Lecture notes for chapter 8

Peter Thiemann

2024-06-18

Type checking Lfun

o top-level functions with type annotations

def inc(x : int) -> int:
return x + 1

e so far: type checking expressions was enough
e now we need to check statements in a significant way:
— want to ensure that return types are obeyed
— want to ensure that return statement appear in all execution paths
of a function (c.f., Python type checkers)

What are the issues?

def f() -> int:
x = 42

Should not type check (missing return)

def f(b: bool) -> int:
if b:
return 1
else:
x =4

Should not type check because the function may not return an integer.

def f(b: bool) -> int:
while b:
return 1

Should not type check because f (False) does not return an integer.

def f(b: bool) —-> int:
if b:
return 1

else:
return 4

Ok!

def f(b: bool) -> int:
if b:
return 1
else:
return True

Not ok: return types have to be consistent (with each other and the type
annotation).

Typing judgment
Judgment

ctx, rty |- s : r

e ctx typing context

e rty return type (from function declaration)

e s statement

o ris Y (this statement definitely returns) or N (statement may or may not
return)

Let’s say that Y < N.

Typing rules for statements

ctx, rty |- print(e) : N

ctx |- e : t
ctx(x) = t

ctx, rty |- x=e : N

ctx |- e : rty

ctx, rty |- return e : Y

ctx |- e : Bool
ctx, rty |- ssl : ril
ctx, rty |- ss2 : r2

ctx, rty |- if e: ssl else: ss2 : max(rl, r2)
ctx |- e : Bool

ctx, rty |- ss : r

ctx, rty |- while e: ss : N

Typing for lists of statements

Judgment
ctx, rty |- ss : r
o ss list of statements
ctx, rty |- [: N
ctx, rty |- s : r1

ctx, rty |- ss : r2
if r1=Y then r=Y else r=r2

ctx, rty |- s::ss : r

Implementation We store rty in env under a special name which is not a
valid identifier (e.g., @ret).

Alternative designs for the type checker

Stop checking after return

The above rule requires that we check all statement even if they follow a definite
return statement.

Alternatively, we could stop checking statements in a statement list as soon as
as we find a return. The corresponding stop-check rules would look like this:

ctx, rty |- s : Y

ctx, rty |- s::ss : Y

ctx, rty |- s : N
ctx, rty |- ss : r

ctx, rty |- s::ss : r

Handling of the void type

We omitted the TVoid type from the book, which means that all functions have
to return a value.

The easiest way to add this type would be to add an expression like None that
“creates” a value of type TVoid. With the stop-check rule for statement lists in
force, a transformation could add return None to the end of any function body
to obtain a Python-like behavior. As yet another alternative, we could make
the expression of the return statement optional and treat return like return
None (with the advantage that we don’t have to create a new expression).

Tail calls

Example translation (hand optimized) of the tail_sum example in section 8.2.2.

tail_sum:
addi sp, sp, -16
sd ra, +8(sp)
sd fp, 0(sp)
addi fp, sp, 16
tail_sum_tail:
create space for callee-saved registers+locals
beq a0, L.1
add al, al, a0
addi a0, a0, -1
delete space for callee-saved registers+locals
j tail_sum_tail
L.1:
mv a0, al
tail_sum_epilog:
delete space for callee-saved registers+locals

1d fp, 0(sp)

1d ra, 8(sp)
addi sp, sp, 16
ret

	Type checking Lfun
	What are the issues?
	Typing judgment
	Typing rules for statements
	Typing for lists of statements
	Alternative designs for the type checker
	Stop checking after return
	Handling of the void type

	Tail calls

