Compiler Construction 2024 Liveness Analysis

Peter Thiemann

May 28, 2024

Outline

Liveness Analysis

Liveness Analysis

IR after instruction selection

- abstract assembly code
- operates on unbounded number of temporaries

Next goal

register allocation

Register allocation

- instruction operands in registers
- bounded number of registers ⇒ limited resource
- questions to be addressed
 - how many registers are needed at every program point?
 - what to do if fewer registers are available than needed?
- optimal allocation is NP-complete

How many registers are needed?

Concept: Live range

The <u>live range</u> of a temporary spans all instructions that may be executed between its definition and one of its uses.

Concept: Liveness

A temporary is <u>live</u> at some instruction if its value may be used in the future.

Answers

- At any given instruction, all live temporaries may be needed.
- Temporaries that are not needed at the same time may share a register.

What if fewer registers are available than needed?

Concept: Spill

Spilling a temporary means

- allocate it in a stack frame
- insert store instruction right after its definition
- insert load instruction before every use

Consequences of spilling

- shortens the live range of a temporary
- increases the size of a stack frame
- accessing the temporary becomes more expensive

Roadmap

- control-flow graph
- liveness analysis
- interference graph

Control Flow Graph (CFG)

Graphical representation of control flow in a program

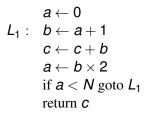
CFG of a program

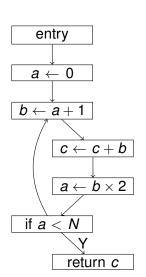
- Nodes: entry, exit, and each occurrence of a statement in program
- Edges: an edge from n to n' represents a potential control transfer from (the end of) n to (the beginning of) n'

Terminology

Out-edges from *n* lead to <u>successor nodes</u>, **succ**[*n*] In-edges to *n* come from predecessor nodes, **pred**[*n*]

Example CFG





Definitions and uses

Consider a CFG

- A variable v gets <u>defined</u> by node n, if the statement at n assigns to v.
- A variable v gets <u>used</u> by node n,
 if v occurs in an expression at n, i.e., it reads from v.
- def[n] set of variables defined by n
- use[n] set of variables used by n
- def[n] and use[n] are fixed by program/CFG

Example def-use

		def[n]	use[n]
	<i>a</i> ← 0	{a}	Ø
<i>L</i> ₁ :	$b \leftarrow a + 1$	{ <i>b</i> }	{ a }
	$c \leftarrow c + b$	{ c }	{ <i>c</i> , <i>b</i> }
	$a \leftarrow b \times 2$	{ a }	{ <i>b</i> }
	if $a < N$ goto L_1	Ø	{ a }
	return C	Ø	{ c }

Liveness

Definition

Variable v is <u>live</u> on edge e if there is an execution path from e to a use of v that does not pass through any definition of v.

Liveness Analysis

A <u>data flow analysis</u> that computes the variables that <u>may be</u> live at each edge of a control flow graph.

Definition for analysis

Variable v is <u>live</u> on edge e if there is a <u>directed path</u> from e to a use of v that does not pass through any definition of v.

More on liveness

Liveness at node *n*

- v is <u>live-in</u> at n if v is live on any in-edge of n
 in[n] variables live-in at n
- v is live-out at n if v is live on any out-edge of n
 out[n] variables live-out at n

Liveness analysis

Computation rules for liveness

- $v \in \mathbf{use}[n]$ implies v live-in at n
- ② v live-in at n implies v live-out at all $m \in \mathbf{pred}[n]$
- **3** v live-out at n and $v \notin \mathbf{def}[n]$ implies v live-in at n
- ⇒ liveness information is propagated <u>backwards</u>

Liveness analysis

Computation rules for liveness

- $v \in \mathbf{use}[n]$ implies v live-in at n
- ② v live-in at n implies v live-out at all $m \in \mathbf{pred}[n]$
- **3** v live-out at n and $v \notin \mathbf{def}[n]$ implies v live-in at n
- ⇒ liveness information is propagated <u>backwards</u>

Inequations from computation rules

$$\mathbf{in}[n] \supseteq \underbrace{\mathbf{use}[n]}_{\text{rule 1}} \cup \underbrace{(\mathbf{out}[n] \setminus \mathbf{def}[n])}_{\text{rule 3}}$$

$$\mathbf{out}[n] \supseteq \bigcup_{\substack{m \in \mathbf{succ}[n] \\ \text{rule 2}}} \mathbf{in}[m]$$

Liveness analysis

- Each solution of the inequations is valid liveness information
- Wanted: <u>least solution</u> that does not contain spurious information
- computed by fixed point iteration
 - treat inequations (from right to left) as functions
 - update the left-hand in[n] and out[n] until no further change happens
- result is a fixed point because afterwards

$$\mathbf{in}[n] = \mathbf{use}[n] \cup (\mathbf{out}[n] \setminus \mathbf{def}[n])$$
 $\mathbf{out}[n] = \bigcup_{m \in \mathbf{succ}[n]} \mathbf{in}[m]$

Algorithm: liveness analysis

```
for all node n do
      \mathsf{in}^0[n] \leftarrow \emptyset
       \mathsf{out}^0[n] \leftarrow \emptyset
end for
i=0
repeat
       i \leftarrow i + 1
       for all node n do
              \mathsf{in}^i[n] \leftarrow \mathsf{use}[n] \cup (\mathsf{out}^{i-1}[n] \setminus \mathsf{def}[n])
              \mathsf{out}^i[n] \leftarrow \bigcup_{s \in \mathsf{succ}[n]} \mathsf{in}^{i-1}[s]
       end for
until \forall n, \text{in}^i[n] = \text{in}^{i-1}[n] \land \text{out}^i[n] = \text{out}^{i-1}[n]
```

Notes on the algorithm

- Each loop iteration increases in[n] and/or out[n]
- Liveness flows backwards along control-flow arcs
- The inner loop should visit nodes in reverse flow order as much as possible
- Speedup: compress nodes to basic blocks

Termination

Monotone

$$in^{i+1}[n] \supseteq in^{i}[n]$$

$$\operatorname{out}^{i+1}[n] \supseteq \operatorname{out}^{i}[n]$$

Bounded

$$\mathbf{in}^i[n] \subseteq \mathbf{use}[n] \cup (\mathbf{out}^i[n] \setminus \mathbf{def}[n])$$
 $\mathbf{out}^i[n] \subseteq \bigcup_{s \in \mathbf{succ}[n]} \mathbf{in}^i[s]$

Example analysis, 1st iteration

	def[n]	use[n]	in ¹ [<i>n</i>]	out ¹ [<i>n</i>]	in ² [<i>n</i>]	out ² [<i>n</i>]
<i>a</i> ← 0	{a}	Ø	{c}	{c, a}		
$L_1: b \leftarrow a+1$	{ <i>b</i> }	{ <i>a</i> }	{c, a}	{ <i>c</i> , <i>b</i> }		
$c \leftarrow c + b$	{ <i>c</i> }	$\{c,b\}$	{ <i>c</i> , <i>b</i> }	$\{c,b\}$		
$a \leftarrow b \times 2$	{ <i>a</i> }	{ <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ c , a }		
if $a < N$ goto L_1	Ø	{ <i>a</i> }	{c, a}	{ c }		
return C	Ø	{ c }	{ c }	Ø		

Example analysis, 2nd iteration

	def[n]	use[n]	in ¹ [<i>n</i>]	out ¹ [<i>n</i>]	in ² [<i>n</i>]	out ² [<i>n</i>]
<i>a</i> ← 0	{a}	Ø	{c}	{c, a}	{c}	{c, a}
$L_1: b \leftarrow a+1$	{ <i>b</i> }	{a}	{c, a}	{ <i>c</i> , <i>b</i> }	{c, a}	{ <i>c</i> , <i>b</i> } ∥
$c \leftarrow c + b$	{ <i>c</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> } ∥
$a \leftarrow b \times 2$	{a}	{ <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ c , a }	{ <i>c</i> , <i>b</i> }	{c, a}
if $a < N$ goto L_1	Ø	{a}	{c, a}	{ c }	{c, a}	{ <i>c</i> , <i>a</i> }
return C	Ø	{ c }	{c}	Ø	{ c }	Ø

Example analysis, 2nd iteration

	def[n]	use[n]	in ¹ [<i>n</i>]	out ¹ [<i>n</i>]	in ² [<i>n</i>]	out ² [<i>n</i>]
<i>a</i> ← 0	{a}	Ø	{c}	{c, a}	{c}	{c, a}
$L_1: b \leftarrow a+1$	{ <i>b</i> }	{ <i>a</i> }	{c, a}	{ <i>c</i> , <i>b</i> }	{c, a}	{ <i>c</i> , <i>b</i> } ∥
$c \leftarrow c + b$	{ <i>c</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> }	{ <i>c</i> , <i>b</i> } ∥
$a \leftarrow b \times 2$	{ <i>a</i> }	{ <i>b</i> }	{ <i>c</i> , <i>b</i> }	{c, a}	{ <i>c</i> , <i>b</i> }	{c, a} ∥
if $a < N$ goto L_1	Ø	{a}	{c, a}	{ c }	{c, a}	{ <i>c</i> , <i>a</i> }
return C	Ø	{ c }	{c}	Ø	{c}	Ø

Fixed point reached

- maximum number of live variables = 2
- 2 registers sufficient

Complexity of the algorithm

For input program of size N

- - $\Rightarrow \leq N$ variables
 - $\Rightarrow \leq N$ elements per in[n] and out[n]
 - \Rightarrow O(N) time per set operation
- for-loop performs constant number of set operations per node
 - $\Rightarrow O(N^2)$ time for the loop
- the repeat loop cannot decrease any set sizes of all in and out sets $\leq 2N^2$
 - \Rightarrow repeat loop terminates after $\leq 2N^2$ iterations
- \Rightarrow overall worst-case complexity $O(N^4)$
- in practice only few iterations when ordering is observed

Least fixed points

- Technically, the algorithm computes the <u>least fixed point</u> / least solution of the inequations
- Any fixed point/solution is a <u>conservative approximation</u> that tacitly assumes further uses of variables
- The least fixed point only considers manifest uses in the CFG
- It is always safe to assume a variable is live
- It is unsafe to assume a variable is dead

Soundness

Live-in at node n

v is <u>live-in</u> at n if there is $k \ge 0$ and a path $n = n_0, n_1, \ldots, n_k$ such that $v \in \mathbf{use}[n_k]$ and $v \notin \mathbf{def}[n_j]$ for all j < k.

Soundness

Live-in at node *n*

v is <u>live-in</u> at n if there is $k \ge 0$ and a path $n = n_0, n_1, \ldots, n_k$ such that $v \in \mathbf{use}[n_k]$ and $v \notin \mathbf{def}[n_j]$ for all j < k.

Soundness of live-in analysis

If v is live-in at n, then $v \in \mathbf{in}[n]$ in any fixed point.

Soundness

Live-in at node *n*

v is <u>live-in</u> at n if there is $k \ge 0$ and a path $n = n_0, n_1, \ldots, n_k$ such that $v \in \mathbf{use}[n_k]$ and $v \notin \mathbf{def}[n_j]$ for all j < k.

Soundness of live-in analysis

If v is live-in at n, then $v \in \mathbf{in}[n]$ in any fixed point.

Proof

- Suppose v is live-in due to path $n = n_0, n_1, \dots, n_k$ $(k \ge 0)$
- $v \in \mathbf{use}[n_k] \Rightarrow v \in \mathbf{in}[n_k]$ by definition
- Prove by induction on k: for every path n_0, n_1, \ldots, n_k , if $v \in \mathbf{in}[n_k]$ and $v \notin \mathbf{def}[n_j]$ $(\forall j < k)$, then $v \in \mathbf{in}[n_0]$.
 - k = 0: immediate
 - k > 0: as $v \notin \mathbf{def}[n_{k-1}] \Rightarrow v \in \mathbf{in}[n_{k-1}]$, apply IH for n_{k-1}

Completeness

Completeness of live-in analysis

If $v \in \mathbf{in}[n]$ in the **least fixed point**, then v is live-in at n.

Completeness

Completeness of live-in analysis

If $v \in \mathbf{in}[n]$ in the **least fixed point**, then v is live-in at n.

Proof

- $v \in \mathbf{in}[n]$ requires that $\exists k$ such that $v \in \mathbf{in}^k[n]$.
- We show $v \in \mathbf{in}^k[n] \Rightarrow \exists$ path $n = n_0, \dots, n_j$ for some j < k.
- Suppose, for an induction on k, that $v \in \mathbf{in}^{k+1}[n]$
- According to the algorithm:
- $v \in \mathbf{use}[n]$ or $v \in \mathbf{out}^k[n] \setminus \mathbf{def}[n]$
 - $v \in \mathbf{use}[n]$: done with j = 0
 - $v \notin def[n]$ and $\exists s \in succ[n]$ with $v \in in^k[s]$
 - By IH for s there is a path $s = s_0, ..., s_j$ for j < k with $v \in \mathbf{use}[s_i]$ and $v \notin \mathbf{def}[s_i]$ (for all i < j)
 - Extend path by n to n, s_0, \ldots, s_j .

Interference

Suppose that in[n] and out[n] solve the liveness inequations.

Interference graph

The interference graph is an undirected graph with

- nodes the variables of the CFG
- an edge $\{v, v'\}$ if exists node n in the CFG that contains such that $\{v, v'\} \subseteq \mathbf{in}[n]$

Interference

Suppose that in[n] and out[n] solve the liveness inequations.

Interference graph

The interference graph is an undirected graph with

- nodes the variables of the CFG
- an edge $\{v, v'\}$ if exists node n in the CFG that contains such that $\{v, v'\} \subseteq \mathbf{in}[n]$

Interference graph for example

Refined interference

Refined interference graph

The refined interference graph is an undirected graph with

- nodes the variables of the CFG
- an edge $\{v, d\}$ if exists node n which contains a move instruction d := s such that $v \in \mathbf{out}[n], v \neq s$, and $v \neq d$
- an edge {v, d} if exists node n which does not contain a move instruction such that v ∈ out[n] and d ∈ def[n]

Approach to register allocation

- Find a coloring of the interference graph with n colors where n is the number of available registers
- Difficulties
 - include spilling
 - efficiency

2-colored interference graph for example

