▶ p1 : ∗?⟨! bool .! bool .? bool , !(? bool)⟩.

Recursive types: more examples

▶ T = ! bool . ∗ ? bool and x1 : T, x2 : T . Are the following processes well typed?
▶ x1 true .(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true)
▶ x1 true .x1(y).x1(y) | x2(z)
▶ x1 true .x1(y) | x2(y).x2 true | x2(w).x2 true

▶ Channel for both reading and writing?

Recursive types: more examples

▶ T = ! bool . ∗ ? bool and x1 : T, x2 : T . Are the following processes well typed?
▶ x1 true .(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true)

Well typed.
▶ x1 true .x1(y).x1(y) | x2(z)
▶ x1 true .x1(y) | x2(y).x2 true | x2(w).x2 true

▶ Channel for both reading and writing?

Recursive types: more examples

▶ T = ! bool . ∗ ? bool and x1 : T, x2 : T . Are the following processes well typed?
▶ x1 true .(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true)

Well typed.
▶ x1 true .x1(y).x1(y) | x2(z)

Well typed.
▶ x1 true .x1(y) | x2(y).x2 true | x2(w).x2 true

▶ Channel for both reading and writing?

Recursive types: more examples

▶ T = ! bool . ∗ ? bool and x1 : T, x2 : T . Are the following processes well typed?
▶ x1 true .(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true)

Well typed.
▶ x1 true .x1(y).x1(y) | x2(z)

Well typed.
▶ x1 true .x1(y) | x2(y).x2 true | x2(w).x2 true

Not well typed: x2 is not used linearly for the first receive!

▶ Channel for both reading and writing?

Recursive types: more examples

▶ T = ! bool . ∗ ? bool and x1 : T, x2 : T . Are the following processes well typed?
▶ x1 true .(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true)

Well typed.
▶ x1 true .x1(y).x1(y) | x2(z)

Well typed.
▶ x1 true .x1(y) | x2(y).x2 true | x2(w).x2 true

Not well typed: x2 is not used linearly for the first receive!

▶ Channel for both reading and writing?

Recursive types: more examples

▶ T = ! bool . ∗ ? bool and x1 : T, x2 : T . Are the following processes well typed?
▶ x1 true .(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true)

Well typed.
▶ x1 true .x1(y).x1(y) | x2(z)

Well typed.
▶ x1 true .x1(y) | x2(y).x2 true | x2(w).x2 true

Not well typed: x2 is not used linearly for the first receive!

▶ Channel for both reading and writing?
Use tuples to pass both ends of a channel!

a1 : ∗!⟨! bool , ? bool⟩, a2 : ∗?⟨! bool , ? bool⟩
⊢ a2(y1, y2).(y1 false | y2(z)) | (νx1x2)a1⟨x1, x2⟩

Replication

Despite recursive types, processes so far are strongly normalizing.

New syntactic forms:
Processes:

P ::= . . .
qx(y).P receive

We have linx(y).P and unx(y).P .

New reduction rules:

[R-LinCom]

(νxy)(xv.P | lin y(z).Q |R) → (νxy)(P |Q[v/z] |R)

[R-UnCom]

(νxy)(xv.P | un y(z).Q |R) → (νxy)(P |Q[v/z] | un y(z).Q |R)

Replication: typing

New typing rules:

[T-Recv]

q1(Γ1 ◦ Γ2) Γ1 ⊢ x : q2?T.S (Γ2 + x : S), y : T ⊢ P

Γ1 ◦ Γ2 ⊢ q1x(y).P

▶ Same as before when q1 = lin: lin(Γ) for all Γ.

▶ Not necessarily q1 = q2, but q2 = un implies q1 = un.

▶ unx2(z).c true | x1 true | x1 false
Assume c : lin ! bool. Is it well-typed?

Replication: typing

New typing rules:

[T-Recv]

q1(Γ1 ◦ Γ2) Γ1 ⊢ x : q2?T.S (Γ2 + x : S), y : T ⊢ P

Γ1 ◦ Γ2 ⊢ q1x(y).P

▶ Same as before when q1 = lin: lin(Γ) for all Γ.

▶ Not necessarily q1 = q2, but q2 = un implies q1 = un.

▶ unx2(z).c true | x1 true | x1 false
Assume c : lin ! bool. Is it well-typed?

Replication: typing
New typing rules:

[T-Recv]

q1(Γ1 ◦ Γ2) Γ1 ⊢ x : q2?T.S (Γ2 + x : S), y : T ⊢ P

Γ1 ◦ Γ2 ⊢ q1x(y).P

▶ Same as before when q1 = lin: lin(Γ) for all Γ.

▶ Not necessarily q1 = q2, but q2 = un implies q1 = un.

▶ unx2(z).c true | x1 true | x1 false
Assume c : lin ! bool. Is it well-typed? No, linear channel c is replicated!

(νx1x2)(unx2(z).c true | x1 true | x1 false)
→ (νx1x2)(unx2(z).c true | c true | x1 false)
→ (νx1x2)(unx2(z).c true | c true | c true)

Replication: typing
New typing rules:

[T-Recv]

q1(Γ1 ◦ Γ2) Γ1 ⊢ x : q2?T.S (Γ2 + x : S), y : T ⊢ P

Γ1 ◦ Γ2 ⊢ q1x(y).P

▶ Same as before when q1 = lin: lin(Γ) for all Γ.

▶ Not necessarily q1 = q2, but q2 = un implies q1 = un.

▶ unx2(z).c true | x1 true | x1 false
Assume c : lin ! bool. Is it well-typed? No, linear channel c is replicated!

(νx1x2)(unx2(z).c true | x1 true | x1 false)
→ (νx1x2)(unx2(z).c true | c true | x1 false)
→ (νx1x2)(unx2(z).c true | c true | c true)

Well typed: unx2(z).z true. Cannot be used by x1c | x1c.

General replication

▶ Milner’s original, more general replication: !P = P | P | . . .
▶ How can this be simulated?

▶ Admissible typing rule:
un(Γ) Γ ⊢ P

Γ ⊢ !P

where x1 : µa. un !a.a and x2 : µb. un ?b.b.

General replication

▶ Milner’s original, more general replication: !P = P | P | . . .
▶ How can this be simulated?

!P ≜ (νx1x2)(x1x2 | unx2(y).(P | x1y))

where x1, x2, y /∈ fv(P).

▶ Admissible typing rule:
un(Γ) Γ ⊢ P

Γ ⊢ !P

where x1 : µa. un !a.a and x2 : µb. un ?b.b.

General replication

▶ Milner’s original, more general replication: !P = P | P | . . .
▶ How can this be simulated?

!P ≜ (νx1x2)(x1x2 | unx2(y).(P | x1y))

where x1, x2, y /∈ fv(P).

▶ Admissible typing rule:
un(Γ) Γ ⊢ P

Γ ⊢ !P

where x1 : µa. un !a.a and x2 : µb. un ?b.b.

Choice

New syntactic forms:

Processes:
P ::= . . .

x ◁ l.P selection
x ▷ {i : Pi}i∈I branching

New reduction rules:

[R-Case]

j ∈ I

(νxy)(x ◁ j.P | y ▷ {i : Qi}i∈I |R) → (νxy)(P |Qj |R)

Choice: typing
New syntactic forms:

Pretypes:
p ::= . . .

⊕{i : Si}i∈I select
&{i : Si}i∈I branch

New duality rules:

q⊕{i : Si}i∈I = q&{i : Si}i∈I q&{i : Si}i∈I = q⊕{i : Si}i∈I
New typing rules:

[T-Branch]

Γ1 ⊢ x : q&{i : Si}i∈I ∀i ∈ I : Γ2 + x : Si ⊢ Pi

Γ1 ◦ Γ2 ⊢ x ▷ {i : Pi}i∈I

[T-Sel]

Γ1 ⊢ x : q⊕{i : Si}i∈I Γ2 + x : Sj ⊢ P j ∈ I

Γ1 ◦ Γ2 ⊢ x ◁ j.P

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
▶ x1 true | x2 ▷ {l : 0}
▶ x1 ◁ l | x2(z)
▶ x1 ◁ l | x2 ▷ {m : 0}

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
Yes: x1 : q⊕{l : end}, x2 : q&{l : end}.

▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
▶ x1 true | x2 ▷ {l : 0}
▶ x1 ◁ l | x2(z)
▶ x1 ◁ l | x2 ▷ {m : 0}

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
Yes: x1 : q⊕{l : end}, x2 : q&{l : end}.

▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
Yes: x1 : q⊕{l : end ,m : end}, x2 : q&{l : end ,m : end}.

▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
▶ x1 true | x2 ▷ {l : 0}
▶ x1 ◁ l | x2(z)
▶ x1 ◁ l | x2 ▷ {m : 0}

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
Yes: x1 : q⊕{l : end}, x2 : q&{l : end}.

▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
Yes: x1 : q⊕{l : end ,m : end}, x2 : q&{l : end ,m : end}.

▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
Yes:
x1 : µa. un⊕{l : a,m : a} ≜ ∗⊕{l,m}, x2 : µb. un&{l : b,m : b} ≜ ∗&{l,m}.

▶ x1 true | x2 ▷ {l : 0}
▶ x1 ◁ l | x2(z)
▶ x1 ◁ l | x2 ▷ {m : 0}

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
Yes: x1 : q⊕{l : end}, x2 : q&{l : end}.

▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
Yes: x1 : q⊕{l : end ,m : end}, x2 : q&{l : end ,m : end}.

▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
Yes:
x1 : µa. un⊕{l : a,m : a} ≜ ∗⊕{l,m}, x2 : µb. un&{l : b,m : b} ≜ ∗&{l,m}.

▶ x1 true | x2 ▷ {l : 0}
No: x1 : q! bool , x2 : q&{l : end}.

▶ x1 ◁ l | x2(z)
▶ x1 ◁ l | x2 ▷ {m : 0}

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
Yes: x1 : q⊕{l : end}, x2 : q&{l : end}.

▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
Yes: x1 : q⊕{l : end ,m : end}, x2 : q&{l : end ,m : end}.

▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
Yes:
x1 : µa. un⊕{l : a,m : a} ≜ ∗⊕{l,m}, x2 : µb. un&{l : b,m : b} ≜ ∗&{l,m}.

▶ x1 true | x2 ▷ {l : 0}
No: x1 : q! bool , x2 : q&{l : end}.

▶ x1 ◁ l | x2(z)
No: x1 : q⊕{l : end , . . .}, x2 : q?T .

▶ x1 ◁ l | x2 ▷ {m : 0}

Choice: examples

Well typed?

▶ x1 ◁ l | x2 ▷ {l : 0}
Yes: x1 : q⊕{l : end}, x2 : q&{l : end}.

▶ x1 ◁ l | x2 ▷ {l : 0,m : 0}
Yes: x1 : q⊕{l : end ,m : end}, x2 : q&{l : end ,m : end}.

▶ x1 ◁ l | x1 ◁ m | x1 ◁ m | x2 ▷ {l : 0,m : 0}
Yes:
x1 : µa. un⊕{l : a,m : a} ≜ ∗⊕{l,m}, x2 : µb. un&{l : b,m : b} ≜ ∗&{l,m}.

▶ x1 true | x2 ▷ {l : 0}
No: x1 : q! bool , x2 : q&{l : end}.

▶ x1 ◁ l | x2(z)
No: x1 : q⊕{l : end , . . .}, x2 : q?T .

▶ x1 ◁ l | x2 ▷ {m : 0}
No: x1 : q⊕{l : end , . . .}, x2 : q&{m : end}.

Example: map

How to use a map operating on x2?

▶ Put operation for key k and value v:

x1 ◁ put.x1k.x1v

▶ Get operation for key k:

x1 ◁ get.x1k.x1 ▷ {some : x1(y).P, none : Q}

▶ What is the type of the client’s side of the (linear) map?

Example: map

How to use a map operating on x2?

▶ Put operation for key k and value v:

x1 ◁ put.x1k.x1v

▶ Get operation for key k:

x1 ◁ get.x1k.x1 ▷ {some : x1(y).P, none : Q}

▶ What is the type of the client’s side of the (linear) map?
x1 : ⊕

{
put : ! key .! value . end , get : ! key .&{some : ? value . end , none : end}

}

Example: iterator

▶ Iterator of booleans: offers at x2 operations hasNext and next, until hasNext
returns “no”.

▶ A client that reads and discards every value. Which is correct?
▶ !(un loop2(y).y ◁ hasNext.y ▷ {yes : y ◁ next.y(z).loop1y, no : 0}) | loop1x2

▶ !(un loop2(y).x2 ◁ hasNext.x2 ▷ {yes : x2 ◁ next.x2(z).loop1y, no : 0}) | loop1 true

▶ Type of x2 is linear, yet infinite:

⊕{hasNext : &{no : end , yes : ⊕{next : ! bool .⊕{hasNext : &{. . .}}}}}

▶ Finite form?

Example: iterator

▶ Iterator of booleans: offers at x2 operations hasNext and next, until hasNext
returns “no”.

▶ A client that reads and discards every value. Which is correct?
▶ !(un loop2(y).y ◁ hasNext.y ▷ {yes : y ◁ next.y(z).loop1y, no : 0}) | loop1x2

Yes.
▶ !(un loop2(y).x2 ◁ hasNext.x2 ▷ {yes : x2 ◁ next.x2(z).loop1y, no : 0}) | loop1 true

No: x2 is linear.

▶ Type of x2 is linear, yet infinite:

⊕{hasNext : &{no : end , yes : ⊕{next : ! bool .⊕{hasNext : &{. . .}}}}}

▶ Finite form?

Example: iterator

▶ Iterator of booleans: offers at x2 operations hasNext and next, until hasNext
returns “no”.

▶ A client that reads and discards every value. Which is correct?
▶ !(un loop2(y).y ◁ hasNext.y ▷ {yes : y ◁ next.y(z).loop1y, no : 0}) | loop1x2

Yes.
▶ !(un loop2(y).x2 ◁ hasNext.x2 ▷ {yes : x2 ◁ next.x2(z).loop1y, no : 0}) | loop1 true

No: x2 is linear.

▶ Type of x2 is linear, yet infinite:

⊕{hasNext : &{no : end , yes : ⊕{next : ! bool .⊕{hasNext : &{. . .}}}}}

▶ Finite form?

Example: iterator

▶ Iterator of booleans: offers at x2 operations hasNext and next, until hasNext
returns “no”.

▶ A client that reads and discards every value. Which is correct?
▶ !(un loop2(y).y ◁ hasNext.y ▷ {yes : y ◁ next.y(z).loop1y, no : 0}) | loop1x2

Yes.
▶ !(un loop2(y).x2 ◁ hasNext.x2 ▷ {yes : x2 ◁ next.x2(z).loop1y, no : 0}) | loop1 true

No: x2 is linear.

▶ Type of x2 is linear, yet infinite:

⊕{hasNext : &{no : end , yes : ⊕{next : ! bool .⊕{hasNext : &{. . .}}}}}

▶ Finite form?

Example: iterator

▶ Iterator of booleans: offers at x2 operations hasNext and next, until hasNext
returns “no”.

▶ A client that reads and discards every value. Which is correct?
▶ !(un loop2(y).y ◁ hasNext.y ▷ {yes : y ◁ next.y(z).loop1y, no : 0}) | loop1x2

Yes.
▶ !(un loop2(y).x2 ◁ hasNext.x2 ▷ {yes : x2 ◁ next.x2(z).loop1y, no : 0}) | loop1 true

No: x2 is linear.

▶ Type of x2 is linear, yet infinite:

⊕{hasNext : &{no : end , yes : ⊕{next : ! bool .⊕{hasNext : &{. . .}}}}}

▶ Finite form?

µa.⊕{hasNext : &{no : end , yes : ⊕{next : ! bool .a}}}

Primitive types are redundant

▶ With choice, primitive types are redundant.

▶ Example: booleans.

▶
true ≜ !(t1 ◁ true)

false ≜ !(f1 ◁ false)

ifx thenP elseQ ≜ x ▷ {true : P, false : Q}
▶

true | false | if t2 thenP elseQ →→ true | false | P

Primitive types are redundant

▶ With choice, primitive types are redundant.

▶ Example: booleans.

▶
true ≜ !(t1 ◁ true)

false ≜ !(f1 ◁ false)

ifx thenP elseQ ≜ x ▷ {true : P, false : Q}
▶

true | false | if t2 thenP elseQ →→ true | false | P

Well typedness guarantees well formedness

▶ Patterns of ill formedness. Why?
▶ ifx thenP elseQ
▶ a true | a(z)
▶ (νxy)(x true | y ▷ {i : Pi}i∈I)

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If ∅ ⊢ P and P →∗ Q, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Theorem (Safety)

If ∅ ⊢ P , then P is well formed.

Well typedness guarantees well formedness

▶ Patterns of ill formedness. Why?
▶ ifx thenP elseQ

x is not a boolean value.
▶ a true | a(z)
▶ (νxy)(x true | y ▷ {i : Pi}i∈I)

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If ∅ ⊢ P and P →∗ Q, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Theorem (Safety)

If ∅ ⊢ P , then P is well formed.

Well typedness guarantees well formedness
▶ Patterns of ill formedness. Why?

▶ ifx thenP elseQ
x is not a boolean value.

▶ a true | a(z)
a is unrestricted, but used differently.

▶ (νxy)(x true | y ▷ {i : Pi}i∈I)

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If ∅ ⊢ P and P →∗ Q, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Theorem (Safety)

If ∅ ⊢ P , then P is well formed.

Well typedness guarantees well formedness
▶ Patterns of ill formedness. Why?

▶ ifx thenP elseQ
x is not a boolean value.

▶ a true | a(z)
a is unrestricted, but used differently.

▶ (νxy)(x true | y ▷ {i : Pi}i∈I)
x and y are not typed dually.

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If ∅ ⊢ P and P →∗ Q, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Theorem (Safety)

If ∅ ⊢ P , then P is well formed.

Well typedness guarantees well formedness
▶ Patterns of ill formedness. Why?

▶ ifx thenP elseQ
x is not a boolean value.

▶ a true | a(z)
a is unrestricted, but used differently.

▶ (νxy)(x true | y ▷ {i : Pi}i∈I)
x and y are not typed dually.

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If ∅ ⊢ P and P →∗ Q2, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Theorem (Safety)

If ∅ ⊢ P , then P is well formed.

2→∗ means zero or more steps.

Well typedness guarantees well formedness
▶ Patterns of ill formedness. Why?

▶ ifx thenP elseQ
x is not a boolean value.

▶ a true | a(z)
a is unrestricted, but used differently.

▶ (νxy)(x true | y ▷ {i : Pi}i∈I)
x and y are not typed dually.

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If ∅ ⊢ P and P →∗ Q, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Theorem (Safety)

If ∅ ⊢ P , then P is well formed.

