Concurrency SS 2024

Message Passing Concurrency

Peter Thiemann

July 3, 2024

0 Message Passing

Concurrency Flavors

Shared Memory Concurrency

@ processes interact by reading and writing shared variables
@ locking etc. needed to demarcate critical regions

Concurrency Flavors

Shared Memory Concurrency

@ processes interact by reading and writing shared variables
@ locking etc. needed to demarcate critical regions

Message Passing Concurrency

@ processes interact by sending and receiving messages on
shared communication channels

Expressiveness

@ message passing may be implemented using shared
variables (viz. consumer/producer message queue
implementations)

@ shared variables may be implemented using message
passing

e model a reference by a thread and channels for reading
and writing

e reading on the “read” channel returns the current value

e writing on the “write” channel spawns a new thread with the
new value that manages the two channels from then on

Synchronous vs. Asynchronous

@ Receive operation blocks either way
@ Given a channel with synchronous operations,

e send asynchronously by sending in a spawned thread
@ Given a channel with asynchronous operations.

e establish a protocol to acknowledge receipts
@ pair each send operation with a receive for the
acknowledgment

First Incarnation

Hoare’s Communicating Sequential Processes (CSP)
Prefix (x : B) — P(x)

await synchronizaton on event x (an element of B)
and then execute P(x)

External Choice (a— P | b— Q)
await synchronizaton on a or b and continue with
P or Q, respectively (a # b)

Internal Choice (PN Q)
continue nondeterministically with P or Q

Recursion uX e P(X)

process that recursively behaves like P

Concurrency P||Q
P runs in parallel with Q

Sequential (process local) variables, assignment, conditional,
while

CSP 1l
Communication in CSP

@ Special events

e clv output v on channel ¢
@ c?x read from channel ¢ and bind to variable x

@ Example: copy from channel in to channel out

COPY = pX e (in?x — (out!'x) — X)
@ Example: generate sequence of ones
ONES = uX e (in'1 — X)

Event in!1 synchronizes with in?x and transmits the value
to another process

@ Example: last process behaves like /dev/null

ONES||COPY||uX e (out?y — X)

CSP I

@ CSP has influenced the design of numerous programming
languages

@ Occam — programming “transputers”, processors with
specific serial communication links

e Golang — a programming language with cheap threads
and channel based communication (Google 2011,
https://golang.orq)

e CML — concurrent ML (John Reppy, 1999,
http://cml.cs.uchicago.edu/)

@ Golang and CML feature typed bidirectional channels
@ Golang’s channels can be buffered

https://golang.org
http://cml.cs.uchicago.edu/

Go the Language

Example: Compute Pi

// pi launches n goroutines to compute an
// approximation of pi.
func pi(n int) float64 {
ch := make (chan float64)
for k := 0; k <= n; k++ {
go term(ch, float64(k))

for k := 0; k <= n; k++ {
f += <-ch

return f

func term(ch chan float64, k floate4d) {

ch <- 4 % math.Pow (-1, k) / (2xk + 1)

Go |l

Example: Prime numbers

// Send the sequence 2, 3, 4, ... to channel ’'ch’.
func Generate (ch chan<- int) {
for 1 := 2; ; i++ {

ch <— 1 // Send ’i’ to channel ’ch’.

// Copy from channel ’in’ to channel ’out’,
// removing values divisible by ’'p’.
func Filter (in <-chan int, out chan<- int, p int) {

for {
i := <-in // Receive value from ’in’.
if i%p !'= 0 {

out <- 1 // Send 'i’ to ’'out’.

Go lla

Example 'Prime numbers’ continued

// The prime sieve: Daisy-chain Filter processes.

func main () {
ch := make(chan int) // Create a new channel.
go Generate (ch) // Launch generator.
for i := 0; i < 10; i++ {
prime := <-ch
fmt.Println (prime)
chl := make(chan int)

go Filter (ch, chl, prime)
ch = chl

e Concurrent ML

Concurrent ML

@ Synchronous message passing with first-class events
@ i.e., events are values in the language that can be passed
as parameters and manipulated before they become part of
a prefix
@ may be used to create new synchronization abstractions
@ Originally for ML with implementations in Racket, Caml,
Haskell, etc

@ But ideas more widely applicable

@ Requires threads to be very lightweight (i.e., thread
creation at the cost of little more than a function call)

CMULs Channel Interface

type "a channel (x messages passed on channels x)
val new_channel : unit -> ’a channel

type "a event (x when sync’ed on, get an "a x)

val send "a channel -> "a -> unit event
val receive : "a channel -> ’'a event
val sync "a event -> ’a

@ send and receive return an event immediately
@ sync blocks on the event until it happens
@ This separation of concerns is important

Simple Synchronous Operations

Define blocking send and receive operations:

let sendNow ch a = sync (send ch a)
let recvNow ch = sync (receive ch)

@ Each channel may have multiple senders and receivers
that want to synchronize.

@ Choice of pairing is nondeterministic, up to the
implementation

CML

Example: Bank Account

type action = Put of float | Get of float

type account = action channel % float channel
let mkAcct () =

let inCh = new_channel () in

let outCh = new_channel () in

let bal = ref 0.0 in (x state x)

let rec loop () =
(match recvNow inCh with (* blocks =x)

Put £ -> bal := !bal +. £

| Get £ => bal := !bal —-. f); (* overdraw! =*)
sendNow outCh !bal; loop ()

in ignore(create loop ()); (x launch "server" x)

(inCh, outCh) (* return channels x)

CML I

Example: Functional Bank Account

let mkAcct_functionally () =

let inCh = new_channel() in
let outCh = new_channel () in
let rec loop bal = (x state is loop-argument x)

let newbal =
match recvNow inCh with (* blocks =)
Put £ -> bal +. £
| Get £ -> bal —-. £ (* overdraw! =x)
in sendNow outCh newbal; loop newbal
in ignore (create loop 0.0);
(inCh, outCh)

@ Viz. model a reference using channels

Account Interface

Interface can abstract channels and concurrency from clients

type acct

val mkAcct : unit -> acct

val get : acct -> float -> float
val put : acct -> float -> float

@ type acct is abstract, with account as possible
implementation

@ mkAcct creates a thread behind the scenes
@ get and put make the server go round the loop once

Races are avoided by the implementation; the account server
takes one request at a time

Streams in CML

A stream is an infinite sequence of values produced lazily.

let nats = new_channel ()
let rec loop i =
sendNow nats 1i;
loop (i+1)
let _ = create loop O

let next_nat () = recvNow nats

Introducing Choice

@ sendNow and recvNow block until they find a
communication partner (rendezvous).

@ This behavior is not appropriate for many important
synchronization patterns.

@ Example:
val add : int channel -> int channel -> int
Should read the first value available on either channel to
avoid blocking the sender.

@ For this reason, sync is separate and there are further
operators on events.

Choose and Wrap

"a event list -> ’'a event

"a event -> ("a -> 'b) —-> b event
val never : ’'a event

"a —=> ’'a event

val choose
val wrap

val always

@ choose: creates an event that: when synchronized on,
blocks until one of the events in the list happens

@ wrap: the map function for channels; process the value
returned by the event with a function (when it happens)

@ never = choose []
@ always x:Ssynchronization is always possible; returns x
@ further primitives omitted (e.g., timeouts)

The Circuit Analogy

Electrical engineer

@ send and receive are ends of a gate
@ wrap is logic attached to a gate

@ choose is a multiplexer

@ sync is getting a result

The Circuit Analogy

Electrical engineer

@ send and receive are ends of a gate
@ wrap is logic attached to a gate

@ choose is a multiplexer

@ sync is getting a result

Computer scientist

@ build data structure that describes a communication
protocol

o first-class, so can be passed to sync
@ events in interfaces so other libraries can compose

0 Pi-Calculus

Pi-Calculus

@ The Pi-Calculus is a low-level calculus meant to provide a
formal foundation of computation by message passing.

@ First presented in 1989 by Milner, Parrow, and Walker.

@ Reference: Robin Milner’s book “Communicating and
Mobile Systems: the w-calculus”, Cambridge University
Press, 1999.

@ Has given rise to a number of programming languages
(Pict, JoCaml) and is acknowledged as a tool for business
process modeling (BPML).

@ Actively used and investigated in industry and academia.

Pi-Calculus Features

Primitives for describing and analysing global distributed

infrastructure
@ process migration between peers
@ process interaction via dynamic channels
@ private channel communication.

Pi-Calculus Features

Primitives for describing and analysing global distributed

infrastructure
@ process migration between peers
@ process interaction via dynamic channels
@ private channel communication.

Mobility

@ processes move in the physical space of computing sites
(successor: Ambient);

@ processes move in the virtual space of linked processes;

@ links move in the virtual space of linked processes
(precursor: CCS, Calculus of Communicating Systems).

Evolution from CCS

@ CCS: synchronization on fixed events a
aPlaQ—P|Q
@ value-passing CCS
aix).Pla(v).Q — P{x:=v}|Q

@ Pi: synchronization on variable events (names) + name
passing

x(y).P|x(2).Q— P{ly:=z}|Q

Example: Doctor’s Surgery
Based on example by Kramer and Eisenbach

A surgery consists of two doctors and one receptionist. Model
the following interactions:

@ a patient checks in;

© when a doctor is ready, the receptionist gives him the next
patient;

© the doctor gives prescription to the patient.

Attempt Using CCS + Value Passing

@ Patient checks in with name and symptoms
P(n, s) = checkin(n, s).?
© Receptionist dispatches to next available doctor
R = checkin(n, s).(next;.ansy(n, s).R + nexty.ansy(n, s).R)
© Doctor gives prescription
D; = nexti.ans;(n, s).?

@ In CCS it’s not possible to create an interaction between P
and D; because they don’t have a shared channel name.

Attempted Solution

Use patient’s name as the name of a new channel.
D; = next;.ans;(n, s).n{pre(s)).D;

P(n, s) = checkin{n, s).n(x).P’

Receptionist: Same code as before, but now the name of the
channel is passed along.

R = checkin(n, s).(next;.ansy(n, s).R + next..ans;(n, s).R)

Improvement |

The doctor passes an answering channel to R.
D; = next(ans;).ans;i(n, s).n(pre(s)).D;

R = checkin(n, s).next{ans).ans(n, s).R)

WIth this encoding, the receptionist no longer depends on the
number of doctors.
Patient: unchanged

P(n, s) = checkin{n, s).n(x).P’

Improvement |l

@ If two patients have the same name, then the current
solution does not work.

@ Solution: generate fresh channel names as needed
@ Read (vn) as “new n” (called restriction)
P(s) = (vn) checkin(n, s).n(x).P’

@ Same idea provides doctors with private identities
@ Now same code for each doctor
D = (va) next(a).a(n, s).n{pre(s)).D

@ In D| D | R, every doctor creates fresh names

Example: n-Place Buffer

Single buffer location (i.e., process)
B(in, out) = in(x).out(x).B(in, out)
n-place buffer By(i, 0) =
(vo1)...(von—1)(B(i,01) | --- | B(0j,0;) | ... B(0n-1,0))

May still be done with CCS restriction (__) \ o;, which can close
the scope of fixed names.

Example: Unbounded Buffer

UB(in, out) = in(x).(vy) (UB(in,y) | B(x, y, out))

B(x, in, out) = out(x).in(z).B(z, in, out)

@ Drawback: Cells are never destroyed

@ A elastic buffer, where cells are created and destroyed as
needed, cannot be expressed in CCS.

Formal Syntax of Pi-Calculus

Identifiers

u,v == a,b,c,... names ¢ N
| Xx,y,z,... variables

Formal Syntax of Pi-Calculus

Identifiers

u,v == a,b,c,... names ¢ N
| Xx,y,z,... variables

m == u(v) send list of names v along channel u

| u(y) receive list of names y along channel u
| 7 unobservable action

Formal Syntax of Pi-Calculus

Identifiers

u,v == a,b,c,... names ¢ N
| Xx,y,z,... variables

= u(v) send list of names v along channel u

| u(y) receive list of names y along channel u
| 7 unobservable action

™

Pi-processes

P = >, m.P; summation over finite index set /
| P|Q parallel composition
| (va)P restriction (binds a name)
|

P replication

Summation (nondeterministic guarded choice)

@ In >, m.P;, the process P; is guarded by the action =;
@ 0 stands for the empty sum (i.e., / = ()
@ 7.P abbreviates a singleton sum

@ The output process u(v).P
sends the list of free names v over u and continues as P

@ The input process u(z)..P
binds the list of distinct names Z. It can receive any names

v over x and continues as P{Z := v}

Summation (nondeterministic guarded choice)

@ In >, m.P;, the process P; is guarded by the action =;
@ 0 stands for the empty sum (i.e., / = ()
@ 7.P abbreviates a singleton sum

@ The output process u(v).P
sends the list of free names v over u and continues as P

@ The input process u(z)..P
binds the list of distinct names Z. It can receive any names

v over x and continues as P{Z := v}

x(2)y(z) x(2)2y) x(2)z(y) + wW(v)

@ The restriction (va) P binds a fresh name ain P.
@ Processes in P can use ato act among each others.
@ ais not visible outside the restriction.

Restriction

@ The restriction (va) P binds a fresh name ain P.
@ Processes in P can use ato act among each others.
@ ais not visible outside the restriction.

(va) ((a(2).z(y) + w(v)) | a(u))

Replication

@ The replication !P can be regarded as a process consisting
of arbitrary many compositions of P.

@ As an equation: |P = P |IP.

Replication

@ The replication !P can be regarded as a process consisting
of arbitrary many compositions of P.

@ As an equation: |P = P |IP.

@ x(2).y(2).0
Repeatedly receive a name over x and send it over y.

@ x(2).ly(2).0
Repeatedly receive a name over x and repeatedly send it
over y.

Free variables and free names

P fv(P) fn(P)

X {x} {} *
a { {a}

0 {} {}

PlQ f(P)Ufv(Q) fn(P) U fn(Q)

(va)P fv(P) fn(P) \ {a} *
P fv(P) fn(P)

uv).P fv(u)u fv(v)u fv(P) fn(u)Ufn(v)U fn(P)
u(z).P fv(u)yu(fv(P)\{z}) fn(u)U fn(P) *

@ Both u(—) and (v—) are binders.
@ Atermis closed if it has no free variables (otherwise open).

@ Consider P = (vb)a(x).(x(z).0 | x(b).0).
It highlights fn(P) = {a} and fv(P) = {z}.

a-conversion

a-conversion (written P =, Q) is the consistent renaming of
bound variables or bound names. It must not change or hide
free variables/names.

o (va)(a(b).0 | (10)e(a).0) =, (vd)(d(b).0 | (vc)c(d).0)

a-conversion

a-conversion (written P =, Q) is the consistent renaming of
bound variables or bound names. It must not change or hide
free variables/names.

@ (va)(a(b).0 | (vc)c(a).0) =, (vd)(§.0 | (vc)e(d).0)
@ (va)(a(b).0 | (vc)c(a).0) #, (vb)(b(b).0 | (vc)c(b).0)
b € fn(lhs), but b ¢ fn(rhs)

a-conversion

a-conversion (written P =, Q) is the consistent renaming of
bound variables or bound names. It must not change or hide
free variables/names.

@ (va)(a(b).0 | (vc)c(a).0) =, (vd)(§.0 | (vc)e(d).0)

@ (va)(a(b).0 | (vc)c(a).0) #, (vb)(b(b).0 | (vc)c(b).0)
b € fn(lhs), but b ¢ fn(rhs)

@ (va)(a(b).0 | (vc)c(a).0) #, (ve)(cib
fn((vc)c(a).0) = {a}, but fn((vc)c(c).

)0 | (ve)e(c).0)
0)=1{}

a-conversion

a-conversion (written P =, Q) is the consistent renaming of
bound variables or bound names. It must not change or hide
free variables/names.

@ (va)(a(b).0 | (vc)c(a).0) =, (vd)(§.0 | (vc)e(d).0)

@ (va)(a(b).0 | (vc)c(a).0) #, (vb)(b(b).0 | (vc)c(b).0)
b € fn(lhs), but b ¢ fn(rhs)

@ (va)(a(b).0 | (vc)c(a).0) #, (ve)(cib
fn((vc)c(a).0) = {a}, but fn((vc)c(c).

o (va)(a(b).0 | (vc)c(a).0) # (vc)(c(b).

after a-converting the subprocess

;’ (ve)e(e).0)

)0 |
0)=1{}
0 (ve)e(c).0)

Substitution

A substitution [x := g] applied to a process P (as in P[x := a)
replaces all free occurrences of variable x by name a.
Substitution is capture-avoiding, that is, it a-converts bound
names as needed.

Example:

((vd)(a(b).0 | a(d).0 | a(x)
= ((ve)(a(b).0 | a(e).0 | a(d).

Variation: Monadic Pi-Calculus

Send and receive primitives are restricted to pass single
names.

Monadic pi-prefixes

= u(v) sendname v along u
| u(y). receive name y along u
| 7 unobservable action

™

Monadic processes defined as before on top of monadic
pi-actions.

Simulating Pi with Monadic Pi

First attempt

@ Obvious idea for a translation from Pi to monadic Pi:

Simulating Pi with Monadic Pi

First attempt

@ Obvious idea for a translation from Pi to monadic Pi:

u(v) — u(vq)...u(vp)
u(y) — uy).. uyn)

@ Does not work

Simulating Pi with Monadic Pi

First attempt

@ Obvious idea for a translation from Pi to monadic Pi:

u(v) — u(vq)...u(vp)
u(y) — uy).. uyn)

@ Does not work
@ Counterexample

X(Y17}’2)-P | Y<Z‘|322>'(2 | Y(z%,zé).Q’

Simulating Pi with Monadic Pi
Correct encoding

Suppose that w ¢ fn(P, Q)

X(P).P = (vw) X(W)W(yq) ... W(y,).Pt
x(7).Q — x(w).w(yy)...w(yn).Qf

where P and Q' are recursively transformed in the same way.

Recursion by Replication

The Pi-calculus can encode recursion. Suppose a process is
defined using recursion

AX)=Qa
where Q4 contains calls to A and process P is the scope of A.
The translation is given by

@ introduce a new name a to stand for A;

@ for any process R, write R for the result of replacing every
call A(w) by a(w);
© replace P and the old definition of A by

P = (va) (P |la(%).Qn)

Structural Congruence

The reduction semantics of the w-calculus is inspired by the
Chemical Abstract Machine (CHAM) of Berry and Boudol.
Processes “float around” like molecules in a solution using
structural congruence (=) and “react” using a reduction relation
(—>).

The intuition is that if P = Q then we consider P and Q
completely interchangeable.

Structural congruence is an equivalence relation, it is preserved
by all the syntactic operators, and it contains a-equivalence
(renaming of bound names).

Structural Congruence (Axioms)

P=P reflexivity
P=Q=Q=P symmetry
P=Rand R=Q=P=Q transitivity
P=Q= (va)P = (va)Q congruence-res
P=Q=P|R=Q|R congruence-par
P=Q=rP=7Q congruence-comm
P=Q=IP=IQ congruence-repl

P=,Q=P=Q

Structural Congruence (pi-calculus specific)

Structural congruence = is the smallest congruence on terms
P of the monadic pi-calculus

Q@ P+0=P, P+Q=Q+P, P+(Q+R)=(P+Q)+R

9 P|lo=P, P|IQ=Q|P, P|(QIR=(P|Q|R
Q (va)P|Q)=P|(va)Qifa¢ tn(P), (va)0=0,
(va)(vb)P = (vb)(va)P

Q P=P|P

@ Structural congruence relates processes that should
behave the same.

@ It simplifies the definition of the semantics because we can
assume that processes that “react” with each other are
side by side.

Reduction Semantics of Pi

The reduction relation is the smallest binary relation — on
terms satisfying

STRUCT
TAY P=P P—Q Q=«Q
7P — P
P — Q
REACT

(a(v).P1+ Q) | (a(2).P> + R) — P; | Po|z := V]

PAR RES
P— P P—s P

PlQ— P |Q (va)P — (va)P’

Examples

Infinite behavior

l Il

Infinite behavior

Il
Y
RS>
o
N
~—
>
. v .
Dl DI ol
S
o
O
/'\
_/
/\
o

Nondeterminism

a(d).0 | €(b).0
e
ab).0 | a(d).o | a(x).c(x).0
N\
ab).0 | ¢(d).0

Example (Mobility - Scope extrusion)

Q = (va)(bla).P | R) | b(y).Q
where a ¢ fn(P) U fn(Q).
We have Q — P | (va)(R | Q[y := a]) because
@ (b(a).P) | (b(y).Q) — P | Q[y := a] due to [react] and [struct]
Q (b(a).P) | (b(y).Q) | R— P | Q[y := &] | R due to item 1 and [par]
© (b(a).P)| R| (b(y).Q) — P| R| Qly := a] due to item 2 and [struct]
Q (va)((b(a).P) | R| (b(y).Q)) — (va)(P| R| Qly := a]) due to item 3
and [res]
@ (va)(b(a).P| R) | (b(y).Q) — P| (va)(R| Qly := a]) due to item 4
and [struct]

Small Agents (1)

Forwarder FW(a, b) = a(z).b(z).0
Forwards messages on channel a to channel b

FW(a, b) | a(d).0 — B(d).0
(vb)(FW(a, b) | FW(b, c))a(d).0 —s* ¢(d).0

Small Agents (1)

Forwarder FW(a, b) = a(z).b(z).0
Forwards messages on channel a to channel b

FW(a,b) | a(d).0 —s b(d).0
(vb)(FW(a, b) | FW(b, c))a(d).0 —s* ¢(d).0

Duplicator D(a, b, ¢) = a(x).(b(x).0 | €(x).0))
Duplicates messages on a to channels b and ¢

D(a, b, c) | a(d).0 —s b(d).0 | ¢(d).

0
(vb)(D(a, b, ¢1) | D(b, ¢1,c2)) | &(d).0
—€1(d).0| 5(d).0 | &5(d).0

Small Agents (1)

Forwarder FW(a, b) = a(z).b(z).0
Forwards messages on channel a to channel b

FW(a, b) | a(d).0 —s b(d).0
(vb)(FW(a, b) | FW(b, c))a(d).0 —* ¢(d).0

Duplicator D(a, b, ¢) = a(x).(b(x).0 | €(x).0))
Duplicates messages on a to channels b and ¢

D(a, b, c) | a(d).0 —s b(d).0 | €(d).0

(vb)(D(a, b, ¢1) | D(b, ¢1,c2)) | &(d).0
— Tr(d).0 | G(d).0 | T5(d).0

Killer K(a) = a(z).0

Kills a message on a

Small Agents in action

@ a(z).(P| Q) can be expressed by . ..

o (ver,2)(D(a, ci,c2) | ¢i(2).P c(2).Q)

@ (in what sense do these processes behave the same?)
@ Example: a(z).(b(z).0 | 0)

@ behaves like (vcy, ¢2)(D(a, ¢y, ¢2) | FW(cq, b) | K(¢2))

Small Agents (2)

Identity Receptor I(a) =!FW(a, a)

Forwards messages for aon a

a(d).0 | I(a) — a(d).0 | I(a) —> ...

Small Agents (2)

Identity Receptor I(a) =!FW(a, a)

Forwards messages for aon a

a(d).0 | I(a) — a(d).0 | I(a) —> ...

Equator EQ(a, b) =!FW(a, b) |'FW(b, a)

Forwards all messages for ato b and vice versa, which makes a and b
receptive to messages on either channel.

a(d).0 | EQ(a, b) — b(d).0 | EQ(a, B) — a(d).0 | EQ(a,b) — ...

Small Agents (2)

Identity Receptor I(a) =!FW(a, a)

Forwards messages for aon a

a(d).0 | I(a) — a(d).0 | I(a) —> ...

Equator EQ(a, b) =!FW(a, b) |'FW(b, a)

Forwards all messages for ato b and vice versa, which makes a and b
receptive to messages on either channel.

a(d).0 | EQ(a, b) — b(d).0 | EQ(a, B) — a(d).0 | EQ(a,b) — ...

Omega Q = (va)('FW(a, a) | a(a).0)

Reduces infinitely to itself.

Q = (va)(I(a(z).a(z).0) | a(a).0) — Q — ...

Small Agents (2)

Identity Receptor I(a) =!FW(a, a)

Forwards messages for aon a

a(d).0 | I(a) — a(d).0 | I(a) —> ...

Equator EQ(a, b) =!FW(a, b) |'FW(b, a)

Forwards all messages for ato b and vice versa, which makes a and b
receptive to messages on either channel.

a(d).0 | EQ(a,b) — b(d).0 | EQ(a, B) — a(d).0 | EQ(a,b) — ...
Omega Q = (va)('FW(a, a) | a(a).0)
Reduces infinitely to itself.

Q = (va)(I(a(z).a(z).0) | a(a).0) — Q — ...

New Name Generator NN(a) =!a(z).(vb)z(b).0

a(c).0|a(d).0 | NN(a) — (vb)c(b).0 | a(d).0 | NN(a)
— (vb)e(b).0 | (vb')d(b').0 | NN(a)

Example (Mobility and name generation)

Internet connection
Client and server connect via dynamically assigned ports

Client(a) = (vc)(a(c).0| c(x).Clients(c, x))
Server(a) = a(y).(vs)(¥(s).0 | Serveri(y,s))

The names ¢ and s are local to client and server.

Client(a) | Server(a)
— (vec)(ce(x).Clienty(c, x) | (vs)(c(s).0 | Server4(c,s)))
— (vc)(vs)(Clientq(c, s) | Serverq(c,s))

Realistically, the server should be able to connect to multiple
clients. So we’d represent it by !Server(a).

Towards a semantics with a transition system

Semantics without congruence

Free Output: represented by o = ab, where a is the subject of
«, b its object
fn(a) = {a, b} and bn(a) = {}.
Input: o = ab with subject a, object b
fn(a) = {a, b} and bn(a) = {}.
Bound Output: a = a(b) with subject a, object ¢
fn(a) = {a} and bn(a) = {c}.

Towards a semantics with a transition system

Semantics without congruence

Pi-calculus actions

a == ablablaly)|r

Free Output: represented by o = ab, where a is the subject of
«, b its object
fn(a) = {a, b} and bn(a) = {}.
Input: o = ab with subject a, object b
fn(a) = {a, b} and bn(a) = {}.
Bound Output: a = a(b) with subject a, object ¢
fn(a) = {a} and bn(a) = {c}.

LTS Semantics of Pi

out IN TAU
alb).P -2 P a(z).P - Pz = b] PP
SUM-L SUM-R
P2 P Q-5 Q
P+Q-P +Q P+Q-%P+Q
PAR-L PAR-R
P2 P bn(a)Nfn(Q) =10 Q-5 Q bn(a)Nfa(P)=10
PlQ-=F|Q PIlQ-%P|Q
REACT-L REACT-R .
PP aQ2Q PP a2
PIlQ-5P | @ PlQ-P | @

LTS Semantics of Pi (part 2)

RES OPEﬁN
PP ag¢n(a) PZE. P a#c
(l/a)P i) (l/a)Pl (Z/C)P @ P
CLOSE-L
pilp g g ¢ ¢ fn(Q) CLOSE-R
P|Q-5 (ve)(P | Q)
REP-ACT REP:COMM
P P PP PP
P =5 P |IP P (P | P")|IP
REP-CLOSE

PP pEp c¢m(P)
P 5 (we)(P' | P") 1P

Properties

Q@ P=" Pimplies P %= P
@ P— Pifandonlyif P =P

@ The pi-calculus is a foundational calculus for concurrency.

@ ltis regarded as the concurrency counterpart for the
lambda calculus.

@ Lambda calculus can be encoded in pi-calculus.

	Message Passing
	Go
	Concurrent ML
	Pi-Calculus

