Fundamentals of Session Types Based on the paper by Vasco T. Vasconcelos

Bas van den Heuvel and Peter Thiemann

2024-07-10

KO K K Ø K K E K K E K V K K K K K K K K K

Introduction

- \blacktriangleright The π -calculus allows all sorts of unexpected, wild behavior.
- \triangleright We will use types to "tame" processes.
- ▶ The idea is that every channel is assigned a communication protocol expressed as a session type.
- \blacktriangleright Typing ensures that well-typed processes satisfy...
	- ▶ Protocol fidelity: a process uses every channel according to its session type.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ Communication safety: no communication errors can occur.

Process syntax

- \triangleright Channels consist of two ends: in $(vxy)P, x$ is the server end and y the client end. We call x and y co-variables.
- \triangleright Variable y occurs bound in $x(y)$. P and $(vxy)P$. Variable x occurs bound in $(vxy)P$.
- \blacktriangleright Non-bound variables are free: fv(P).
- ▶ Capture-free substitution of x by v in $P: P[v/x]$.
- ▶ Process equality holds up to alpha conversion.
- ▶ Barendregt's variable convention: bound variables are pairwise distinct and distinct from free variables.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright We omit trailing ".0".

Operational semantics

Structural congruence $[P \equiv Q]$:

 $P | Q \equiv Q | P$ $(P | Q) | R \equiv P | (Q | R)$ $P | 0 \equiv P$

 $(vxy)P \mid Q \equiv (vxy)(P \mid Q)^{1}$ $(vxy)0 \equiv 0$ $(vwx)(vyz)P \equiv (vyz)(vwx)P$

Reduction rules $(P \to P)$:

[R-Com] $(\nu xy)(\overline{x}v.P \mid y(z).Q \mid R) \rightarrow (\nu xy)(P \mid Q[v/z] \mid R)$

¹Condition $x, y \notin f_v(Q)$ not necessary by variable convention.

KOD KAD KED KED E YOUR

 \blacktriangleright $(\nu x_1 x_2)(\overline{x_1}$ true $|x_2(y).\overline{y}$ false)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \blacktriangleright $(\nu x_1 x_2)$ if x_1 then 0 else 0
- $\blacktriangleright \overline{x}$ true $|x(y)|$

 \blacktriangleright $(\nu x_1 x_2)(\overline{x_1}$ true $|x_2(y).\overline{y}$ false) Substitution $[true / y]$ yields a stuck process: cannot send on a boolean value.

KO KKOKKEKKEK E DAG

- \blacktriangleright $(\nu x_1 x_2)$ if x_1 then 0 else 0
- $\blacktriangleright \overline{x}$ true $|x(y)|$

 \blacktriangleright $(\nu x_1 x_2)(\overline{x_1}$ true $|x_2(y).\overline{y}$ false) Substitution $[true/y]$ yields a stuck process: cannot send on a boolean value.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

- \blacktriangleright $(\nu x_1 x_2)$ if x_1 then 0 else 0 Cannot test a channel end rather than a boolean value.
- $\blacktriangleright \overline{x}$ true $|x(y)|$

 \blacktriangleright $(\nu x_1 x_2)(\overline{x_1}$ true $|x_2(y).\overline{y}$ false)

Substitution $[true / y]$ yields a stuck process: cannot send on a boolean value.

- \blacktriangleright $(\nu x_1 x_2)$ if x_1 then 0 else 0 Cannot test a channel end rather than a boolean value.
- $\blacktriangleright \overline{x}$ true $|x(y)|$

Both threads try to write and read simultaneously on the same channel end.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ X (리 X X B X X B X X B X X O Q O X

 \blacktriangleright Linearity: value of type lin T must be used exactly once. \blacktriangleright Unrestricted: value of type un T can be used zero or more times.

- \blacktriangleright Linearity: value of type lin T must be used exactly once.
- \blacktriangleright Unrestricted: value of type un T can be used zero or more times.
- \triangleright We can freely reorder assumptions in a context.
- ▶ We omit all linear type qualifier and only annotate unrestricted types.
- \blacktriangleright We omit trailing ". end".
- \triangleright Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- \triangleright Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

- \blacktriangleright Linearity: value of type lin T must be used exactly once.
- \blacktriangleright Unrestricted: value of type un T can be used zero or more times.
- \triangleright We can freely reorder assumptions in a context.
- ▶ We omit all linear type qualifier and only annotate unrestricted types.
- \blacktriangleright We omit trailing ". end".
- \triangleright Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- \triangleright Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

KORK ERKER ADAM ADA

Well formed?

 $\blacktriangleright \overline{a}$ true $|\overline{a}$ true $|\overline{a}$ false

\blacktriangleright \bar{c} true $|\bar{c}$ false

- \blacktriangleright Linearity: value of type lin T must be used exactly once.
- \blacktriangleright Unrestricted: value of type un T can be used zero or more times.
- \triangleright We can freely reorder assumptions in a context.
- ▶ We omit all linear type qualifier and only annotate unrestricted types.
- \blacktriangleright We omit trailing ". end".
- \triangleright Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- \triangleright Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

KORK ERKER ADAM ADA

Well formed?

- $\blacktriangleright \overline{a}$ true $|\overline{a}$ true $|\overline{a}$ false Yes.
- \triangleright \vec{c} true $|\vec{c}$ false

- \blacktriangleright Linearity: value of type lin T must be used exactly once.
- \blacktriangleright Unrestricted: value of type un T can be used zero or more times.
- \triangleright We can freely reorder assumptions in a context.
- ▶ We omit all linear type qualifier and only annotate unrestricted types.
- \blacktriangleright We omit trailing ". end".
- \triangleright Co-variables, even if not explicitly under restriction, are annotated, e.g., (x_1, x_2) .
- \triangleright Variable x for (arbitrarily) qualified type, a for unrestricted type, c for linear type.

KORK ERKER ADAM ADA

Well formed?

- $\blacktriangleright \overline{a}$ true $|\overline{a}$ true $|\overline{a}$ false Yes.
- \blacktriangleright \bar{c} true $|\bar{c}$ false

No.

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U} = q!T.\overline{U} \qquad \qquad \overline{q!T.U} = q?T.\overline{U} \qquad \qquad \overline{\text{end}} = \text{end}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Should we accept these processes?

 $\blacktriangleright \overline{x_1}$ true $|x_2(z)|$

$$
\blacktriangleright \overline{c_1} \, \mathsf{true} \, . c_1(w) \mid c_2(z) . \overline{c_2} \, \mathsf{false}
$$

 $\blacktriangleright \overline{x_1}$ true $|\overline{x_2}|$ false

$$
\blacktriangleright \overline{c_1} \mathsf{true}.c_1(w) | c_2(z).c_2(t)
$$

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Should we accept these processes?

- $\blacktriangleright \overline{x_1}$ true $|x_2(z)|$ Yes: $x_1 : q!$ bool, $x_2 : q?$ bool = $\overline{q!}$ bool.
- \triangleright $\overline{c_1}$ true $.c_1(w) | c_2(z).\overline{c_2}$ false

 $\blacktriangleright \overline{x_1}$ true $\mid \overline{x_2}$ false

$$
\blacktriangleright \overline{c_1} \mathsf{true}.c_1(w) | c_2(z).c_2(t)
$$

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

KORKARYKERKER OQO

Should we accept these processes?

- $\blacktriangleright \overline{x_1}$ true $|x_2(z)|$ Yes: $x_1 : q!$ bool, $x_2 : q?$ bool = $\overline{q!}$ bool.
- \triangleright $\overline{c_1}$ true $.c_1(w) | c_2(z).\overline{c_2}$ false Yes: c_1 : lin ! bool . lin ? bool , c_2 : lin ? bool . lin ! bool = $\overline{\text{lin}}$! bool . lin ? bool.
- $\blacktriangleright \overline{x_1}$ true $|\overline{x_2}|$ false

 \triangleright $\overline{c_1}$ true .c₁(w) | c₂(z).c₂(t)

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

KORKARYKERKER OQO

Should we accept these processes?

- $\blacktriangleright \overline{x_1}$ true $|x_2(z)|$ Yes: $x_1 : q!$ bool, $x_2 : q?$ bool = $\overline{q!}$ bool.
- \triangleright $\overline{c_1}$ true $.c_1(w) | c_2(z).\overline{c_2}$ false Yes: c_1 : lin!bool . lin?bool , c_2 : lin?bool . lin!bool = $\overline{\text{lin}!\text{bool}!\text{in}!\text{bool}}$.
- $\blacktriangleright \overline{x_1}$ true $\mid \overline{x_2}$ false No: $x_1 : q!$ bool, $x_2 : q!$ bool $\neq \overline{q!}$ bool.
- \triangleright $\overline{c_1}$ true .c₁(w) | c₂(z).c₂(t)

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

Should we accept these processes?

- $\blacktriangleright \overline{x_1}$ true $|x_2(z)|$ Yes: $x_1 : q!$ bool, $x_2 : q?$ bool = $\overline{q!}$ bool.
- \triangleright $\overline{c_1}$ true . $c_1(w) | c_2(z) . \overline{c_2}$ false Yes: c_1 : lin!bool . lin?bool , c_2 : lin?bool . lin!bool = lin!bool . lin?bool.
- $\blacktriangleright \overline{x_1}$ true $\mid \overline{x_2}$ false No: $x_1 : q!$ bool, $x_2 : q!$ bool $\neq \overline{q!}$ bool.
- \triangleright $\overline{c_1}$ true .c₁(w) | c₂(z).c₂(t) No: c_1 : lin ! bool . lin [?](#page-17-0) T, c_2 : lin ? bool [.](#page-19-0) lin ? $U \neq \overline{\lim |\text{bool}|}$. lin ? T .

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

Why not $\overline{q?T.U} = q!\overline{T}.\overline{U}$? Let's assume this (wrong) setting for this example

$$
\blacktriangleright \ P = \overline{x_1} y_2 \mid x_2(z).\overline{z} \ \text{true} \mid \overline{y_1} \ \text{false}
$$

- ▶ Typed at context x_1 : !(! bool), x_2 : ?(? bool), y_1 : ! bool, y_2 : ! bool.
- ▶ Type of y_2 in send on x_1 is dual to type of z in receive on x_2 : ! bool = ? bool.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

Why not $\overline{q?T.U} = q!\overline{T}.\overline{U}$? Let's assume this (wrong) setting for this example

$$
\blacktriangleright \ P = \overline{x_1} y_2 \mid x_2(z).\overline{z} \ \text{true} \mid \overline{y_1} \ \text{false}
$$

- ▶ Typed at context x_1 : !(!bool), x_2 : ?(?bool), y_1 : !bool, y_2 : !bool.
- ▶ Type of y_2 in send on x_1 is dual to type of z in receive on x_2 : \overline{I} bool = ? bool.
- ▶ $P \rightarrow \overline{y_2}$ true $|\overline{y_1}|$ false: an illegal process!

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900 Q

Duality is not total:

- ▶ Not defined on bool (or any similar "base" types).
- ▶ Only defined on session types: send, receive, and end.

Motto

The server's type is dual to the client's type.

$$
\overline{q?T.U}=q!T.\overline{U}\qquad\qquad \overline{q!T.U}=q?T.\overline{U}\qquad\qquad \overline{\text{end}}=\text{end}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Duality is not total:

- ▶ Not defined on bool (or any similar "base" types).
- ▶ Only defined on session types: send, receive, and end.
- \triangleright Suppose $\overline{bool} = \text{bool}$.
- \triangleright We could type illegal process (νxy) if x then 0 else 0.

Invariants:

▶ Linear channel ends occur in exactly one thread.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

 \triangleright Co-variables have dual types.

Invariants:

▶ Linear channel ends occur in exactly one thread. Enforced by context split.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright Co-variables have dual types.

Invariants:

▶ Linear channel ends occur in exactly one thread. Enforced by context split.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Co-variables have dual types. Enforced by typing rule for restriction.

Invariants:

▶ Linear channel ends occur in exactly one thread. Enforced by context split.

 \triangleright Co-variables have dual types. Enforced by typing rule for restriction.

Qualifier predicates:

$$
\blacktriangleright \text{ un}(T) \text{ iff } T = \text{bool or } T = \text{end or } T = \text{un } p.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright $\lim(T)$ iff true.

•
$$
q(\Gamma)
$$
 iff $(x : T) \in \Gamma$ implies $q(T)$.

Type system: context split and update

Context split $(\Gamma = \Gamma \circ \Gamma)$:

$$
\frac{\Gamma = \Gamma_1 \circ \Gamma_2 \quad \text{un}(T)}{\Gamma, x : T = (\Gamma_1, x : T) \circ (\Gamma_2, x : T)}
$$
\n
$$
\frac{\Gamma = \Gamma_1 \circ \Gamma_2}{\Gamma, x : \text{lin } p = (\Gamma_1, x : \text{lin } p) \circ \Gamma_2} \qquad \frac{\Gamma = \Gamma_1 \circ \Gamma_2}{\Gamma, x : \text{lin } p = \Gamma_1 \circ (\Gamma_2, x : \text{lin } p)}
$$
\n
$$
\text{Context update } (\Gamma + x : T = \Gamma):
$$
\n
$$
\text{unitary}(\text{Tr})
$$

$$
\frac{x: U \notin \Gamma}{\Gamma + x: T = \Gamma, x: T} \qquad \qquad \frac{\text{un}(T)}{(\Gamma, x: T) + x: T = (\Gamma, x: T)}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Type system: typing rules for values

Typing rules for values $(Γ ⊢ v : T)$:

Type system: typing rules for processes Typing rules for processes $(Γ ⊢ P)$:

[T-Inact] un(Γ) Γ ⊢ 0 [T-Par] Γ¹ ⊢ P Γ² ⊢ Q Γ¹ ◦ Γ² ⊢ P | Q [T-Res] Γ, x : S, y : S ⊢ P Γ ⊢ (νxy)P

[T-If] Γ¹ ⊢ v : bool Γ² ⊢ P Γ² ⊢ Q Γ¹ ◦ Γ² ⊢ if v then P else Q

$$
\frac{\Gamma_1\vdash x:q?T.S\qquad (\Gamma_2+x:S),y:T\vdash P}{\Gamma_1\circ\Gamma_2\vdash x(y).P}
$$

$$
\frac{\Gamma_1 \vdash x : q!T.S \qquad \Gamma_2 \vdash v : T \qquad \Gamma_3 + x : S \vdash P}{\Gamma_1 \circ \Gamma_2 \circ \Gamma_3 \vdash \overline{x}v.P}
$$

- \blacktriangleright Cannot use unrestricted channels (yet).
- \triangleright Deadlock is possible, even when well typed.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Cannot use unrestricted channels (yet). To type \bar{x} true $|\bar{x}$ true, we seek context with x : un ! bool T . But rule [T-SEND] requires $(x : un!bool.T) + (x : T)$: impossible!

 \triangleright Deadlock is possible, even when well typed.

- \blacktriangleright Cannot use unrestricted channels (yet).
- ▶ Deadlock is possible, even when well typed. $\overline{x_1}$ true . $\overline{y_1}$ false $|y_2(x) . x_2(w)|$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \blacktriangleright Cannot use unrestricted channels (yet).
- \triangleright Deadlock is possible, even when well typed. $\overline{x_1}$ true . $\overline{y_1}$ false $|y_2(x) . x_2(w)|$ $\overline{x_1}y_1 | x_2(z).\overline{z}$ true . $y_2(w)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Recursive types

New syntactic forms:

Typees:	
$T ::= \ldots$	
a	type variable
$\mu a.T$	recursive type

 \blacktriangleright μ is a binder, giving rise to bound and free type variables, and alpha equivalence.

- \triangleright Capture-avoiding substitution of a by U in T: $T[U/a]$.
- ▶ Two types are equal if their *infinite unfoldings* are syntactically equal: $\mu a.T \equiv T[\mu a.T/a]$ until the type does not start with μ .

• Therefore,
$$
q(\mu a.T) = q(T)
$$
.

New duality rules:

$$
\overline{\mu a.T} = \mu a.\overline{T} \qquad \qquad \overline{a} = a
$$

KORKARYKERKER OQO

Recursive types: example

▶ Now we can derive

 x_2 : un ?(! bool). $T \vdash x_2(z) . \overline{z}$ true $|x_2(w) . \overline{w}$ false.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →
Recursive types: example

▶ Now we can derive

 x_2 : un ?(! bool). $T \vdash x_2(z) . \overline{z}$ true $|x_2(w) . \overline{w}$ false.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

```
\blacktriangleright For which T?
```
▶ For example, $T \equiv \mu a$. un ?(! bool). a .

Recursive types: example

▶ Now we can derive

 $x_2 :$ un ?(! bool). $T \vdash x_2(z) . \overline{z}$ true $\vert x_2(w) . \overline{w}$ false.

- \blacktriangleright For which T ?
- ▶ For example, $T \equiv \mu a$. un ?(! bool). a .
- ▶ Abbreviation for this form of type: $*U \triangleq \mu a.U.a.$

Tuples

 \blacktriangleright No primitive tuple passing.

- \blacktriangleright For linear x:
	- $\blacktriangleright \overline{x}\langle u, v \rangle.P \triangleq \overline{x}u.\overline{x}v.P$
	- ▶ Given $u : T, v : U$, typable $x : !T$.! U .
- \blacktriangleright For unrestricted x_1, x_2 :

$$
\triangleright \frac{\overline{x_1}\langle u, v \rangle \cdot P \triangleq (\nu y_1 y_2) \overline{x_1} y_2 \cdot \overline{y_1} u \cdot \overline{y_1} \cdot v \cdot P}{x_2(w, t) \cdot P \triangleq x_2(z) \cdot z(w) \cdot z(t) \cdot P}
$$

- \blacktriangleright y_1 linear, typed y_1 : !T.!U, and y_2 dually.
- ▶ Then x_1 : $*!(?T$? U), and x_2 dually.

$$
\blacktriangleright \ \ \ast! \langle T, U \rangle \triangleq \ast! (?T. ?U) \ \text{and} \ \ \ast! \ \langle T, U \rangle \triangleq \overline{\ast! \langle T, U \rangle}.
$$

- \blacktriangleright We own p_2 : ! bool .! bool .? bool.
- ▶ Want to delegate sending to another process, then read the result.

KO KKOKKEKKEK E DAG

- \blacktriangleright We own p_2 : ! bool .! bool .? bool.
- ▶ Want to delegate sending to another process, then read the result.

KO KKOKKEKKEK E DAG

▶ Writer: $p_1(z, w) \cdot \overline{z}$ true \overline{z} true $\overline{w}z$.

Tuples: example

- \blacktriangleright We own p_2 : ! bool .! bool .? bool.
- ▶ Want to delegate sending to another process, then read the result.

- ▶ Writer: $p_1(z, w) \cdot \overline{z}$ true \overline{z} true $\overline{w}z$.
- ▶ Reader: $(\nu x_1 x_2) \overline{p_2} \langle c, x_1 \rangle . x_2(z) . z(y)$.

Tuples: example

- \blacktriangleright We own p_2 : ! bool .! bool .? bool.
- ▶ Want to delegate sending to another process, then read the result.

- ▶ Writer: $p_1(z, w) \cdot \overline{z}$ true \overline{z} true $\overline{w}z$.
- ▶ Reader: $(\nu x_1 x_2) \overline{p_2} \langle c, x_1 \rangle . x_2(z) . z(y)$.
- \blacktriangleright $p_1 : *? \langle ! \text{bool} : \text{bool} : ? \text{bool} \rangle$.

▶ T = ! bool . $*$? bool and x_1 : T, x_2 : \overline{T} . Are the following processes well typed?

- $\triangleright \overline{x_1}$ true . $(x_1(y) | x_1(z)) | x_2(x)$. $(\overline{x_2}$ true $|\overline{x_2}$ false $|\overline{x_2}$ true)
- $\blacktriangleright \overline{x_1}$ true $x_1(y).x_1(y) | x_2(z)$
- $\blacktriangleright \overline{x_1}$ true $x_1(y) | x_2(y) \cdot \overline{x_2}$ true $|x_2(w) \cdot \overline{x_2}$ true

▶ T = ! bool . $*$? bool and x_1 : T, x_2 : \overline{T} . Are the following processes well typed?

- $\triangleright \overline{x_1}$ true . $(x_1(y) | x_1(z)) | x_2(x)$. $(\overline{x_2}$ true $|\overline{x_2}$ false $|\overline{x_2}$ true) Well typed.
- $\blacktriangleright \overline{x_1}$ true $x_1(y).x_1(y) | x_2(z)$
- $\triangleright \overline{x_1}$ true $x_1(y) | x_2(y) . \overline{x_2}$ true $|x_2(w) . \overline{x_2}$ true

▶ T = ! bool . $*$? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?

- $\triangleright \ \overline{x_1}$ true . $(x_1(y) | x_1(z)) | x_2(x)$. $(\overline{x_2}$ true $|\overline{x_2}$ false $|\overline{x_2}$ true) Well typed.
- $\blacktriangleright \overline{x_1}$ true $x_1(y).x_1(y) | x_2(z)$ Well typed.
- $\triangleright \ \overline{x_1}$ true $.x_1(y) | x_2(y) . \overline{x_2}$ true $|x_2(w) . \overline{x_2}$ true

▶ T = ! bool . $*$? bool and x_1 : T, x_2 : \overline{T} . Are the following processes well typed?

- $\triangleright \overline{x_1}$ true . $(x_1(y) | x_1(z)) | x_2(x)$. $(\overline{x_2}$ true $|\overline{x_2}$ false $|\overline{x_2}$ true) Well typed.
- $\blacktriangleright \overline{x_1}$ true $x_1(y).x_1(y) | x_2(z)$ Well typed.
- $\triangleright \ \overline{x_1}$ true $x_1(y) | x_2(y) \cdot \overline{x_2}$ true $|x_2(w) \cdot \overline{x_2}$ true Not well typed: x_2 is not used linearly for the first receive!

▶ T = ! bool . $*$? bool and $x_1 : T, x_2 : \overline{T}$. Are the following processes well typed?

- $\triangleright \overline{x_1}$ true . $(x_1(y) | x_1(z)) | x_2(x)$. $(\overline{x_2}$ true $|\overline{x_2}$ false $|\overline{x_2}$ true) Well typed.
- $\blacktriangleright \overline{x_1}$ true $x_1(y).x_1(y) | x_2(z)$ Well typed.
- $\blacktriangleright \overline{x_1}$ true $x_1(y) | x_2(y) . \overline{x_2}$ true $|x_2(w) . \overline{x_2}$ true Not well typed: x_2 is not used linearly for the first receive!
- ▶ Channel for both reading and writing?

- ▶ T = ! bool . $*$? bool and x_1 : T, x_2 : \overline{T} . Are the following processes well typed?
	- $\triangleright \overline{x_1}$ true $(x_1(y) | x_1(z)) | x_2(x)$. $(\overline{x_2}$ true $|\overline{x_2}$ false $|\overline{x_2}$ true) Well typed.
	- $\blacktriangleright \overline{x_1}$ true $x_1(y).x_1(y) | x_2(z)$ Well typed.
	- $\blacktriangleright \overline{x_1}$ true $x_1(y) | x_2(y) . \overline{x_2}$ true $|x_2(w) . \overline{x_2}$ true Not well typed: x_2 is not used linearly for the first receive!
- ▶ Channel for both reading and writing? Use tuples to pass both ends of a channel!

$$
a_1: *!\langle !\mathsf{bool}, ?\mathsf{bool} \rangle, a_2: *?\langle !\mathsf{bool}, ?\mathsf{bool} \rangle \vdash a_2(y_1, y_2).(\overline{y_1} \mathsf{false} \mid y_2(z)) \mid (\nu x_1 x_2) \overline{a_1} \langle x_1, x_2 \rangle
$$

Replication

Despite recursive types, processes so far are *strongly normalizing*.

New syntactic forms:

Processes: $P ::=$ $qx(y)$. P receive

We have $\lim x(y)$. P and un $x(y)$. P.

New reduction rules:

[R-LinCom] $(\nu xy)(\overline{x}v.P \mid \text{lin } y(z).Q \mid R) \rightarrow (\nu xy)(P \mid Q[v/z] \mid R)$

[R-UnCom]

 $(\nu xy)(\overline{x}v.P \mid \text{un } y(z).Q \mid R) \rightarrow (\nu xy)(P \mid Q[v/z] \mid \text{un } y(z).Q \mid R)$

New typing rules:

$$
\frac{q_1(\Gamma_1 \circ \Gamma_2) \qquad \Gamma_1 \vdash x : q_2?T.S \qquad (\Gamma_2 + x : S), y : T \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y).P}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example 2 Same as before when
$$
q_1 = \text{lin}
$$
: $\text{lin}(\Gamma)$ for all Γ .

 \blacktriangleright Not necessarily $q_1 = q_2$, but $q_2 = \text{un}$ implies $q_1 = \text{un}$.

New typing rules:

[T-Recv]
\n
$$
\frac{q_1(\Gamma_1 \circ \Gamma_2) \qquad \Gamma_1 \vdash x : q_2?T.S \qquad (\Gamma_2 + x : S), y : T \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y).P}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example 2 Same as before when
$$
q_1 = \text{lin}
$$
: $\text{lin}(\Gamma)$ for all Γ .

 \blacktriangleright Not necessarily $q_1 = q_2$, but $q_2 = \text{un}$ implies $q_1 = \text{un}$.

► un
$$
x_2(z)
$$
. \overline{c} true | $\overline{x_1}$ true | $\overline{x_1}$ false
Assume *c* : lin! bool. Is it well-typed?

New typing rules:

$$
\frac{q_1(\Gamma_1 \circ \Gamma_2) \qquad \Gamma_1 \vdash x : q_2?T.S \qquad (\Gamma_2 + x : S), y : T \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y).P}
$$

Example 2 Same as before when
$$
q_1 = \text{lin}
$$
: $\text{lin}(\Gamma)$ for all Γ .

- \blacktriangleright Not necessarily $q_1 = q_2$, but $q_2 = \text{un}$ implies $q_1 = \text{un}$.
- **•** un $x_2(z)$. \overline{c} true $|\overline{x_1}$ true $|\overline{x_1}$ false Assume c : lin!bool. Is it well-typed? No, linear channel c is replicated!

$$
(\nu x_1 x_2)(\text{un } x_2(z).\overline{c}\text{ true } |\overline{x_1}\text{ true } |\overline{x_1}\text{ false})
$$

\n
$$
\rightarrow (\nu x_1 x_2)(\text{un } x_2(z).\overline{c}\text{ true } |\overline{c}\text{ true } |\overline{x_1}\text{ false})
$$

\n
$$
\rightarrow (\nu x_1 x_2)(\text{un } x_2(z).\overline{c}\text{ true } |\overline{c}\text{ true } |\overline{c}\text{ true})
$$

New typing rules:

$$
\frac{q_1(\Gamma_1 \circ \Gamma_2) \qquad \Gamma_1 \vdash x : q_2?T.S \qquad (\Gamma_2 + x : S), y : T \vdash P}{\Gamma_1 \circ \Gamma_2 \vdash q_1 x(y).P}
$$

► Same as before when $q_1 = \text{lin: } \text{lin}(\Gamma)$ for all Γ .

 \blacktriangleright Not necessarily $q_1 = q_2$, but $q_2 = \text{un implies } q_1 = \text{un.}$

\n- un
$$
x_2(z)
$$
. \overline{c} true $|\overline{x_1}$ true $|\overline{x_1}$ false
\n- Assume c : lin! bool. Is it well-typed? No, linear channel c is replicated!
\n

$$
(\nu x_1 x_2)(\text{un } x_2(z).\overline{c}\text{ true } |\overline{x_1}\text{ true } |\overline{x_1}\text{ false})
$$

\n
$$
\rightarrow (\nu x_1 x_2)(\text{un } x_2(z).\overline{c}\text{ true } |\overline{c}\text{ true } |\overline{x_1}\text{ false})
$$

\n
$$
\rightarrow (\nu x_1 x_2)(\text{un } x_2(z).\overline{c}\text{ true } |\overline{c}\text{ true } |\overline{c}\text{ true})
$$

Well typed: un $x_2(z) \cdot \overline{z}$ true. Cannot be used by $\overline{x_1c} \mid \overline{x_1c}$.

 \blacktriangleright Milner's original, more general replication: $\lfloor P = P \rfloor P \rfloor \dots$

KO KKOKKEKKEK E DAG

 \blacktriangleright How can this be simulated?

General replication

- \blacktriangleright Milner's original, more general replication: $\lfloor P = P \rfloor P \rfloor \dots$
- \blacktriangleright How can this be simulated?

$$
!P\triangleq (\nu x_1x_2)(\overline{x_1}x_2\ |\ \text{un}\ x_2(y).(P\ |\ \overline{x_1}y))
$$

where $x_1, x_2, y \notin \text{fv}(P)$.

General replication

- \blacktriangleright Milner's original, more general replication: $\lfloor P = P \rfloor P \rfloor \ldots$
- \blacktriangleright How can this be simulated?

$$
!P\triangleq (\nu x_1x_2)(\overline{x_1}x_2\ |\ \text{un}\ x_2(y).(P\ |\ \overline{x_1}y))
$$

where $x_1, x_2, y \notin f_V(P)$.

 \blacktriangleright Admissible typing rule:

$$
\frac{\text{un}(\Gamma)}{\Gamma \vdash !P}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

where x_1 : μa . un a . a and x_2 : μb . un ?b.b.

Choice

New syntactic forms:

Processes: $P ::= \ldots$ $x \triangleleft l.P$ selection $x \triangleright \{i : P_i\}_{i \in I}$ branching

New reduction rules:

[R-Case] $i \in I$ $(\nu xy)(x \triangleleft j.P \mid y \triangleright \{i : Q_i\}_{i \in I} \mid R) \rightarrow (\nu xy)(P \mid Q_i \mid R)$

Choice: typing New syntactic forms:

Pretypes:

 $p ::= \ldots$ $\bigoplus \{i:S_i\}_{i\in I}$ select $\&\{i: S_i\}_{i\in I}$ branch

New duality rules:

$$
\overline{q\oplus\{i:S_i\}_{i\in I}} = q\&\{i:\overline{S_i}\}_{i\in I} \qquad \qquad \overline{q\&\{i:S_i\}_{i\in I}} = q\oplus\{i:\overline{S_i}\}_{i\in I}
$$

New typing rules:

[T-BRANCH]
\n
$$
\frac{\Gamma_1 \vdash x : q \& \{i : S_i\}_{i \in I} \qquad \forall i \in I : \Gamma_2 + x : S_i \vdash P_i}{\Gamma_1 \circ \Gamma_2 \vdash x \triangleright \{i : P_i\}_{i \in I}}
$$
\n[T-SEL]

$$
\frac{\Gamma_1 \vdash x : q \oplus \{i : S_i\}_{i \in I} \qquad \Gamma_2 + x : S_j \vdash P \qquad j \in I}{\Gamma_1 \circ \Gamma_2 \vdash x \triangleleft j.P}
$$

Well typed?

- \blacktriangleright $x_1 \triangleleft l | x_2 \triangleright \{l : 0\}$
- $\blacktriangleright x_1 \triangleleft l | x_2 \triangleright \{l : 0, m : 0\}$
- \blacktriangleright $x_1 \triangleleft l | x_1 \triangleleft m | x_1 \triangleleft m | x_2 \triangleright l | : 0, m : 0 \}$

- ▶ $\overline{x_1}$ true $|x_2 \triangleright \{l : 0\}$
- $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$
- $\blacktriangleright x_1 \triangleleft l \mid x_2 \triangleright \{m: 0\}$

Well typed?

- \blacktriangleright $x_1 \triangleleft l \mid x_2 \triangleright \{l : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}\}, x_2 : q \& \{l : \text{end}\}.$
- $\blacktriangleright x_1 \triangleleft l | x_2 \triangleright \{l : 0, m : 0\}$
- \blacktriangleright $x_1 \triangleleft l | x_1 \triangleleft m | x_1 \triangleleft m | x_2 \triangleright l | : 0, m : 0 \}$

- ▶ $\overline{x_1}$ true $|x_2 \triangleright \{l : 0\}$
- \blacktriangleright $x_1 \triangleleft l \mid x_2(z)$
- \blacktriangleright $x_1 \triangleleft l \mid x_2 \triangleright \{m : 0\}$

Well typed?

 \blacktriangleright $x_1 \triangleleft l | x_2 \triangleright \{l : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}\}, x_2 : q \& \{l : \text{end}\}.$ $\blacktriangleright x_1 \triangleleft l | x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}, m : \text{end}\}, x_2 : q \& \{l : \text{end}, m : \text{end}\}.$ \blacktriangleright $x_1 \triangleleft l | x_1 \triangleleft m | x_1 \triangleleft m | x_2 \triangleright l | i \cdot 0, m : 0 \rbrace$ ▶ $\overline{x_1}$ true $|x_2 \triangleright \{l : 0\}$

- $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$
- \blacktriangleright $x_1 \triangleleft l \mid x_2 \triangleright \{m: 0\}$

Well typed?

\n- $$
x_1 \triangleleft l \mid x_2 \triangleright \{l : 0\}
$$

\n Yes: $x_1 : q \oplus \{l : \text{end}\}, x_2 : q \& \{l : \text{end}\}.$
\n- $x_1 \triangleleft l \mid x_2 \triangleright \{l : 0, m : 0\}$
\n Yes: $x_1 : q \oplus \{l : \text{end}, m : \text{end}\}, x_2 : q \& \{l : \text{end}, m : \text{end}\}.$
\n- $x_1 \triangleleft l \mid x_1 \triangleleft m \mid x_1 \triangleleft m \mid x_2 \triangleright \{l : 0, m : 0\}$
\n Yes:
\n $x_1 : \mu a. \text{ un } \oplus \{l : a, m : a\} \triangleq * \oplus \{l, m\}, x_2 : \mu b. \text{ un } \& \{l : b, m : b\} \triangleq * \& \{l, m\}.$
\n- $\overline{x_1}$ true $|x_2 \triangleright \{l : 0\}$
\n- $x_1 \triangleleft l \mid x_2(z)$
\n- $x_1 \triangleleft l \mid x_2 \triangleright \{m : 0\}$
\n

K ロ K K 대 K K 및 K K 및 K X X K K K X X X X X

Well typed?

 \blacktriangleright $x_1 \triangleleft l \mid x_2 \triangleright \{l : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}\}, x_2 : q \& \{l : \text{end}\}.$ $\blacktriangleright x_1 \triangleleft l | x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}, m : \text{end}\}, x_2 : q \& \{l : \text{end}, m : \text{end}\}.$ \blacktriangleright $x_1 \triangleleft l | x_1 \triangleleft m | x_1 \triangleleft m | x_2 \triangleright l | i \cdot 0, m \cdot 0 \rbrace$ Yes: $x_1 : \mu a.$ un $\bigoplus \{l : a, m : a\} \triangleq *\bigoplus \{l, m\}, x_2 : \mu b.$ un $\& \{l : b, m : b\} \triangleq *\& \{l, m\}.$ $\blacktriangleright \overline{x_1}$ true $|x_2 \triangleright \{l : 0\}$ No: $x_1 : q!$ bool, $x_2 : q \& \{l : \text{end}\}.$ \blacktriangleright $x_1 \triangleleft l | x_2(z)$ \blacktriangleright $x_1 \triangleleft l \mid x_2 \triangleright \{m : 0\}$

KO KA KO KERKER KONGK

Well typed?

\n- \n
$$
x_1 \triangleleft l \mid x_2 \triangleright \{l : 0\}
$$
\n
\n- \n Yes: $x_1 : q \oplus \{l : \text{end}\}, x_2 : q \& \{l : \text{end}\}.$ \n
\n- \n $x_1 \triangleleft l \mid x_2 \triangleright \{l : 0, m : 0\}$ \n
\n- \n Yes: $x_1 : q \oplus \{l : \text{end}, m : \text{end}\}, x_2 : q \& \{l : \text{end}, m : \text{end}\}.$ \n
\n- \n $x_1 \triangleleft l \mid x_1 \triangleleft m \mid x_1 \triangleleft m \mid x_2 \triangleright \{l : 0, m : 0\}$ \n
\n- \n Yes: $x_1 : \mu a. \text{ un } \oplus \{l : a, m : a\} \triangleq * \oplus \{l, m\}, x_2 : \mu b. \text{ un } \& \{l : b, m : b\} \triangleq * \& \{l, m\}.$ \n
\n- \n $\overline{x_1} \text{ true} \mid x_2 \triangleright \{l : 0\}$ \n
\n- \n No: $x_1 : q! \text{ bool}, x_2 : q \& \{l : \text{end}\}.$ \n
\n- \n $x_1 \triangleleft l \mid x_2(z)$ \n
\n- \n No: $x_1 : q \oplus \{l : \text{end}, \ldots\}, x_2 : q$? T .\n
\n- \n $x_1 \triangleleft l \mid x_2 \triangleright \{m : 0\}$ \n
\n

K ロ K K 대 K K 및 K K 및 K X X K K K X X X X X

Well typed?

 \triangleright $x_1 \triangleleft l | x_2 \triangleright \{l : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}\}, x_2 : q \& \{l : \text{end}\}.$ $\blacktriangleright x_1 \triangleleft l | x_2 \triangleright \{l : 0, m : 0\}$ Yes: $x_1 : q \oplus \{l : \text{end}, m : \text{end}\}, x_2 : q \& \{l : \text{end}, m : \text{end}\}.$ \blacktriangleright $x_1 \triangleleft l | x_1 \triangleleft m | x_1 \triangleleft m | x_2 \triangleright l | i \cdot 0, m \cdot 0 \rbrace$ Yes: $x_1 : \mu a.$ un $\bigoplus \{l : a, m : a\} \triangleq *\bigoplus \{l, m\}, x_2 : \mu b.$ un $\& \{l : b, m : b\} \triangleq *\& \{l, m\}.$ $\blacktriangleright \overline{x_1}$ true $|x_2 \triangleright \{l : 0\}$ No: $x_1 : q!$ bool, $x_2 : q \& \{l : \text{end}\}.$ $\blacktriangleright x_1 \triangleleft l \mid x_2(z)$ No: $x_1 : q \oplus \{l : \text{end}, \ldots\}, x_2 : q?T$. \blacktriangleright $x_1 \triangleleft l | x_2 \triangleright \{m : 0\}$ No: $x_1 : q \oplus \{l : \text{end}, \ldots\}, x_2 : q \& \{m : \text{end}\}.$

KORKA SERKER YOUR

Example: map

How to use a *map* operating on x_2 ?

 \blacktriangleright Put operation for key k and value v:

 $x_1 \triangleleft \text{put.} \overline{x_1}k.\overline{x_1}v$

 \blacktriangleright Get operation for key k:

 $x_1 \triangleleft \text{get}.\overline{x_1}k.x_1 \triangleright \{\text{some} : x_1(y).P, \text{none} : Q\}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ What is the type of the client's side of the (linear) map?

Example: map

How to use a *map* operating on x_2 ?

 \blacktriangleright Put operation for key k and value v:

 $x_1 \triangleleft \text{put}.\overline{x_1}k.\overline{x_1}v$

 \blacktriangleright Get operation for key k:

 $x_1 \triangleleft \text{get}.\overline{x_1}k.x_1 \triangleright \{\text{some} : x_1(y).P, \text{none} : Q\}$

KORKARYKERKER OQO

 \triangleright What is the type of the client's side of the (linear) map? $x_1 : \oplus \big\{ \textit{put} : \texttt{!} \text{ key } . \texttt{!} \text{ value } . \texttt{ end } , \textit{get} : \texttt{!} \text{ key } . \& \big\{ \textit{some} : \texttt{?} \text{ value } . \texttt{end } , \textit{none} : \texttt{end} \big\} \big\}$

- **EX** Iterator of booleans: offers at x_2 operations hasNext and next, until hasNext returns "no".
- ▶ A client that reads and discards every value. Which is correct?
	- ▶ !(un $loop_2(y).y \triangleleft hasNext.y \triangleright \{yes:y \triangleleft next.y(z). \overline{loop_1}y, no:0\}) \mid \overline{loop_1}x_2$
	- ▶ $\frac{1}{2}$ (un $loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes : x_2 \triangleleft next.x_2(z).\overline{loop}_1y, no : 0\}) \mid \overline{loop}_1$ true

- **EX** Iterator of booleans: offers at x_2 operations hasNext and next, until hasNext returns "no".
- ▶ A client that reads and discards every value. Which is correct?
	- \blacktriangleright !(un $loop_2(y).y \triangleleft hasNext.y \triangleright \{yes:y \triangleleft next.y(z). \overline{loop_1}y, no:0\}) \mid \overline{loop_1}x_2$ Yes.
	- ▶ !(un $loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes: x_2 \triangleleft next.x_2(z). \overline{loop_1}y, no: 0\}) \mid \overline{loop_1}$ true No: x_2 is linear.

- **EX** Iterator of booleans: offers at x_2 operations hasNext and next, until hasNext returns "no".
- ▶ A client that reads and discards every value. Which is correct?
	- \blacktriangleright !(un $loop_2(y).y \triangleleft hasNext.y \triangleright \{yes:y \triangleleft next.y(z). \overline{loop_1}y, no:0\}) \mid \overline{loop_1}x_2$ Yes.
	- ▶ !(un $loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes: x_2 \triangleleft next.x_2(z). \overline{loop_1}y, no: 0\}) \mid \overline{loop_1}$ true No: x_2 is linear.
- \blacktriangleright Type of x_2 is linear, yet infinite:

 \oplus {hasNext : &{no : end, yes : \oplus {next : !bool . \oplus {hasNext : &{...}}}}

KORK ERKER ADAM ADA

- **EX** Iterator of booleans: offers at x_2 operations hasNext and next, until hasNext returns "no".
- ▶ A client that reads and discards every value. Which is correct?
	- \blacktriangleright !(un $loop_2(y).y \triangleleft hasNext.y \triangleright \{yes:y \triangleleft next.y(z). \overline{loop_1}y, no:0\}) \mid \overline{loop_1}x_2$ Yes.
	- ▶ !(un $loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes: x_2 \triangleleft next.x_2(z). \overline{loop_1}y, no: 0\}) \mid \overline{loop_1}$ true No: x_2 is linear.
- \blacktriangleright Type of x_2 is linear, yet infinite:

 \oplus {hasNext : &{no : end, yes : \oplus {next : !bool . \oplus {hasNext : &{...}}}}

Example: iterator

- **EX** Iterator of booleans: offers at x_2 operations hasNext and next, until hasNext returns "no".
- ▶ A client that reads and discards every value. Which is correct?
	- $\blacktriangleright~\mathord{\text{\rm !}}(\mathord{\text{\rm un}}\ \mathit{loop}_2(y).y \lhd \mathit{hasNext}.y \triangleright \{\mathit{yes}: y \lhd \mathit{next}.y(z).\overline{\mathit{loop}_1}y, \mathit{no}:0\}) \mid \overline{\mathit{loop}_1}x_2$ Yes.
	- ▶ !(un $loop_2(y).x_2 \triangleleft hasNext.x_2 \triangleright \{yes: x_2 \triangleleft next.x_2(z). \overline{loop_1}y, no: 0\}) \mid \overline{loop_1}$ true No: x_2 is linear.
- \blacktriangleright Type of x_2 is linear, yet infinite:

 \oplus {hasNext : &{no : end, yes : \oplus {next : !bool . \oplus {hasNext : &{...}}}}

▶ Finite form?

 $\mu a.\bigoplus\{hasNext:\&\{no: end, yes: \bigoplus\{next:!bool.a\}\}\}\$

Primitive types are redundant

 \triangleright With choice, primitive types are redundant.

KOKK@KKEKKEK E 1990

▶ Example: booleans.

Primitive types are redundant

 \triangleright With choice, primitive types are redundant.

▶ Example: booleans.

▶

▶

$$
\text{true} \triangleq !(t_1 \triangleleft true)
$$
\n
$$
\text{false} \triangleq !(f_1 \triangleleft false)
$$
\n
$$
\text{if } x \text{ then } P \text{ else } Q \triangleq x \triangleright \{\text{true} : P, \text{false} : Q\}
$$

true | false | if t_2 then P else $Q \rightarrow \rightarrow$ true | false | P

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Patterns of ill formedness. Why?
	- \blacktriangleright if x then P else Q
	- \blacktriangleright \overline{a} true $|a(z)|$
	- \blacktriangleright $(\nu xy)(\overline{x}$ true $|y \triangleright \{i : P_i\}_{i \in I})$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Patterns of ill formedness. Why?
	- \blacktriangleright if x then P else Q
		- x is not a boolean value.
	- \blacktriangleright \bar{a} true $|a(z)|$
	- \blacktriangleright $(\nu x y)(\overline{x}$ true $|y \triangleright \{i : P_i\}_{i \in I})$

- ▶ Patterns of ill formedness. Why?
	- \blacktriangleright if x then P else Q
		- x is not a boolean value.
	- \blacktriangleright \overline{a} true $|a(z)|$
		- a is unrestricted, but used differently.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright $(\nu xy)(\overline{x}$ true $|y \triangleright \{i : P_i\}_{i \in I})$

- ▶ Patterns of ill formedness. Why?
	- \blacktriangleright if x then P else Q
		- x is not a boolean value.
	- $\blacktriangleright \overline{a}$ true $|a(z)|$
		- a is unrestricted, but used differently.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright $(\nu xy)(\overline{x}$ true $|y \triangleright \{i : P_i\}_{i \in I})$ x and y are not typed dually.

- ▶ Patterns of ill formedness. Why?
	- \blacktriangleright if x then P else Q
		- x is not a boolean value.
	- \blacktriangleright \bar{a} true $|a(z)|$
		- a is unrestricted, but used differently.
	- \blacktriangleright $(\nu xy)(\overline{x}$ true $|y \triangleright \{i : P_i\}_{i \in I})$
		- x and y are not typed dually.
- ▶ Typing excludes ill formedness, even after reduction:

KORK ERKER ADAM ADA

Theorem (Main result)

If $\emptyset \vdash P$ and $P \rightarrow^* Q^2$, then Q is well formed.

 $2 \rightarrow^*$ means zero or more steps.

- ▶ Patterns of ill formedness. Why?
	- \blacktriangleright if x then P else Q
		- x is not a boolean value.
	- \blacktriangleright \bar{a} true $|a(z)|$

 a is unrestricted, but used differently.

 \blacktriangleright $(\nu xy)(\overline{x}$ true $|y \triangleright \{i : P_i\}_{i \in I})$ x and y are not typed dually.

▶ Typing excludes ill formedness, even after reduction:

Theorem (Main result)

If $\emptyset \vdash P$ and $P \rightarrow^* Q$, then Q is well formed.

▶ Follows from:

Theorem (Preservation)

If $\Gamma \vdash P$ and $P \rightarrow Q$, then $\Gamma \vdash Q$.

Theorem (Safety)

If $\emptyset \vdash P$, then P is well formed.