
Dynamic data race prediction - Locksets

Martin Sulzmann

The Lockset Method
The lockset is the set of locks that are held when processing a read/write event.

It can be used for several purposes.

Data race check based on locksets
If two conflicting events hold the same lock y, then both events must belong to
two distinct critical sections involving lock y. As critical sections are mutually
exclusive, two conflicting events that share the same lock cannot be in a data
race.

Hence, if the locksets of two conflicting events e and f are disjoint, then (e, f) is
a Lockset data race pair.

Critical section
A critical section is identified by a pair of matching acq(y) and rel(y) events.

To define matching acquire/release pairs, we attach thread ids and trace positions
to events. We write t#ek to denote some event e in thread t at trace position k.
Recall Trace and event notation.

Consider acquire event t1#acq(y)k and release event t2#rel(y)l.

We say that (t1#acq(y)k, t2#rel(y)l) is a matching acquire/release pair if

1. t1 = t2, and

2. k < l and there is no t#rel(y)m where k < m < l.

The first condition states that acq(y) and rel(y) belong to the same thread. The
second condition states that there is no other rel(y) between acq(y)k and rel(y)l.

We write CS(t#acq(y)k, t#rel(y)l) to denote the set of events that are part of
the critical section for a matching acquire/release pair (t#acq(y)k, t#rel(y)l).
We only accept events from the same thread t.

We write t′#em ∈ CS(t#acq(y)k, t#rel(y)l) if t = t′ and k ≤ m ≤ l.

1

./lec-hb-vc.html#(3)


Hence, acq(y) and rel(y) are part of the critical section; and any event in the
same thread between them is also part of this critical section.

Lockset
Let e an event. The lockset of e, written LS(e), consists of all ys such that
e appears in a critical section belonging to lock y. More formally, we define
LS(e) = {y | ∃a = t#acq(y)k, r = t#rel(y)l.e ∈ CS(a, r)}.

Example
Recall the earlier trace.

Trace A:

T1 T2

1. w(x)
2. acq(y)
3. rel(y)
4. acq(y)
5. w(x)
6. rel(y)

Trace A contains two critical sections for lock variable y.

Thread T1 contains the critical section CS(T1#acq(y)2, T1#rel(y)3).

Thread T2 contains the critical section CS(T2#acq(y)4, T2#rel(y)6).

We consider the locksets of events w(x)1 and w(x)5.

LS(w(x)1) = {}.

LS(w(x)5) = {y}.

The two locksets are disjoint because LS(w(x)1) ∩ LS(w(x)5) = {}. Hence, the
conflicting events w(x)1 and w(x)5 represent a data race.

Lockset summary and limitations
The lockset method is complete, because any conflicting pair of events that
represent a data race can be shown to be a lockset data race pair. However, the
lockset method is unsound.

Like HB, the lockset method ignores write-read dependencies (and therefore
the earlier HB unsoundness example also applies to lockset). There is a further
reason for unsoundness because lockset enables reordering of critical sections. By
reordering critical sections (to exhibit the data race) we may run into a deadlock.

Consider the following trace.

2



T1 T2

1. acq(y1)
2. acq(y2)
3. rel(y2)
4. w(x)
5. rel(y1)
6. acq(y2)
7. acq(y1)
8. rel(y1)
9 w(x)
10. rel(y2)

There are two lock variables y1 and y2. There are two conflicting events w(x)4
and w(x)9. Their lockset is as follows.

LS(w(x)4) = {y1}.

LS(w(x)9) = {y2}.

Based on the lockset data race check, we argue that w(x)4 and w(x)9 represents
a data race. But is this an actual data race? No!

The reason is that there is no valid trace reordering (of the above trace) under
which the two writes on x appear right next to each other. We prove this
statement by contradiction.

Suppose, there exists a valid trace reordering. For example, . . . , w(x)4, w(x)5.
As the program order must remain intact, the events in thread T1 must appear
before w(x)4 and the events in thread T2 must appear before w(x)5. But that
means, thread T1 acquired locks y1 and y2 and the same applies to thread T2!
This is impossible (and if we would try we would run into a deadlock).

Hence, the lockset method is unsound and the above is an example of a false
positive.

Comparing HB and Lockset
• The lockset method is complete but unsound.
• The HB method is incomplete and unsound.

In practice, it appears that the lockset method gives rise to significantly more
false positives than the HB method.

One can combine the HB and lockset method to achieve Efficient, Near Complete
and Often Sound Hybrid Dynamic Data Race Prediction (extended version).

3

https://arxiv.org/abs/2004.06969
https://arxiv.org/abs/2004.06969


Lockset computation
We maintain the following state variables.

ls(t) : Set(Lock)

The set of locks held by thread t at a certain time.

LS : Event -> Set(Lock)

A mapping from an event e to its lockset.

We write e@operation to denote that event e will be processed by operation.

e@acq(t,y) {
ls(t) = ls(t) U {y}

}

e@rel(t,y) {
ls(t) = ls(t) - {y}

e@fork(t1,t2) {
}

e@join(t1,t2) {
}

e@write(t,x) {
LS(e) = ls(t)

}

e@read(t,x) {
LS(e) = ls(t)

}

For sets S1 and S2 we write S1 - S2 for the set difference (the set that contains
all elements in S1 that are not in S2).

We only record the lockset for write and read events.

We also cover fork and join events. As we can see, the computation of locksets
is agnostic to the presence of fork and join events.

Observation
Unlike Lamport’s happens-before that is sensitive to the order of critical sections,
the computation of locksets is not affected if we reorder critical sections.

Consider trace A.

4



T1 T2

e1. w(x)
e2. acq(y)
e3. rel(y)
e4. acq(y)
e5. w(x)
e6. rel(y)

It holds that LS(e1) = {} and LS(e5) = {y}.

For the following (valid) reordering

T1 T2
e4. acq(y)
e5. w(x)
e6. rel(y)
e1. w(x)
e2. acq(y)
e3. rel(y)

It holds that LS(e1) = {} and LS(e5) = {y}.

Further examples
We annotate the trace with lockset information.

Example 1
T0 T1 Lockset

1. acq(y)
2. w(x) {y}
3. rel(y)
4. r(x) {}
5. w(x) {}
6. acq(y)
7. rel(y)

The locksets of the two writes on x in thread T0 and T1 are disjoint. Hence, the
lockset method reports a data race.

Example 2
T0 T1 Lockset

1. w(x) {}
2. acq(y)
3. w(x) {y}
4. rel(y)

5



5. acq(y)
6. w(x) {y}
7. rel(y)

The lockset of the write at trace position 1 and the write at trace position 6 are
disjoint. Hence, we expect that the lockset method signals a data race.

To be efficient, an implementation based on the lockset method only keeps track
of the most recent locksets. That is, each thread maintains a list of the most
recent reads/writes and their locksets.

Applied to the above example, we encounter the following behavior.

• Thread T0 processes w(x)1 and records LS(w(x)) = {}.

• Once thread T0 processes w(x)3 it records LS(w(x)) = {y}.

• Hence, the history of earlier locksets for writes on x is lost.

• Hence, algorithms that only record locksets for most recent writes/reads
will not signal a data race for this example.

Example 3
T0 T1 Lockset

1. w(x) {}
2. acq(y)
3. rel(y)
4. acq(y)
5. w(x) {y}
6. rel(y)

The locksets are disjoint. Hence, the algorithm signals a data race.

However, in the actual program, thread T0 forks thread T1. We assume that
after the release at trace position 3 there is a go statement to create thread T1.
For example, the above trace could result from the following program.

x = 3
acq(y)
rel(y)

go func() {
acq(y)
x = 4
rel(y)

}()

This “fork” information is not recorded in the trace. As we only compare locksets,
we encounter here another case of a false positive.

6



Example 4
T0 T1 T2 Lockset

1. acq(y)
2. w(x) {}
3. rel(y)
4. acq(y)
5. w(x) {y}
6. rel(y)

Shouldn’t the lockset at trace position 2 include lock variable y!?

No!

• The write at trace position 2 seems to be protected by lock variable y.
• However, thread T1 does not “own” this lock variable!

7


	The Lockset Method
	Data race check based on locksets
	Critical section
	Lockset
	Example
	Lockset summary and limitations

	Comparing HB and Lockset
	Lockset computation
	Observation

	Further examples
	Example 1
	Example 2
	Example 3
	Example 4


