Concurrency SS 2024 Message Passing Concurrency

Peter Thiemann

June 26, 2024

Outline

- Message Passing
- 2 Go
- 3 Concurrent ML
- 4 Pi-Calculus

Concurrency Flavors

Shared Memory Concurrency

- processes interact by reading and writing shared variables
- locking etc. needed to demarcate critical regions

Concurrency Flavors

Shared Memory Concurrency

- processes interact by reading and writing shared variables
- locking etc. needed to demarcate critical regions

Message Passing Concurrency

 processes interact by sending and receiving messages on shared communication channels

Expressiveness

- message passing may be implemented using shared variables (viz. consumer/producer message queue implementations)
- shared variables may be implemented using message passing
 - model a reference by a thread and channels for reading and writing
 - reading on the "read" channel returns the current value
 - writing on the "write" channel spawns a new thread with the new value that manages the two channels from then on

Synchronous vs. Asynchronous

- Receive operation blocks either way
- Given a channel with synchronous operations,
 - send asynchronously by sending in a spawned thread
- Given a channel with asynchronous operations.
 - establish a protocol to acknowledge receipts
 - pair each send operation with a receive for the acknowledgment

First Incarnation

Hoare's Communicating Sequential Processes (CSP)

Prefix
$$(x : B) \rightarrow P(x)$$

await synchronizaton on event x (an element of B)
and then execute $P(x)$

External Choice
$$(a \rightarrow P \mid b \rightarrow Q)$$

await synchronizaton on a or b and continue with P or Q , respectively $(a \neq b)$

Internal Choice
$$(P \sqcap Q)$$
 continue nondeterministically with P or Q

Recursion
$$\mu X \bullet P(X)$$
 process that recursively behaves like P

Concurrency P||QP runs in parallel with Q

Sequential (process local) variables, assignment, conditional, while

CSP II

Communication in CSP

- Special events
 - c!v output v on channel c
 - c?x read from channel c and bind to variable x
- Example: copy from channel in to channel out

$$COPY = \mu X \bullet (in?x \rightarrow (out!x) \rightarrow X)$$

Example: generate sequence of ones

$$ONES = \mu X \bullet (in!1 \rightarrow X)$$

Event *in*!1 synchronizes with *in*?*x* and transmits the value to another process

Example: last process behaves like /dev/null

$$ONES ||COPY|| \mu X \bullet (out?y \rightarrow X)$$

CSP III

- CSP has influenced the design of numerous programming languages
 - Occam programming "transputers", processors with specific serial communication links
 - Golang a programming language with cheap threads and channel based communication (Google 2011, https://golang.org)
 - CML concurrent ML (John Reppy, 1999, http://cml.cs.uchicago.edu/)
- Golang and CML feature typed bidirectional channels
- Golang's channels can be buffered

Outline

- Message Passing
- 2 Go
- 3 Concurrent ML
- 4 Pi-Calculus

```
// pi launches n goroutines to compute an
// approximation of pi.
func pi(n int) float64 {
        ch := make(chan float64)
        for k := 0; k <= n; k++ \{
                go term(ch, float64(k))
        f := 0.0
        for k := 0; k <= n; k++ {
                f += <-ch
        return f
func term(ch chan float64, k float64) {
        ch < -4 * math.Pow(-1, k) / (2*k + 1)
```

Go II

Example: Prime numbers

```
// Send the sequence 2, 3, 4, ... to channel 'ch'.
func Generate(ch chan<- int) {</pre>
 for i := 2; ; i++ {
    ch <- i // Send 'i' to channel 'ch'.
// Copy from channel 'in' to channel 'out',
// removing values divisible by 'p'.
func Filter(in <-chan int, out chan<- int, p int) {</pre>
 for {
    i := <-in // Receive value from 'in'.
    if i%p != 0 {
      out <- i // Send 'i' to 'out'.
```

```
// The prime sieve: Daisy-chain Filter processes.
func main() {
 ch := make(chan int) // Create a new channel.
 go Generate (ch) // Launch generator.
 for i := 0; i < 10; i++ \{
   prime := <-ch
   fmt.Println(prime)
   ch1 := make(chan int)
   go Filter(ch, ch1, prime)
   ch = ch1
```

Outline

- Message Passing
- 2 Go
- 3 Concurrent ML
- 4 Pi-Calculus

Concurrent ML

- Synchronous message passing with first-class events
 - i.e., events are values in the language that can be passed as parameters and manipulated before they become part of a prefix
 - may be used to create new synchronization abstractions
- Originally for ML with implementations in Racket, Caml, Haskell, etc
- But ideas more widely applicable
- Requires threads to be very lightweight (i.e., thread creation at the cost of little more than a function call)

CML's Channel Interface

```
type 'a channel (* messages passed on channels *)
val new_channel : unit -> 'a channel

type 'a event (* when sync'ed on, get an 'a *)
val send : 'a channel -> 'a -> unit event
val receive : 'a channel -> 'a event
val sync : 'a event -> 'a
```

- send and receive return an event immediately
- sync blocks on the event until it happens
- This separation of concerns is important

Simple Synchronous Operations

Define blocking send and receive operations:

```
let sendNow ch a = sync (send ch a)
let recvNow ch = sync (receive ch)
```

- Each channel may have multiple senders and receivers that want to synchronize.
- Choice of pairing is nondeterministic, up to the implementation

```
type action = Put of float | Get of float
type account = action channel * float channel
let mkAcct () =
  let inCh = new channel() in
  let outCh = new channel() in
  let bal = ref 0.0 in (* state *)
  let rec loop () =
    (match recvNow inCh with (* blocks *)
      Put f \rightarrow bal := !bal + . f
    | Get f -> bal := !bal -. f); (* overdraw! *)
    sendNow outCh !bal; loop ()
in ignore(create loop ()); (* launch "server" *)
   (inCh, outCh) (* return channels *)
```

```
let mkAcct_functionally () =
  let inCh = new_channel() in
  let outCh = new channel() in
  let rec loop bal = (* state is loop-argument *)
    let. newbal =
      match recvNow inCh with (* blocks *)
        Put f \rightarrow bal + f
      | Get f -> bal -. f (* overdraw! *)
    in sendNow outCh newbal; loop newbal
  in ignore (create loop 0.0);
     (inCh, outCh)
```

• Viz. model a reference using channels

Account Interface

Interface can abstract channels and concurrency from clients

```
type acct
val mkAcct : unit -> acct
val get : acct -> float -> float
val put : acct -> float -> float
```

- type acct is abstract, with account as possible implementation
- mkAcct creates a thread behind the scenes
- get and put make the server go round the loop once

Races are avoided by the implementation; the account server takes one request at a time

Streams in CML

A stream is an infinite sequence of values produced lazily.

```
let nats = new_channel()
let rec loop i =
   sendNow nats i;
  loop (i+1)
let _ = create loop 0
let next_nat () = recvNow nats
```

Introducing Choice

- sendNow and recvNow block until they find a communication partner (rendezvous).
- This behavior is not appropriate for many important synchronization patterns.
- Example:
 - val add: int channel -> int channel -> int Should read the first value available on either channel to avoid blocking the sender.
- For this reason, sync is separate and there are further operators on events.

Choose and Wrap

```
val choose : 'a event list -> 'a event
val wrap : 'a event -> ('a -> 'b) -> 'b event
val never : 'a event
val always : 'a -> 'a event
```

- choose: creates an event that: when synchronized on, blocks until one of the events in the list happens
- wrap: the map function for channels; process the value returned by the event with a function (when it happens)
- never = choose []
- always x: synchronization is always possible; returns x
- further primitives omitted (e.g., timeouts)

The Circuit Analogy

Electrical engineer

- send and receive are ends of a gate
- wrap is logic attached to a gate
- choose is a multiplexer
- sync is getting a result

The Circuit Analogy

Electrical engineer

- send and receive are ends of a gate
- wrap is logic attached to a gate
- choose is a multiplexer
- sync is getting a result

Computer scientist

- build data structure that describes a communication protocol
- first-class, so can be passed to sync
- events in interfaces so other libraries can compose

Outline

- Message Passing
- 2 Go
- Concurrent ML
- 4 Pi-Calculus

Pi-Calculus

- The Pi-Calculus is a low-level calculus meant to provide a formal foundation of computation by message passing.
- First presented in 1989 by Milner, Parrow, and Walker.
- Reference: Robin Milner's book "Communicating and Mobile Systems: the π -calculus", Cambridge University Press, 1999.
- Has given rise to a number of programming languages (Pict, JoCaml) and is acknowledged as a tool for business process modeling (BPML).
- Actively used and investigated in industry and academia.

Pi-Calculus Features

Primitives for describing and analysing global distributed infrastructure

- process migration between peers
- process interaction via dynamic channels
- private channel communication.

Pi-Calculus Features

Primitives for describing and analysing global distributed infrastructure

- process migration between peers
- process interaction via dynamic channels
- private channel communication.

Mobility

- processes move in the physical space of computing sites (successor: Ambient);
- processes move in the virtual space of linked processes;
- links move in the virtual space of linked processes (precursor: CCS, Calculus of Communicating Systems).

Evolution from CCS

CCS: synchronization on fixed events a

$$a.P \mid \overline{a}.Q \longrightarrow P \mid Q$$

value-passing CCS

$$a(x).P \mid \overline{a}(v).Q \longrightarrow P\{x := v\} \mid Q$$

 Pi: synchronization on variable events (names) + name passing

$$x(y).P \mid \overline{x}(z).Q \longrightarrow P\{y := z\} \mid Q$$

Example: Doctor's Surgery

Based on example by Kramer and Eisenbach

A surgery consists of two doctors and one receptionist. Model the following interactions:

- a patient checks in;
- when a doctor is ready, the receptionist gives him the next patient;
- the doctor gives prescription to the patient.

Attempt Using CCS + Value Passing

Patient checks in with name and symptoms

$$P(n,s) = \overline{checkin}\langle n, s \rangle.$$
?

Receptionist dispatches to next available doctor

$$R = checkin(n, s).(next_1.\overline{ans_1}\langle n, s \rangle.R + next_2.\overline{ans_2}\langle n, s \rangle.R)$$

Octor gives prescription

$$D_i = \overline{next_i}.ans_i(n, s).$$
?

 In CCS it's not possible to create an interaction between P and D_i because they don't have a shared channel name.

Attempted Solution

Use patient's name as the name of a new channel.

$$D_i = \overline{next_i}.ans_i(n, s).\overline{n}\langle pre(s) \rangle.D_i$$

 $P(n, s) = \overline{checkin}\langle n, s \rangle.n(x).P'$

Receptionist: Same code as before, but now the name of the channel is passed along.

$$R = checkin(\underbrace{\textbf{n}}, \textbf{s}).(next_1.\overline{ans_1}\langle \textbf{n}, \textbf{s}\rangle.R + next_2.\overline{ans_2}\langle \textbf{n}, \textbf{s}\rangle.R)$$

Improvement I

The doctor passes an answering channel to R.

$$D_i = \overline{next}(ans_i).ans_i(n, s).\overline{n}\langle pre(s)\rangle.D_i$$

$$R = checkin(n, s).next\langle ans \rangle.\overline{ans}\langle n, s \rangle.R)$$

With this encoding, the receptionist no longer depends on the number of doctors.

Patient: unchanged

$$P(n,s) = \overline{checkin}\langle n,s\rangle.n(x).P'$$

Improvement II

- If two patients have the same name, then the current solution does not work.
- Solution: generate fresh channel names as needed
- Read (νn) as "new n" (called <u>restriction</u>)

$$P(s) = (\nu n) \overline{checkin} \langle n, s \rangle . n(x) . P'$$

- Same idea provides doctors with private identities
- Now same code for each doctor

$$D = (\nu a) \overline{next}(a).a(n,s).\overline{n}\langle pre(s)\rangle.D$$

• In $D \mid D \mid R$, every doctor creates fresh names

Example: n-Place Buffer

Single buffer location (i.e., process)

$$B(in, out) = in(x).\overline{out}\langle x \rangle.B(in, out)$$

n-place buffer $B_n(i, o) =$

$$(\nu o_1) \dots (\nu o_{n-1})(B(i, o_1) \mid \dots \mid B(o_j, o_{j_1}) \mid \dots B(o_{n-1}, o))$$

May still be done with CCS restriction (__) \setminus o_i , which can close the scope of fixed names.

Example: Unbounded Buffer

$$UB(in, out) = in(x).(\nu y) (UB(in, y) \mid B(x, y, out))$$
$$B(x, in, out) = \overline{out} \langle x \rangle.in(z).B(z, in, out)$$

- Drawback: Cells are never destroyed
- A <u>elastic</u> buffer, where cells are created and destroyed as needed, cannot be expressed in CCS.

Formal Syntax of Pi-Calculus

Let x, y, z, \ldots range over an infinite set \mathcal{N} of names.

Pi-actions

```
\begin{array}{lll} \pi & ::= & \overline{\chi}\langle \widetilde{y} \rangle & \text{send list of names } \widetilde{y} \text{ along channel } x \\ & | & x(\widetilde{y}) & \text{receive list of names } \widetilde{y} \text{ along channel } x \\ & | & \tau & \text{unobservable action} \end{array}
```

Formal Syntax of Pi-Calculus

Let x, y, z, \ldots range over an infinite set \mathcal{N} of names.

Pi-actions

$$\begin{array}{lll} \pi & ::= & \overline{\chi}\langle \widetilde{y} \rangle & \text{send list of names } \widetilde{y} \text{ along channel } x \\ & | & x(\widetilde{y}) & \text{receive list of names } \widetilde{y} \text{ along channel } x \\ & | & \tau & \text{unobservable action} \end{array}$$

Pi-processes

$$P ::= \sum_{i \in I} \pi_i.P_i$$
 summation over finite index set I
 $\mid P \mid Q$ parallel composition
 $\mid (\nu x) P$ restriction
 $\mid !P$ replication

Summation (nondeterministic guarded choice)

- In $\sum_{i \in I} \pi_i . P_i$, the process P_i is guarded by the action π_i
- 0 stands for the empty sum (i.e., $I = \emptyset$)
- π.P abbreviates a singleton sum
- The <u>output process</u> $\overline{x}\langle \tilde{y}\rangle.P$ sends the list of free names \tilde{y} over x and continue as P
- The <u>input process</u> $x(\tilde{z}).P$ binds the list of distinct names \tilde{z} . It can receive any names \tilde{u} over x and continues as $P\{\tilde{z}:=\tilde{u}\}$

Summation (nondeterministic guarded choice)

- In $\sum_{i \in I} \pi_i . P_i$, the process P_i is guarded by the action π_i
- 0 stands for the empty sum (i.e., $I = \emptyset$)
- π.P abbreviates a singleton sum
- The <u>output process</u> $\overline{x}\langle \tilde{y}\rangle.P$ sends the list of free names \tilde{y} over x and continue as P
- The <u>input process</u> $x(\tilde{z}).P$ binds the list of distinct names \tilde{z} . It can receive any names \tilde{u} over x and continues as $P\{\tilde{z} := \tilde{u}\}$

Examples

$$X(z).\overline{y}\langle z\rangle$$
 $X(z).\overline{z}\langle y\rangle$ $X(z).\overline{z}\langle y\rangle + \overline{w}\langle v\rangle$

Restriction

- The restriction (νz) P binds z in P.
- Processes in P can use z to act among each others.
- z is not visible outside the restriction.

Restriction

- The restriction (νz) P binds z in P.
- Processes in P can use z to act among each others.
- z is not visible outside the restriction.

Example

$$(\nu x) ((x(z).\overline{z}\langle y\rangle + \overline{w}\langle v\rangle) \mid \overline{x}\langle u\rangle)$$

Replication

- The <u>replication</u> !P can be regarded as a process consisting of arbitrary many compositions of P.
- As an equation: |P = P| |P.

Replication

- The <u>replication</u> !P can be regarded as a process consisting of arbitrary many compositions of P.
- As an equation: |P = P| |P.

Examples

- $|x(z).\overline{y}\langle z\rangle.0$ Repeatedly receive a name over x and send it over y.
- !x(z).!ȳ⟨z⟩.0
 Repeatedly receive a name over x and repeatedly send it over y.

Variation: Monadic Pi-Calculus

Send and receive primitives are restricted to pass single names.

Monadic pi-actions

$$\pi$$
 ::= $\overline{x}\langle y \rangle$ send name y along channel x | $x(y)$ receive name y along channel x | τ unobservable action

Monadic processes defined as before on top of monadic pi-actions.

Simulating Pi with Monadic Pi

First attempt

Obvious idea for a translation from Pi to monadic Pi:

$$\begin{array}{ccc} \overline{x}\langle \tilde{y}\rangle & \to & \overline{x}\langle y_1\rangle \dots \overline{x}\langle y_n\rangle \\ x(\tilde{y}) & \to & x(y_1) \dots x(y_n) \end{array}$$

Simulating Pi with Monadic Pi

First attempt

Obvious idea for a translation from Pi to monadic Pi:

$$\begin{array}{ccc} \overline{x}\langle \tilde{y} \rangle & \to & \overline{x}\langle y_1 \rangle \dots \overline{x}\langle y_n \rangle \\ x(\tilde{y}) & \to & x(y_1) \dots x(y_n) \end{array}$$

Does not work

Obvious idea for a translation from Pi to monadic Pi:

$$\begin{array}{ccc} \overline{x}\langle \tilde{y}\rangle & \to & \overline{x}\langle y_1\rangle \dots \overline{x}\langle y_n\rangle \\ x(\tilde{y}) & \to & x(y_1) \dots x(y_n) \end{array}$$

- Does not work
- Counterexample

$$x(y_1 \ y_2).P \mid \overline{x}\langle z_1 \ z_2 \rangle.Q \mid \overline{x}\langle z_1' \ z_2' \rangle.Q'$$

Simulating Pi with Monadic Pi

Correct encoding

Suppose that $w \notin fn(P, Q)$

$$\overline{x}\langle \tilde{y}\rangle.P \rightarrow (\nu w) \overline{x}\langle w\rangle \overline{w}\langle y_1\rangle \dots \overline{w}\langle y_n\rangle.P^{\dagger}$$

 $x(\tilde{y}).Q \rightarrow x(w).w(y_1)\dots w(y_n).Q^{\dagger}$

where P^{\dagger} and Q^{\dagger} are recursively transformed in the same way.

Recursion by Replication

The Pi-calculus can encode recursion. Suppose a process is defined using recursion

$$A(\tilde{x}) = Q_A$$

where Q_A contains calls to A and process P is the scope of A. The translation is given by

- 1 introduce a new name a to stand for A;
- ② for any process R, write \hat{R} for the result of replacing every call $A(\tilde{w})$ by $\overline{a}\langle \tilde{w} \rangle$;
- replace P and the old definition of A by

$$\hat{P} = (\nu a) (\hat{P} \mid ! a(\tilde{x}).\hat{Q}_A)$$

Wrapup

- The pi-calculus is a foundational calculus for concurrency.
- It is regarded as the concurrency counterpart for the lambda calculus.
- Lambda calculus can be encoded in pi-calculus.