Fundamentals of Session Types Based on the paper by Vasco T. Vasconcelos

Bas van den Heuvel and Peter Thiemann

2024-07-10

Introduction

- The π -calculus allows all sorts of unexpected, wild behavior.
- We will use types to "tame" processes.
- The idea is that every channel is assigned a communication protocol expressed as a session type.
- Typing ensures that well-typed processes satisfy...
 - Protocol fidelity: a process uses every channel according to its session type.

• *Communication safety*: no communication errors can occur.

Process syntax

- Channels consist of two ends: in (vxy)P, x is the server end and y the client end. We call x and y co-variables.
- Variable y occurs bound in x(y). P and $(\nu xy)P$. Variable x occurs bound in $(\nu xy)P$.
- Non-bound variables are *free*: fv(P).
- Capture-free substitution of x by v in P: P[v/x].
- Process equality holds up to alpha conversion.
- Barendregt's variable convention: bound variables are pairwise distinct and distinct from free variables.
- ▶ We omit trailing ".0".

Operational semantics

Structural congruence $[P \equiv Q]$:

 $P \mid Q \equiv Q \mid P \qquad (P \mid Q) \mid R \equiv P \mid (Q \mid R) \qquad P \mid 0 \equiv P$

 $(\nu xy)P \mid Q \equiv (\nu xy)(P \mid Q)^{1} \qquad (\nu xy)0 \equiv 0 \qquad (\nu wx)(\nu yz)P \equiv (\nu yz)(\nu wx)P$

Reduction rules $(P \rightarrow P)$:

 $\frac{[\text{R-Com}]}{(\nu xy)(\overline{x}v.P \mid y(z).Q \mid R) \to (\nu xy)(P \mid Q[v/z] \mid R)}$

 $\frac{[\text{R-IFT}]}{\text{if true then } P \text{ else } Q \to P} \qquad \frac{[\text{R-IFF}]}{\text{if false then } P \text{ else } Q \to Q}$ $\frac{[\text{R-Res]}}{(\nu xy)P \to (\nu xy)Q} \qquad \frac{[\text{R-PAR}]}{P \mid R \to Q \mid R} \qquad \frac{[\text{R-STRUCT}]}{P \equiv P' \qquad P' \to Q' \qquad Q' \equiv Q}$

¹Condition $x, y \notin fv(Q)$ not necessary by variable convention.

・ロト・日本・日本・日本・ション

 $\blacktriangleright (\nu x_1 x_2)(\overline{x_1} \operatorname{true} \mid x_2(y).\overline{y} \operatorname{false})$

- \blacktriangleright $(\nu x_1 x_2)$ if x_1 then 0 else 0
- $\blacktriangleright \ \overline{x} \operatorname{true} \mid x(y)$

• $(\nu x_1 x_2)(\overline{x_1} \operatorname{true} | x_2(y).\overline{y} \operatorname{false})$ Substitution [true /y] yields a stuck process: cannot send on a boolean value.

- \blacktriangleright ($\nu x_1 x_2$) if x_1 then 0 else 0
- $\blacktriangleright \ \overline{x} \operatorname{true} \mid x(y)$

 $(\nu x_1 x_2)(\overline{x_1} \operatorname{true} | x_2(y).\overline{y} \operatorname{false})$

Substitution $[\mathsf{true}\,/y]$ yields a stuck process: cannot send on a boolean value.

• $(\nu x_1 x_2)$ if x_1 then 0 else 0 Cannot test a channel end rather than a boolean value.

 $\blacktriangleright \ \overline{x} \operatorname{true} \mid x(y)$

 $\blacktriangleright (\nu x_1 x_2)(\overline{x_1} \operatorname{true} \mid x_2(y).\overline{y} \operatorname{false})$

Substitution [true / y] yields a stuck process: cannot send on a boolean value.

- (νx₁x₂) if x₁ then 0 else 0
 Cannot test a channel end rather than a boolean value.
- $\blacktriangleright \ \overline{x} \operatorname{true} \mid x(y)$

Both threads try to write and read simultaneously on the same channel end.

Qualifiers:		Pretypes:	
q ::= lin	linear	p ::= ?T.S	receive
un	unrestricted	!T.S	send
Types:		Contexts:	
S, T, U ::= bool	boolean	$\Gamma ::= \emptyset$	empty context
end	termination	$\Gamma, x: T$	assumption
qp	qualified pretype		

Linearity: value of type lin T must be used exactly once.

• Unrestricted: value of type un T can be used zero or more times.

Qualifiers:		Pretypes:	
q ::= lin	linear	p ::= ?T.S	receive
un	unrestricted	!T.S	send
Types:		Contexts:	
S, T, U ::= bool	boolean	$\Gamma ::= \emptyset$	empty context
end	termination	$\Gamma, x: T$	assumption
qp	qualified pretype		

- Linearity: value of type lin T must be used *exactly once*.
- Unrestricted: value of type un T can be used zero or more times.
- ▶ We can freely reorder assumptions in a context.
- We omit all linear type qualifier and only annotate unrestricted types.
- ▶ We omit trailing ". end".
- Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- > Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

- ▶ Linearity: value of type lin *T* must be used *exactly once*.
- ▶ Unrestricted: value of type un *T* can be used *zero or more times*.
- We can freely reorder assumptions in a context.
- We omit all linear type qualifier and only annotate unrestricted types.
- We omit trailing ". end".
- Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- > Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Well formed?

 $\blacktriangleright \ \overline{a} \, true \mid \overline{a} \, true \mid \overline{a} \, false$

$\blacktriangleright \overline{c}$ true $|\overline{c}$ false

- ▶ Linearity: value of type lin *T* must be used *exactly once*.
- ▶ Unrestricted: value of type un *T* can be used *zero or more times*.
- We can freely reorder assumptions in a context.
- We omit all linear type qualifier and only annotate unrestricted types.
- We omit trailing ". end".
- Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- > Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Well formed?

- \overline{a} true | \overline{a} true | \overline{a} false Yes.
- $\blacktriangleright \overline{c}$ true $|\overline{c}$ false

- ▶ Linearity: value of type lin *T* must be used *exactly once*.
- ▶ Unrestricted: value of type un *T* can be used *zero or more times*.
- We can freely reorder assumptions in a context.
- We omit all linear type qualifier and only annotate unrestricted types.
- We omit trailing ". end".
- Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- > Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

Well formed?

- \overline{a} true | \overline{a} true | \overline{a} false Yes.
- \overline{c} true | \overline{c} false No.

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\mathsf{end}} = \mathsf{end}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\mathsf{end}} = \mathsf{end}$

Should we accept these processes?

 $\blacktriangleright \ \overline{x_1} \operatorname{true} \mid x_2(z)$

•
$$\overline{c_1}$$
 true $.c_1(w) \mid c_2(z).\overline{c_2}$ false

 $\blacktriangleright \ \overline{x_1} \operatorname{true} | \ \overline{x_2} \operatorname{false}$

$$\blacktriangleright \ \overline{c_1} \operatorname{true} .c_1(w) \mid c_2(z).c_2(t)$$

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\mathsf{end}} = \mathsf{end}$

Should we accept these processes?

 $\overline{x_1} \operatorname{true} | x_2(z)$ $\operatorname{Yes:} x_1 : q! \operatorname{bool}, x_2 : q? \operatorname{bool} = \overline{q! \operatorname{bool}}.$

▶ $\overline{c_1}$ true $.c_1(w) | c_2(z) . \overline{c_2}$ false

 $\blacktriangleright \ \overline{x_1} \operatorname{true} | \ \overline{x_2} \operatorname{false}$

 $\blacktriangleright \ \overline{c_1} \operatorname{true} .c_1(w) \mid c_2(z).c_2(t)$

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\text{end}} = \text{end}$

Should we accept these processes?

- $\overline{x_1} \operatorname{true} | x_2(z)$ $\operatorname{Yes:} x_1 : q! \operatorname{bool}, x_2 : q? \operatorname{bool} = \overline{q! \operatorname{bool}}.$

 $\blacktriangleright \ \overline{c_1} \operatorname{true} .c_1(w) \mid c_2(z).c_2(t)$

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\text{end}} = \text{end}$

Should we accept these processes?

- $\overline{x_1} \operatorname{true} | x_2(z)$ $\operatorname{Yes:} x_1 : q! \operatorname{bool}, x_2 : q? \operatorname{bool} = \overline{q! \operatorname{bool}}.$
- ▶ $\overline{c_1}$ true $.c_1(w) | c_2(z).\overline{c_2}$ false Yes: c_1 : lin ! bool . lin ? bool , c_2 : lin ? bool . lin ! bool = $\overline{\text{lin ! bool . lin ? bool}}$.

▶ $\overline{x_1}$ true | $\overline{x_2}$ false No: $x_1 : q!$ bool , $x_2 : q!$ bool $\neq \overline{q!}$ bool.

 $\blacktriangleright \ \overline{c_1} \operatorname{true} .c_1(w) \mid c_2(z).c_2(t)$

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\mathsf{end}} = \mathsf{end}$

Should we accept these processes?

- $\overline{x_1} \operatorname{true} | x_2(z)$ $\operatorname{Yes:} x_1 : q! \operatorname{bool}, x_2 : q? \operatorname{bool} = \overline{q! \operatorname{bool}}.$
- ▶ $\overline{c_1}$ true $.c_1(w) | c_2(z).\overline{c_2}$ false Yes: c_1 : lin ! bool . lin ? bool , c_2 : lin ? bool . lin ! bool = $\overline{\text{lin ! bool . lin ? bool}}$.
- ▶ $\overline{x_1}$ true | $\overline{x_2}$ false No: $x_1 : q!$ bool, $x_2 : q!$ bool $\neq \overline{q!}$ bool.

▶ $\overline{c_1}$ true $.c_1(w) | c_2(z).c_2(t)$ No: c_1 : lin ! bool . lin ? T, c_2 : lin ? bool . lin ? $U \neq \overline{\text{lin ! bool . lin ?}T}$.

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\text{end}} = \text{end}$

Why not $\overline{q?T.U} = q!\overline{T}.\overline{U}$? Let's assume this (wrong) setting for this example

$$\blacktriangleright P = \overline{x_1}y_2 \mid x_2(z).\overline{z} \operatorname{true} \mid \overline{y_1} \operatorname{false}$$

- Function Typed at context $x_1 : !(! \text{ bool}), x_2 : ?(? \text{ bool}), y_1 : ! \text{ bool}, y_2 : ! \text{ bool}.$
- **>** Type of y_2 in send on x_1 is dual to type of z in receive on x_2 : $\overline{!bool} = ?bool$.

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\text{end}} = \text{end}$

Why not $\overline{q?T.U} = q!\overline{T}.\overline{U}$? Let's assume this (wrong) setting for this example

•
$$P = \overline{x_1}y_2 \mid x_2(z).\overline{z} \operatorname{true} \mid \overline{y_1} \operatorname{false}$$

- Function Typed at context $x_1 : !(! \text{ bool}), x_2 : ?(? \text{ bool}), y_1 : ! \text{ bool}, y_2 : ! \text{ bool}.$
- **>** Type of y_2 in send on x_1 is dual to type of z in receive on x_2 : $\overline{!\text{bool}} = ? \text{bool}$.
- ▶ $P \rightarrow \overline{y_2}$ true $|\overline{y_1}|$ false: an illegal process!

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\mathsf{end}} = \mathsf{end}$

Duality is *not total*:

- ▶ Not defined on bool (or any similar "base" types).
- > Only defined on session types: send, receive, and end.

Motto

The server's type is dual to the client's type.

$$\overline{q?T.U} = q!T.\overline{U}$$
 $\overline{q!T.U} = q?T.\overline{U}$ $\overline{\mathsf{end}} = \mathsf{end}$

Duality is *not total*:

- ▶ Not defined on bool (or any similar "base" types).
- Only defined on session types: send, receive, and end.
- Suppose $\overline{bool} = bool$.
- We could type illegal process (νxy) if x then 0 else 0.

Invariants:

Linear channel ends occur in *exactly one thread*.

Co-variables have dual types.

Invariants:

Linear channel ends occur in *exactly one thread*. Enforced by *context split*.

Co-variables have dual types.

Invariants:

Linear channel ends occur in *exactly one thread*. Enforced by *context split*.

Co-variables have dual types.
 Enforced by typing rule for restriction.

Invariants:

- Linear channel ends occur in *exactly one thread*. Enforced by *context split*.
- Co-variables have dual types.
 Enforced by typing rule for restriction.

Qualifier predicates:

•
$$un(T)$$
 iff $T = bool \text{ or } T = end \text{ or } T = un p$.

▶ lin(T) iff true.

•
$$q(\Gamma)$$
 iff $(x:T) \in \Gamma$ implies $q(T)$.

Type system: context split and update

Context split ($\Gamma = \Gamma \circ \Gamma$):

$$\begin{split} \frac{\Gamma = \Gamma_1 \circ \Gamma_2 \quad \mathrm{un}(T)}{\overline{P} = \emptyset \circ \emptyset} & \frac{\Gamma = \Gamma_1 \circ \Gamma_2 \quad \mathrm{un}(T)}{\Gamma, x : T = (\Gamma_1, x : T) \circ (\Gamma_2, x : T)} \\ \frac{\Gamma = \Gamma_1 \circ \Gamma_2}{\Gamma, x : \lim p = (\Gamma_1, x : \lim p) \circ \Gamma_2} & \frac{\Gamma = \Gamma_1 \circ \Gamma_2}{\Gamma, x : \lim p = \Gamma_1 \circ (\Gamma_2, x : \lim p)} \end{split}$$

Context update $(\Gamma + x : T = \Gamma)$:

$$\frac{x: U \notin \Gamma}{\Gamma + x: T = \Gamma, x: T} \qquad \qquad \frac{\operatorname{un}(T)}{(\Gamma, x: T) + x: T = (\Gamma, x: T)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

Type system: typing rules for values

Typing rules for values $(\Gamma \vdash v : T)$:

Type system: typing rules for processes Typing rules for processes $(\Gamma \vdash P)$:

$$\frac{[\text{T-INACT}]}{\text{un}(\Gamma)} \qquad \qquad \frac{[\text{T-PAR}]}{\Gamma_1 \vdash P} \quad \frac{\Gamma_2 \vdash Q}{\Gamma_1 \circ \Gamma_2 \vdash P \mid Q} \qquad \qquad \frac{[\text{T-Res}]}{\Gamma \vdash (\nu xy)P}$$

$$\frac{[\mathrm{T-IF}]}{\Gamma_1 \vdash v : \mathsf{bool}} \frac{\Gamma_2 \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash \mathsf{if} \, v \, \mathsf{then} \, P \, \mathsf{else} \, Q}$$

$$\frac{\Gamma\text{-}\operatorname{Recv}]}{\Gamma_1 \vdash x : q?T.S \quad (\Gamma_2 + x : S), y : T \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash x(y).P}$$

$$\frac{\Gamma\text{-SEND}]}{\Gamma_1 \vdash x: q! T.S} \frac{\Gamma_2 \vdash v: T}{\Gamma_1 \circ \Gamma_2 \circ \Gamma_3 \vdash \overline{x} v. P}$$

・ロト ・日・・日・・日・・ のくの

- Cannot use unrestricted channels (yet).
- Deadlock is possible, even when well typed.

Cannot use unrestricted channels (yet). To type x̄ true | x̄ true, we seek context with x : un ! bool .T. But rule [T-SEND] requires (x : un ! bool .T) + (x : T): impossible!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Deadlock is possible, even when well typed.

- Cannot use unrestricted channels (yet).
- Deadlock is possible, even when well typed. $\overline{x_1}$ true $.\overline{y_1}$ false $| y_2(x).x_2(w)$

- Cannot use unrestricted channels (yet).
- ► Deadlock is possible, even when well typed. $\overline{x_1}$ true $.\overline{y_1}$ false | $y_2(x).x_2(w)$ $\overline{x_1}y_1$ | $x_2(z).\overline{z}$ true $.y_2(w)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Recursive types

New syntactic forms:

Types:

$$T ::= \dots$$

 a type variable
 $\mu a.T$ recursive type

 $\blacktriangleright~\mu$ is a binder, giving rise to bound and free type variables, and alpha equivalence.

- Capture-avoiding substitution of a by U in T: T[U/a].
- Two types are equal if their *infinite unfoldings* are syntactically equal: $\mu a.T \equiv T[\mu a.T/a]$ until the type does not start with μ .

• Therefore,
$$q(\mu a.T) = q(T)$$
.

New duality rules:

$$\overline{\mu a.T} = \mu a.\overline{T} \qquad \qquad \overline{a} = a$$

Recursive types: example

Now we can derive

 $x_2 : \operatorname{un} ?(!\operatorname{bool}).T \vdash x_2(z).\overline{z} \operatorname{true} \mid x_2(w).\overline{w} \operatorname{false}.$

Recursive types: example

Now we can derive

 $x_2 : \operatorname{un} ?(!\operatorname{bool}).T \vdash x_2(z).\overline{z} \operatorname{true} \mid x_2(w).\overline{w} \operatorname{false}.$

```
▶ For which T?
```

For example, $T \equiv \mu a$. un ?(! bool).a.

Recursive types: example

Now we can derive

 x_2 : un ?(! bool). $T \vdash x_2(z).\overline{z}$ true | $x_2(w).\overline{w}$ false.

- ▶ For which *T*?
- For example, $T \equiv \mu a$. un ?(! bool).a.
- Abbreviation for this form of type: $*U \triangleq \mu a.U.a.$

Tuples

► No primitive tuple passing.

- ► For linear *x*:
 - $\blacktriangleright \ \overline{x} \langle u, v \rangle . P \triangleq \overline{x} u . \overline{x} v . P$
 - Given u: T, v: U, typable x: !T.!U.
- For unrestricted x_1, x_2 :
 - $\overline{x_1}\langle u, v \rangle . P \triangleq (\nu y_1 y_2) \overline{x_1} y_2 . \overline{y_1} u . \overline{y_1} . v . P \\ x_2(w, t) . P \triangleq x_2(z) . z(w) . z(t) . P$
 - y_1 linear, typed $y_1 : !T.!U$, and y_2 dually.
 - Then $x_1 : *!(?T.?U)$, and x_2 dually.
 - $*!\langle T, U \rangle \triangleq *!(?T.?U)$ and $*?\langle T, U \rangle \triangleq \overline{*!\langle T, U \rangle}$.

- We own p_2 : ! bool .! bool .? bool.
- Want to delegate sending to another process, then read the result.

- We own p_2 : ! bool .! bool .? bool.
- Want to delegate sending to another process, then read the result.
- Writer: $p_1(z, w).\overline{z}$ true $.\overline{z}$ true $.\overline{w}z$.

Tuples: example

- ▶ We own p_2 : ! bool .! bool .? bool.
- Want to delegate sending to another process, then read the result.

- Writer: $p_1(z, w).\overline{z}$ true $.\overline{z}$ true $.\overline{w}z$.
- ► Reader: $(\nu x_1 x_2)\overline{p_2}\langle c, x_1 \rangle . x_2(z) . z(y)$.

Tuples: example

- We own p_2 : ! bool .! bool .? bool.
- Want to delegate sending to another process, then read the result.

- Writer: $p_1(z, w).\overline{z}$ true $.\overline{z}$ true $.\overline{w}z$.
- ► Reader: $(\nu x_1 x_2)\overline{p_2}\langle c, x_1 \rangle . x_2(z) . z(y)$.
- ▶ $p_1 : *? \langle ! \text{ bool } .! \text{ bool } .? \text{ bool } , !(? \text{ bool}) \rangle.$

▶ T = ! bool. *? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?

- $\blacktriangleright \ \overline{x_1} \operatorname{true}.(x_1(y) \mid x_1(z)) \mid x_2(x).(\overline{x_2} \operatorname{true} \mid \overline{x_2} \operatorname{false} \mid \overline{x_2} \operatorname{true})$
- $\blacktriangleright \ \overline{x_1} \operatorname{true} . x_1(y) \mid x_2(y) . \overline{x_2} \operatorname{true} \mid x_2(w) . \overline{x_2} \operatorname{true}$

- ▶ T = ! bool. *? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?
 - $\overline{x_1} \operatorname{true} .(x_1(y) \mid x_1(z)) \mid x_2(x).(\overline{x_2} \operatorname{true} \mid \overline{x_2} \operatorname{false} \mid \overline{x_2} \operatorname{true})$ Well typed.
 - $\quad \mathbf{\overline{x_1}} \operatorname{true} .x_1(y).x_1(y) \mid x_2(z)$
 - $\quad \blacktriangleright \quad \overline{x_1} \operatorname{true} . x_1(y) \mid x_2(y) . \overline{x_2} \operatorname{true} \mid x_2(w) . \overline{x_2} \operatorname{true}$

▶ T = ! bool. *? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?

- $\quad \overline{x_1} \operatorname{true} .(x_1(y) \mid x_1(z)) \mid x_2(x).(\overline{x_2} \operatorname{true} \mid \overline{x_2} \operatorname{false} \mid \overline{x_2} \operatorname{true})$ Well typed.
- $\overline{x_1} \operatorname{true} .x_1(y).x_1(y) \mid x_2(z)$ Well typed.
- $\quad \blacktriangleright \quad \overline{x_1} \operatorname{true} . x_1(y) \mid x_2(y) . \overline{x_2} \operatorname{true} \mid x_2(w) . \overline{x_2} \operatorname{true}$

▶ T = ! bool. *? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- $\quad \overline{x_1} \operatorname{true} .(x_1(y) \mid x_1(z)) \mid x_2(x).(\overline{x_2} \operatorname{true} \mid \overline{x_2} \operatorname{false} \mid \overline{x_2} \operatorname{true}) \\ \text{Well typed.}$
- $\overline{x_1} \text{ true } .x_1(y).x_1(y) \mid x_2(z)$ Well typed.
- ► x₁ true .x₁(y) | x₂(y).x₂ true | x₂(w).x₂ true Not well typed: x₂ is not used linearly for the first receive!

▶ T = ! bool. *? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- $\quad \overline{x_1} \operatorname{true} .(x_1(y) \mid x_1(z)) \mid x_2(x).(\overline{x_2} \operatorname{true} \mid \overline{x_2} \operatorname{false} \mid \overline{x_2} \operatorname{true})$ Well typed.
- $\overline{x_1} \operatorname{true} .x_1(y).x_1(y) \mid x_2(z)$ Well typed.
- ► x₁ true .x₁(y) | x₂(y).x₂ true | x₂(w).x₂ true Not well typed: x₂ is not used linearly for the first receive!
- Channel for both reading and writing?

- ▶ T = ! bool . * ? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?
 - $\quad \overleftarrow{x_1} \operatorname{true} .(x_1(y) \mid x_1(z)) \mid x_2(x).(\overline{x_2} \operatorname{true} \mid \overline{x_2} \operatorname{false} \mid \overline{x_2} \operatorname{true}) \\ \text{Well typed.}$
 - $\overline{x_1} \operatorname{true} .x_1(y).x_1(y) \mid x_2(z)$ Well typed.
 - ► x₁ true .x₁(y) | x₂(y).x₂ true | x₂(w).x₂ true Not well typed: x₂ is not used linearly for the first receive!
- Channel for both reading and writing?
 Use tuples to pass both ends of a channel!

$$\begin{array}{l} a_1: *! \langle ! \operatorname{bool}, ? \operatorname{bool} \rangle, a_2: *? \langle ! \operatorname{bool}, ? \operatorname{bool} \rangle \\ \vdash a_2(y_1, y_2).(\overline{y_1} \operatorname{false} \mid y_2(z)) \mid (\nu x_1 x_2) \overline{a_1} \langle x_1, x_2 \rangle \end{array}$$

Replication

Despite recursive types, processes so far are strongly normalizing.

New syntactic forms:

Processes: $P ::= \dots$ qx(y).P receive

We have $\lim x(y).P$ and $\lim x(y).P$.

New reduction rules:

 $\frac{[\text{R-LinCom}]}{(\nu xy)(\overline{x}v.P \mid \text{lin } y(z).Q \mid R) \to (\nu xy)(P \mid Q[v/z] \mid R)}$

[R-UNCOM]

 $(\nu xy)(\overline{x}v.P \mid \mathsf{un}\ y(z).Q \mid R) \to (\nu xy)(P \mid Q[v/z] \mid \mathsf{un}\ y(z).Q \mid R)$

New typing rules:

$$\frac{[\mathsf{T}\text{-}\mathsf{RecV}]}{q_1(\Gamma_1 \circ \Gamma_2)} \qquad \frac{\Gamma_1 \vdash x : q_2 ? T.S}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y) . P} (\Gamma_2 + x : S), y : T \vdash P$$

Same as before when
$$q_1 = \text{lin}: \ln(\Gamma)$$
 for all Γ .

▶ Not necessarily $q_1 = q_2$, but $q_2 = un$ implies $q_1 = un$.

New typing rules:

$$\frac{[\mathsf{T}\text{-}\mathsf{RecV}]}{q_1(\Gamma_1 \circ \Gamma_2)} \qquad \frac{\Gamma_1 \vdash x : q_2 ? T.S}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y) . P} (\Gamma_2 + x : S), y : T \vdash P$$

Same as before when
$$q_1 = \text{lin}: \ln(\Gamma)$$
 for all Γ .

▶ Not necessarily $q_1 = q_2$, but $q_2 = un$ implies $q_1 = un$.

New typing rules:

$$\frac{\begin{bmatrix} \text{T-RECV} \end{bmatrix}}{q_1(\Gamma_1 \circ \Gamma_2)} \qquad \Gamma_1 \vdash x : q_2 ? T.S \qquad (\Gamma_2 + x : S), y : T \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y).P}$$

Same as before when
$$q_1 = \text{lin}: \ln(\Gamma)$$
 for all Γ .

- Not necessarily $q_1 = q_2$, but $q_2 = un$ implies $q_1 = un$.
- un x₂(z).c̄true | x̄₁ true | x̄₁ false
 Assume c : lin ! bool. Is it well-typed? No, linear channel c is replicated!

$$(\nu x_1 x_2)(\operatorname{un} x_2(z).\overline{c} \operatorname{true} | \overline{x_1} \operatorname{true} | \overline{x_1} \operatorname{false}) \rightarrow (\nu x_1 x_2)(\operatorname{un} x_2(z).\overline{c} \operatorname{true} | \overline{c} \operatorname{true} | \overline{x_1} \operatorname{false}) \rightarrow (\nu x_1 x_2)(\operatorname{un} x_2(z).\overline{c} \operatorname{true} | \overline{c} \operatorname{true} | \overline{c} \operatorname{true})$$

New typing rules:

$$\frac{[\text{T-RECV}]}{q_1(\Gamma_1 \circ \Gamma_2)} \qquad \Gamma_1 \vdash x : q_2 ? T.S \qquad (\Gamma_2 + x : S), y : T \vdash P \\ \hline \Gamma_1 \circ \Gamma_2 \vdash q_1 x(y).P$$

Same as before when $q_1 = \text{lin}$: $\text{lin}(\Gamma)$ for all Γ .

▶ Not necessarily $q_1 = q_2$, but $q_2 = un$ implies $q_1 = un$.

un x₂(z).c̄ true | x̄₁ true | x̄₁ false Assume c : lin ! bool. Is it well-typed? No, linear channel c is replicated!

$$\begin{array}{l} (\nu x_1 x_2)(\operatorname{un} x_2(z).\overline{c} \operatorname{true} \mid \overline{x_1} \operatorname{true} \mid \overline{x_1} \operatorname{false}) \\ \to (\nu x_1 x_2)(\operatorname{un} x_2(z).\overline{c} \operatorname{true} \mid \overline{c} \operatorname{true} \mid \overline{x_1} \operatorname{false}) \\ \to (\nu x_1 x_2)(\operatorname{un} x_2(z).\overline{c} \operatorname{true} \mid \overline{c} \operatorname{true} \mid \overline{c} \operatorname{true}) \end{array}$$

< 日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0

Well typed: un $x_2(z).\overline{z}$ true. Cannot be used by $\overline{x_1}c \mid \overline{x_1}c$.

- Milner's original, more general replication: $P = P | P | \dots$
- How can this be simulated?

General replication

- Milner's original, more general replication: $P = P | P | \dots$
- How can this be simulated?

$$!P \triangleq (\nu x_1 x_2)(\overline{x_1} x_2 \mid \mathsf{un} \ x_2(y).(P \mid \overline{x_1} y))$$

where $x_1, x_2, y \notin \text{fv}(P)$.

General replication

- Milner's original, more general replication: $P = P | P | \dots$
- How can this be simulated?

$$!P \triangleq (\nu x_1 x_2)(\overline{x_1} x_2 \mid \mathsf{un} \ x_2(y).(P \mid \overline{x_1} y))$$

where $x_1, x_2, y \notin \text{fv}(P)$.

Admissible typing rule:

$$\frac{\operatorname{un}(\Gamma) \quad \Gamma \vdash P}{\Gamma \vdash !P}$$

where $x_1 : \mu a. \text{ un } !a.a \text{ and } x_2 : \mu b. \text{ un } ?b.b.$

Choice

New syntactic forms:

Ρ

rocesses:

$$P ::= \dots$$

 $x \triangleleft l.P$ selection
 $x \triangleright \{i : P_i\}_{i \in I}$ branching

New reduction rules:

 $\frac{\substack{[\text{R-CASE}]}{j \in I}}{(\nu xy)(x \triangleleft j.P \mid y \triangleright \{i : Q_i\}_{i \in I} \mid R) \to (\nu xy)(P \mid Q_j \mid R)}$

Choice: typing New syntactic forms:

Pretypes:

$$\begin{array}{c}p::=\dots\\ \oplus\{i:S_i\}_{i\in I} \quad \text{select}\\ \&\{i:S_i\}_{i\in I} \quad \text{branch}\end{array}$$

New duality rules:

$$\overline{q \oplus \{i:S_i\}_{i \in I}} = q \& \{i:\overline{S_i}\}_{i \in I} \qquad \qquad \overline{q \& \{i:S_i\}_{i \in I}} = q \oplus \{i:\overline{S_i}\}_{i \in I}$$

New typing rules:

$$\frac{\prod_{I:\text{Branch}} [\Gamma \cdot \text{Branch}]}{\Gamma_1 \vdash x : q \& \{i:S_i\}_{i \in I}} \quad \forall i \in I: \Gamma_2 + x : S_i \vdash P_i}{\Gamma_1 \circ \Gamma_2 \vdash x \triangleright \{i:P_i\}_{i \in I}}$$

$$\frac{[\operatorname{T-Sel}]}{\Gamma_1 \vdash x : q \oplus \{i : S_i\}_{i \in I} \qquad \Gamma_2 + x : S_j \vdash P \qquad j \in I}{\Gamma_1 \circ \Gamma_2 \vdash x \triangleleft j.P}$$

Well typed?

- $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l:0\}$
- $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l:0,m:0\}$
- $\blacktriangleright x_1 \triangleleft l \mid x_1 \triangleleft m \mid x_1 \triangleleft m \mid x_2 \triangleright \{l:0,m:0\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- $\blacktriangleright \ \overline{x_1} \operatorname{true} \mid x_2 \triangleright \{l:0\}$
- $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$
- $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{m:0\}$

Well typed?

- $\begin{array}{l} \blacktriangleright \ x_1 \triangleleft l \mid x_2 \triangleright \{l:0\} \\ \mbox{Yes:} \ x_1: q \oplus \{l: {\rm end}\}, x_2: q \& \{l: {\rm end}\}. \end{array}$
- $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l:0,m:0\}$
- $\blacktriangleright \ x_1 \triangleleft l \mid x_1 \triangleleft m \mid x_1 \triangleleft m \mid x_2 \triangleright \{l:0,m:0\}$
- $\blacktriangleright \ \overline{x_1} \operatorname{true} \mid x_2 \triangleright \{l:0\}$
- $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$
- $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{m:0\}$

Well typed?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 $x_1 \triangleleft l \mid x_2 \triangleright \{m:0\}$

Well typed?

Well typed?

 $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l:0\}$ Yes: $x_1 : q \oplus \{l : end\}, x_2 : q \& \{l : end\}.$ $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1 : q \oplus \{l : end, m : end\}, x_2 : q \& \{l : end, m : end\}.$ $\blacktriangleright x_1 \triangleleft l \mid x_1 \triangleleft m \mid x_1 \triangleleft m \mid x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1: \mu a. \text{ un } \oplus \{l: a, m: a\} \triangleq * \oplus \{l, m\}, x_2: \mu b. \text{ un } \& \{l: b, m: b\} \triangleq * \& \{l, m\}.$ $\blacktriangleright \overline{x_1}$ true $|x_2 \triangleright \{l:0\}$ No: $x_1 : q!$ bool, $x_2 : q\&\{l : end\}.$ $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$ $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{m:0\}$

Well typed?

$$\begin{array}{l} \mathbf{x}_{1} \triangleleft l \mid x_{2} \triangleright \{l:0\} \\ \text{Yes: } x_{1}:q \oplus \{l: \mathsf{end}\}, x_{2}:q \& \{l: \mathsf{end}\}. \\ \mathbf{x}_{1} \triangleleft l \mid x_{2} \triangleright \{l:0,m:0\} \\ \text{Yes: } x_{1}:q \oplus \{l: \mathsf{end},m:\mathsf{end}\}, x_{2}:q \& \{l:\mathsf{end},m:\mathsf{end}\}. \\ \mathbf{x}_{1} \triangleleft l \mid x_{1} \triangleleft m \mid x_{1} \triangleleft m \mid x_{2} \triangleright \{l:0,m:0\} \\ \text{Yes: } \\ x_{1}:\mu a. \, \mathsf{un} \oplus \{l:a,m:a\} \triangleq * \oplus \{l,m\}, x_{2}:\mu b. \, \mathsf{un} \& \{l:b,m:b\} \triangleq * \& \{l,m\}. \\ \mathbf{\overline{x_{1}} true} \mid x_{2} \triangleright \{l:0\} \\ \text{No: } x_{1}:q! \operatorname{bool}, x_{2}:q \& \{l:\mathsf{end}\}. \\ \mathbf{x}_{1} \triangleleft l \mid x_{2}(z) \\ \text{No: } x_{1}:q \oplus \{l:\mathsf{end},\ldots\}, x_{2}:q?T. \\ \mathbf{x}_{1} \triangleleft l \mid x_{2} \triangleright \{m:0\} \end{array}$$

Well typed?

 $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l:0\}$ Yes: $x_1 : q \oplus \{l : end\}, x_2 : q \& \{l : end\}.$ $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1 : q \oplus \{l : end, m : end\}, x_2 : q \& \{l : end, m : end\}.$ $\blacktriangleright x_1 \triangleleft l \mid x_1 \triangleleft m \mid x_1 \triangleleft m \mid x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1: \mu a. \text{ un } \oplus \{l: a, m: a\} \triangleq * \oplus \{l, m\}, x_2: \mu b. \text{ un } \& \{l: b, m: b\} \triangleq * \& \{l, m\}.$ $\blacktriangleright \overline{x_1}$ true $|x_2 \triangleright \{l:0\}$ No: $x_1 : q!$ bool, $x_2 : q\&\{l : end\}$. $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$ No: $x_1 : q \oplus \{l : end, ...\}, x_2 : q?T$. $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{m:0\}$ No: $x_1 : q \oplus \{l : end, \ldots\}, x_2 : q \& \{m : end\}.$

Example: map

How to use a *map* operating on x_2 ?

Put operation for key k and value v:

 $x_1 \triangleleft \mathsf{put}.\overline{x_1}k.\overline{x_1}v$

► Get operation for key k:

 $x_1 \triangleleft get.\overline{x_1}k.x_1 \triangleright \{ some : x_1(y).P, none : Q \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

What is the type of the client's side of the (linear) map?

Example: map

How to use a *map* operating on x_2 ?

Put operation for key k and value v:

 $x_1 \triangleleft \mathsf{put}.\overline{x_1}k.\overline{x_1}v$

Get operation for key k:

 $x_1 \triangleleft get.\overline{x_1}k.x_1 \triangleright \{ some : x_1(y).P, none : Q \}$

What is the type of the client's side of the (linear) map? x₁ : ⊕{put : ! key .! value . end , get : ! key .&{some : ? value . end , none : end}}

- Iterator of booleans: offers at x₂ operations hasNext and next, until hasNext returns "no".
- ► A client that reads and discards every value. Which is correct?
 - $\blacktriangleright \ !(\mathsf{un} \ \mathsf{loop}_2(y).y \triangleleft \mathsf{hasNext}.y \triangleright \{\mathsf{yes} : y \triangleleft \mathsf{next}.y(z).\overline{\mathsf{loop}_1}y, \mathsf{no} : 0\}) \mid \overline{\mathsf{loop}_1}x_2$
 - $\blacktriangleright \ !(\mathsf{un} \ \mathsf{loop}_2(y).x_2 \triangleleft \mathsf{hasNext}.x_2 \triangleright \{\mathsf{yes} : x_2 \triangleleft \mathsf{next}.x_2(z).\overline{\mathsf{loop}_1}y, \mathsf{no} : 0\}) \mid \overline{\mathsf{loop}_1} \text{ true}$

- Iterator of booleans: offers at x₂ operations hasNext and next, until hasNext returns "no".
- A client that reads and discards every value. Which is correct?
 - $\begin{array}{l} \bullet \hspace{0.1 cm} !(\mathsf{un} \hspace{0.1 cm} loop_2(y).y \triangleleft hasNext.y \triangleright \{ yes: y \triangleleft next.y(z).\overline{loop_1}y, no: 0 \}) \mid \overline{loop_1}x_2 \\ \text{Yes.} \end{array}$
 - ▶ $!(\text{un } loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes : x_2 \triangleleft next.x_2(z).\overline{loop_1}y, no : 0\}) | \overline{loop_1} \text{ true } No: x_2 \text{ is linear.}$

- Iterator of booleans: offers at x₂ operations hasNext and next, until hasNext returns "no".
- A client that reads and discards every value. Which is correct?
 - $\begin{array}{l} \bullet \hspace{0.1 cm} !(\mathsf{un} \hspace{0.1 cm} loop_2(y).y \triangleleft hasNext.y \triangleright \{ yes: y \triangleleft next.y(z).\overline{loop_1}y, no: 0 \}) \mid \overline{loop_1}x_2 \\ \text{Yes.} \end{array}$
 - ▶ $!(\text{un } loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes : x_2 \triangleleft next.x_2(z).\overline{loop_1}y, no : 0\}) \mid \overline{loop_1} \text{ true } No: x_2 \text{ is linear.}$
- Type of x_2 is linear, yet infinite:

 $\oplus \{ hasNext : \& \{ no : end, yes : \oplus \{ next : ! bool . \oplus \{ hasNext : \& \{ ... \} \} \} \}$

- Iterator of booleans: offers at x₂ operations hasNext and next, until hasNext returns "no".
- A client that reads and discards every value. Which is correct?
 - $\begin{array}{l} | (\mathsf{un} \ \mathsf{loop}_2(y).y \triangleleft \mathsf{hasNext}.y \triangleright \{ \mathsf{yes} : y \triangleleft \mathsf{next}.y(z).\overline{\mathsf{loop}_1}y, \mathsf{no} : 0 \}) \mid \overline{\mathsf{loop}_1}x_2 \\ \\ \text{Yes.} \end{array}$
 - ▶ $!(\text{un } loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes : x_2 \triangleleft next.x_2(z).\overline{loop_1}y, no : 0\}) \mid \overline{loop_1} \text{ true } No: x_2 \text{ is linear.}$
- **>** Type of x_2 is linear, yet infinite:

 $\oplus \{ hasNext : \& \{ no : end, yes : \oplus \{ next : ! bool . \oplus \{ hasNext : \& \{ ... \} \} \} \}$

Example: iterator

- Iterator of booleans: offers at x₂ operations hasNext and next, until hasNext returns "no".
- ► A client that reads and discards every value. Which is correct?
 - $\begin{array}{l} \bullet \hspace{0.1 cm} !(\mathsf{un} \hspace{0.1 cm} \mathsf{loop}_2(y). y \triangleleft \mathsf{hasNext}. y \triangleright \{ \mathsf{yes} : y \triangleleft \mathsf{next}. y(z). \overline{\mathsf{loop}_1}y, \mathsf{no} : 0 \}) \mid \overline{\mathsf{loop}_1}x_2 \\ \mathsf{Yes}. \end{array}$
 - $\ \ !(\text{un } \textit{loop}_2(y).x_2 \triangleleft \textit{hasNext}.x_2 \triangleright \{\textit{yes}: x_2 \triangleleft \textit{next}.x_2(z).\overline{\textit{loop}_1}y, \textit{no}: 0\}) \mid \overline{\textit{loop}_1} \text{ true No: } x_2 \text{ is linear.}$
- Type of x_2 is linear, yet infinite:

 $\oplus \{ hasNext : \& \{ no : end, yes : \oplus \{ next : ! bool . \oplus \{ hasNext : \& \{ ... \} \} \} \}$

Finite form?

 $\mu a. \oplus \{ hasNext : \& \{ no : end, yes : \oplus \{ next : ! bool.a \} \} \}$

・ロト・日本・日本・日本・日本・日本

Primitive types are redundant

▶ With choice, primitive types are redundant.

Example: booleans.

Primitive types are redundant

▶ With choice, primitive types are redundant.

Example: booleans.

$$\begin{split} \mathsf{true} &\triangleq !(t_1 \triangleleft \mathit{true}) \\ \mathsf{false} &\triangleq !(f_1 \triangleleft \mathit{false}) \\ \mathsf{if}\, x \, \mathsf{then}\, P \, \mathsf{else}\, Q \triangleq x \triangleright \{\mathit{true}: P, \mathit{false}: Q\} \end{split}$$

true | false | if t_2 then P else $Q \rightarrow \rightarrow$ true | false | P

- Patterns of ill formedness. Why?
 - $\blacktriangleright \quad \text{if } x \text{ then } P \text{ else } Q \\$
 - $\blacktriangleright \ \overline{a} \operatorname{true} \mid a(z)$
 - $\blacktriangleright (\nu xy)(\overline{x} \operatorname{true} \mid y \triangleright \{i : P_i\}_{i \in I})$

- Patterns of ill formedness. Why?
 - $\blacktriangleright \quad \text{if } x \text{ then } P \text{ else } Q$
 - \boldsymbol{x} is not a boolean value.
 - $\blacktriangleright \ \overline{a} \operatorname{true} \mid a(z)$
 - $\blacktriangleright \ (\nu xy)(\overline{x} \operatorname{true} \mid y \triangleright \{i: P_i\}_{i \in I})$

- Patterns of ill formedness. Why?
 - $\blacktriangleright \quad \text{if } x \text{ then } P \text{ else } Q$
 - \boldsymbol{x} is not a boolean value.
 - $\blacktriangleright \ \overline{a} \operatorname{true} \mid a(z)$
 - a is unrestricted, but used differently.
 - $\blacktriangleright (\nu xy)(\overline{x} \operatorname{true} | y \triangleright \{i : P_i\}_{i \in I})$

- Patterns of ill formedness. Why?
 - $\blacktriangleright \quad \text{if } x \, \text{then } P \, \text{else} \, Q$
 - x is not a boolean value.
 - $\blacktriangleright \ \overline{a} \operatorname{true} \mid a(z)$
 - \boldsymbol{a} is unrestricted, but used differently.
 - $(\nu xy)(\overline{x} \operatorname{true} | y \triangleright \{i : P_i\}_{i \in I})$ x and y are not typed dually.

- Patterns of ill formedness. Why?
 - $\blacktriangleright \quad \text{if } x \, \text{then } P \, \text{else} \, Q$
 - \boldsymbol{x} is not a boolean value.
 - $\blacktriangleright \ \overline{a} \operatorname{true} \mid a(z)$
 - \boldsymbol{a} is unrestricted, but used differently.
 - $\blacktriangleright \ (\nu xy)(\overline{x} \operatorname{true} \mid y \triangleright \{i: P_i\}_{i \in I})$
 - \boldsymbol{x} and \boldsymbol{y} are not typed dually.
- ► Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If $\emptyset \vdash P$ and $P \rightarrow^* Q^2$, then Q is well formed.

 $^{^2 \}rightarrow^*$ means zero or more steps.

- Patterns of ill formedness. Why?
 - $\blacktriangleright \quad \text{if } x \text{ then } P \text{ else } Q \\$
 - x is not a boolean value.
 - $\blacktriangleright \ \overline{a} \operatorname{true} \mid a(z)$
 - \boldsymbol{a} is unrestricted, but used differently.
 - $(\nu xy)(\overline{x} \operatorname{true} | y \triangleright \{i : P_i\}_{i \in I})$ x and y are not typed dually.
- Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If $\emptyset \vdash P$ and $P \rightarrow^* Q$, then Q is well formed.

Follows from:

Theorem (Preservation)

If $\Gamma \vdash P$ and $P \rightarrow Q$, then $\Gamma \vdash Q$.

Theorem (Safety) If $\emptyset \vdash P$, then P is well formed.