Concurrency SS 2024

Message Passing Concurrency

Peter Thiemann

June 26, 2024

0 Message Passing

Concurrency Flavors

Shared Memory Concurrency

@ processes interact by reading and writing shared variables
@ locking etc. needed to demarcate critical regions

Concurrency Flavors

Shared Memory Concurrency

@ processes interact by reading and writing shared variables
@ locking etc. needed to demarcate critical regions

Message Passing Concurrency

@ processes interact by sending and receiving messages on
shared communication channels

Expressiveness

@ message passing may be implemented using shared
variables (viz. consumer/producer message queue
implementations)

@ shared variables may be implemented using message
passing

e model a reference by a thread and channels for reading
and writing

e reading on the “read” channel returns the current value

e writing on the “write” channel spawns a new thread with the
new value that manages the two channels from then on

Synchronous vs. Asynchronous

@ Receive operation blocks either way
@ Given a channel with synchronous operations,

e send asynchronously by sending in a spawned thread
@ Given a channel with asynchronous operations.

e establish a protocol to acknowledge receipts
@ pair each send operation with a receive for the
acknowledgment

First Incarnation

Hoare’s Communicating Sequential Processes (CSP)
Prefix (x : B) — P(x)

await synchronizaton on event x (an element of B)
and then execute P(x)

External Choice (a— P | b— Q)
await synchronizaton on a or b and continue with
P or Q, respectively (a # b)

Internal Choice (PN Q)
continue nondeterministically with P or Q

Recursion uX e P(X)

process that recursively behaves like P

Concurrency P||Q
P runs in parallel with Q

Sequential (process local) variables, assignment, conditional,
while

CSP 1l
Communication in CSP

@ Special events

e clv output v on channel ¢
@ c?x read from channel ¢ and bind to variable x

@ Example: copy from channel in to channel out

COPY = pX e (in?x — (out!'x) — X)
@ Example: generate sequence of ones
ONES = uX e (in'1 — X)

Event in!1 synchronizes with in?x and transmits the value
to another process

@ Example: last process behaves like /dev/null

ONES||COPY||uX e (out?y — X)

CSP I

@ CSP has influenced the design of numerous programming
languages

@ Occam — programming “transputers”, processors with
specific serial communication links

e Golang — a programming language with cheap threads
and channel based communication (Google 2011,
https://golang.orq)

e CML — concurrent ML (John Reppy, 1999,
http://cml.cs.uchicago.edu/)

@ Golang and CML feature typed bidirectional channels
@ Golang’s channels can be buffered

https://golang.org
http://cml.cs.uchicago.edu/

Go the Language

Example: Compute Pi

// pi launches n goroutines to compute an
// approximation of pi.
func pi(n int) float64 {
ch := make (chan float64)
for k := 0; k <= n; k++ {
go term(ch, float64(k))

for k := 0; k <= n; k++ {
f += <-ch

return f

func term(ch chan float64, k floate4d) {

ch <- 4 % math.Pow (-1, k) / (2xk + 1)

Go |l

Example: Prime numbers

// Send the sequence 2, 3, 4, ... to channel ’'ch’.
func Generate (ch chan<- int) {
for 1 := 2; ; i++ {

ch <— 1 // Send ’i’ to channel ’ch’.

// Copy from channel ’in’ to channel ’out’,
// removing values divisible by ’'p’.
func Filter (in <-chan int, out chan<- int, p int) {

for {
i := <-in // Receive value from ’in’.
if i%p !'= 0 {

out <- 1 // Send 'i’ to ’'out’.

Go lla

Example 'Prime numbers’ continued

// The prime sieve: Daisy-chain Filter processes.

func main () {
ch := make(chan int) // Create a new channel.
go Generate (ch) // Launch generator.
for i := 0; i < 10; i++ {
prime := <-ch
fmt.Println (prime)
chl := make(chan int)

go Filter (ch, chl, prime)
ch = chl

e Concurrent ML

Concurrent ML

@ Synchronous message passing with first-class events
@ i.e., events are values in the language that can be passed
as parameters and manipulated before they become part of
a prefix
@ may be used to create new synchronization abstractions
@ Originally for ML with implementations in Racket, Caml,
Haskell, etc

@ But ideas more widely applicable

@ Requires threads to be very lightweight (i.e., thread
creation at the cost of little more than a function call)

CMULs Channel Interface

type "a channel (x messages passed on channels x)
val new_channel : unit -> ’a channel

type "a event (x when sync’ed on, get an "a x)

val send "a channel -> "a -> unit event
val receive : "a channel -> ’'a event
val sync "a event -> ’a

@ send and receive return an event immediately
@ sync blocks on the event until it happens
@ This separation of concerns is important

Simple Synchronous Operations

Define blocking send and receive operations:

let sendNow ch a = sync (send ch a)
let recvNow ch = sync (receive ch)

@ Each channel may have multiple senders and receivers
that want to synchronize.

@ Choice of pairing is nondeterministic, up to the
implementation

CML

Example: Bank Account

type action = Put of float | Get of float

type account = action channel % float channel
let mkAcct () =

let inCh = new_channel () in

let outCh = new_channel () in

let bal = ref 0.0 in (x state x)

let rec loop () =
(match recvNow inCh with (* blocks =x)

Put £ -> bal := !bal +. £

| Get £ => bal := !bal —-. f); (* overdraw! =*)
sendNow outCh !bal; loop ()

in ignore(create loop ()); (x launch "server" x)

(inCh, outCh) (* return channels x)

CML I

Example: Functional Bank Account

let mkAcct_functionally () =

let inCh = new_channel() in
let outCh = new_channel () in
let rec loop bal = (x state is loop-argument x)

let newbal =
match recvNow inCh with (* blocks =)
Put £ -> bal +. £
| Get £ -> bal —-. £ (* overdraw! =x)
in sendNow outCh newbal; loop newbal
in ignore (create loop 0.0);
(inCh, outCh)

@ Viz. model a reference using channels

Account Interface

Interface can abstract channels and concurrency from clients

type acct

val mkAcct : unit -> acct

val get : acct -> float -> float
val put : acct -> float -> float

@ type acct is abstract, with account as possible
implementation

@ mkAcct creates a thread behind the scenes
@ get and put make the server go round the loop once

Races are avoided by the implementation; the account server
takes one request at a time

Streams in CML

A stream is an infinite sequence of values produced lazily.

let nats = new_channel ()
let rec loop i =
sendNow nats 1i;
loop (i+1)
let _ = create loop O

let next_nat () = recvNow nats

Introducing Choice

@ sendNow and recvNow block until they find a
communication partner (rendezvous).

@ This behavior is not appropriate for many important
synchronization patterns.

@ Example:
val add : int channel -> int channel -> int
Should read the first value available on either channel to
avoid blocking the sender.

@ For this reason, sync is separate and there are further
operators on events.

Choose and Wrap

"a event list -> ’'a event

"a event -> ("a -> 'b) —-> b event
val never : ’'a event

"a —=> ’'a event

val choose
val wrap

val always

@ choose: creates an event that: when synchronized on,
blocks until one of the events in the list happens

@ wrap: the map function for channels; process the value
returned by the event with a function (when it happens)

@ never = choose []
@ always x:Ssynchronization is always possible; returns x
@ further primitives omitted (e.g., timeouts)

The Circuit Analogy

Electrical engineer

@ send and receive are ends of a gate
@ wrap is logic attached to a gate

@ choose is a multiplexer

@ sync is getting a result

The Circuit Analogy

Electrical engineer

@ send and receive are ends of a gate
@ wrap is logic attached to a gate

@ choose is a multiplexer

@ sync is getting a result

Computer scientist

@ build data structure that describes a communication
protocol

o first-class, so can be passed to sync
@ events in interfaces so other libraries can compose

0 Pi-Calculus

Pi-Calculus

@ The Pi-Calculus is a low-level calculus meant to provide a
formal foundation of computation by message passing.

@ First presented in 1989 by Milner, Parrow, and Walker.

@ Reference: Robin Milner’s book “Communicating and
Mobile Systems: the w-calculus”, Cambridge University
Press, 1999.

@ Has given rise to a number of programming languages
(Pict, JoCaml) and is acknowledged as a tool for business
process modeling (BPML).

@ Actively used and investigated in industry and academia.

Pi-Calculus Features

Primitives for describing and analysing global distributed

infrastructure
@ process migration between peers
@ process interaction via dynamic channels
@ private channel communication.

Pi-Calculus Features

Primitives for describing and analysing global distributed

infrastructure
@ process migration between peers
@ process interaction via dynamic channels
@ private channel communication.

Mobility

@ processes move in the physical space of computing sites
(successor: Ambient);

@ processes move in the virtual space of linked processes;

@ links move in the virtual space of linked processes
(precursor: CCS, Calculus of Communicating Systems).

Evolution from CCS

@ CCS: synchronization on fixed events a
aPlaQ—P|Q
@ value-passing CCS
aix).Pla(v).Q — P{x:=v}|Q

@ Pi: synchronization on variable events (names) + name
passing

x(y).P|x(2).Q— P{ly:=z}|Q

Example: Doctor’s Surgery
Based on example by Kramer and Eisenbach

A surgery consists of two doctors and one receptionist. Model
the following interactions:

@ a patient checks in;

© when a doctor is ready, the receptionist gives him the next
patient;

© the doctor gives prescription to the patient.

Attempt Using CCS + Value Passing

@ Patient checks in with name and symptoms
P(n, s) = checkin(n, s).?
© Receptionist dispatches to next available doctor
R = checkin(n, s).(next;.ansy(n, s).R + nexty.ansy(n, s).R)
© Doctor gives prescription
D; = nexti.ans;(n, s).?

@ In CCS it’s not possible to create an interaction between P
and D; because they don’t have a shared channel name.

Attempted Solution

Use patient’s name as the name of a new channel.
D; = next;.ans;(n, s).n{pre(s)).D;

P(n, s) = checkin{n, s).n(x).P’

Receptionist: Same code as before, but now the name of the
channel is passed along.

R = checkin(n, s).(next;.ansy(n, s).R + next..ans;(n, s).R)

Improvement |

The doctor passes an answering channel to R.
D; = next(ans;).ans;i(n, s).n(pre(s)).D;

R = checkin(n, s).next{ans).ans(n, s).R)

WIth this encoding, the receptionist no longer depends on the
number of doctors.
Patient: unchanged

P(n, s) = checkin{n, s).n(x).P’

Improvement |l

@ If two patients have the same name, then the current
solution does not work.

@ Solution: generate fresh channel names as needed
@ Read (vn) as “new n” (called restriction)
P(s) = (vn) checkin(n, s).n(x).P’

@ Same idea provides doctors with private identities
@ Now same code for each doctor
D = (va) next(a).a(n, s).n{pre(s)).D

@ In D| D | R, every doctor creates fresh names

Example: n-Place Buffer

Single buffer location (i.e., process)
B(in, out) = in(x).out(x).B(in, out)
n-place buffer By(i, 0) =
(vo1)...(von—1)(B(i,01) | --- | B(0j,0;) | ... B(0n-1,0))

May still be done with CCS restriction (__) \ o;, which can close
the scope of fixed names.

Example: Unbounded Buffer

UB(in, out) = in(x).(vy) (UB(in,y) | B(x, y, out))

B(x, in, out) = out(x).in(z).B(z, in, out)

@ Drawback: Cells are never destroyed

@ A elastic buffer, where cells are created and destroyed as
needed, cannot be expressed in CCS.

Formal Syntax of Pi-Calculus

Let x, y, z,... range over an infinite set A/ of names.

7 == X(y) send list of names y along channel x
| x(y) receive list of names y along channel x
| 7 unobservable action

Formal Syntax of Pi-Calculus

Let x, y, z,... range over an infinite set A/ of names.

7 == X(y) send list of names y along channel x
| x(y) receive list of names y along channel x
|

T unobservable action

Pi-processes

P > ic/mi-P; summation over finite index set /

| P|Q parallel composition
| (vx)P restriction
| P replication

Summation (nondeterministic guarded choice)

@ In >, m.P;, the process P; is guarded by the action =;
@ 0 stands for the empty sum (i.e., / = ()
@ 7.P abbreviates a singleton sum

@ The output process x(y).P
sends the list of free names y over x and continue as P

@ The input process x(z).P
binds the list of distinct names Z. It can receive any names

U over x and continues as P{Z := U}

Summation (nondeterministic guarded choice)

@ In >, m.P;, the process P; is guarded by the action =;
@ 0 stands for the empty sum (i.e., / = ()
@ 7.P abbreviates a singleton sum

@ The output process x(y).P
sends the list of free names y over x and continue as P

@ The input process x(z).P
binds the list of distinct names Z. It can receive any names

U over x and continues as P{Z := U}

x(2)y(z) x(2)2y) x(2)z(y) + wW(v)

@ The restriction (vz) P binds z in P.
@ Processes in P can use z to act among each others.
@ z is not visible outside the restriction.

Restriction

@ The restriction (vz) P binds z in P.
@ Processes in P can use z to act among each others.
@ z is not visible outside the restriction.

(vx) (x(2)-2{y) + w(v)) | X(u))

Replication

@ The replication !P can be regarded as a process consisting
of arbitrary many compositions of P.

@ As an equation: |P = P |IP.

Replication

@ The replication !P can be regarded as a process consisting
of arbitrary many compositions of P.

@ As an equation: |P = P |IP.

@ x(2).y(2).0
Repeatedly receive a name over x and send it over y.

@ x(2).ly(2).0
Repeatedly receive a name over x and repeatedly send it
over y.

Variation: Monadic Pi-Calculus

Send and receive primitives are restricted to pass single
names.

Monadic pi-actions

X(y) send name y along channel x
x(y) receive name y along channel x
T unobservable action

™

Monadic processes defined as before on top of monadic
pi-actions.

Simulating Pi with Monadic Pi

First attempt

@ Obvious idea for a translation from Pi to monadic Pi:

Simulating Pi with Monadic Pi

First attempt

@ Obvious idea for a translation from Pi to monadic Pi:

@ Does not work

Simulating Pi with Monadic Pi

First attempt

@ Obvious idea for a translation from Pi to monadic Pi:

@ Does not work
@ Counterexample

x(V1 y2).P | X(z1 22).Q | X(z] z5).Q

Simulating Pi with Monadic Pi
Correct encoding

Suppose that w ¢ fn(P, Q)

X(P).P = (vw) X(W)W(yq) ... W(y,).Pt
x(7).Q — x(w).w(yy)...w(yn).Qf

where P and Q' are recursively transformed in the same way.

Recursion by Replication

The Pi-calculus can encode recursion. Suppose a process is
defined using recursion

AX)=Qa
where Q4 contains calls to A and process P is the scope of A.
The translation is given by

@ introduce a new name a to stand for A;

@ for any process R, write R for the result of replacing every
call A(w) by a(w);
© replace P and the old definition of A by

P = (va) (P |la(%).Qn)

@ The pi-calculus is a foundational calculus for concurrency.

@ ltis regarded as the concurrency counterpart for the
lambda calculus.

@ Lambda calculus can be encoded in pi-calculus.

	Message Passing
	Go
	Concurrent ML
	Pi-Calculus

