
Compiler Construction 2024
Liveness Analysis

Peter Thiemann

May 28, 2024



Outline

1 Liveness Analysis



Liveness Analysis

IR after instruction selection
abstract assembly code
operates on unbounded number of temporaries

Next goal
register allocation



Register allocation

instruction operands in registers
bounded number of registers⇒ limited resource
questions to be addressed

how many registers are needed at every program point?
what to do if fewer registers are available than needed?

optimal allocation is NP-complete



How many registers are needed?

Concept: Live range
The live range of a temporary spans all instructions that may be
executed between its definition and one of its uses.

Concept: Liveness
A temporary is live at some instruction if its value may be used
in the future.

Answers
At any given instruction, all live temporaries may be
needed.
Temporaries that are not needed at the same time may
share a register.



What if fewer registers are available than needed?

Concept: Spill
Spilling a temporary means

allocate it in a stack frame
insert store instruction right after its definition
insert load instruction before every use

Consequences of spilling
shortens the live range of a temporary
increases the size of a stack frame
accessing the temporary becomes more expensive



Roadmap

1 control-flow graph
2 liveness analysis
3 interference graph



Control Flow Graph (CFG)

Graphical representation of control flow in a program

CFG of a program
Nodes: entry, exit, and each occurrence of a statement in
program
Edges: an edge from n to n′ represents a potential control
transfer from (the end of ) n to (the beginning of) n′

Terminology
Out-edges from n lead to successor nodes, succ[n]

In-edges to n come from predecessor nodes, pred[n]



Example CFG

a← 0
L1 : b ← a + 1

c ← c + b
a← b × 2
if a < N goto L1
return c

entry

a ← 0

b ← a + 1

c ← c + b

a ← b × 2

if a < N

return c
Y



Definitions and uses

Consider a CFG
A variable v gets defined by node n,
if the statement at n assigns to v .
A variable v gets used by node n,
if v occurs in an expression at n, i.e., it reads from v .
def[n] set of variables defined by n
use[n] set of variables used by n
def[n] and use[n] are fixed by program/CFG



Example def-use

def[n] use[n]
a← 0 {a} ∅

L1 : b ← a + 1 {b} {a}
c ← c + b {c} {c,b}
a← b × 2 {a} {b}
if a < N goto L1 ∅ {a}
return c ∅ {c}



Liveness

Definition
Variable v is live on edge e if there is an execution path from e
to a use of v that does not pass through any definition of v .

Liveness Analysis
A data flow analysis that computes the variables that may be
live at each edge of a control flow graph.

Definition for analysis
Variable v is live on edge e if there is a directed path from e to
a use of v that does not pass through any definition of v .



More on liveness

Liveness at node n
v is live-in at n if v is live on any in-edge of n

in[n] variables live-in at n
v is live-out at n if v is live on any out-edge of n

out[n] variables live-out at n



Liveness analysis

Computation rules for liveness

1 v ∈ use[n] implies v live-in at n

2 v live-in at n implies v live-out at all m ∈ pred[n]

3 v live-out at n and v /∈ def[n] implies v live-in at n
⇒ liveness information is propagated backwards

Inequations from computation rules

in[n] ⊇ use[n]︸ ︷︷ ︸
rule 1

∪ (out[n] \ def[n])︸ ︷︷ ︸
rule 3

out[n] ⊇
⋃

m∈succ[n]

in[m]

︸ ︷︷ ︸
rule 2



Liveness analysis

Computation rules for liveness

1 v ∈ use[n] implies v live-in at n

2 v live-in at n implies v live-out at all m ∈ pred[n]

3 v live-out at n and v /∈ def[n] implies v live-in at n
⇒ liveness information is propagated backwards

Inequations from computation rules

in[n] ⊇ use[n]︸ ︷︷ ︸
rule 1

∪ (out[n] \ def[n])︸ ︷︷ ︸
rule 3

out[n] ⊇
⋃

m∈succ[n]

in[m]

︸ ︷︷ ︸
rule 2



Liveness analysis

Each solution of the inequations is valid liveness
information
Wanted: least solution that does not contain spurious
information
computed by fixed point iteration

treat inequations (from right to left) as functions
update the left-hand in[n] and out[n] until no further
change happens

result is a fixed point because afterwards

in[n] = use[n] ∪ (out[n] \ def[n])

out[n] =
⋃

m∈succ[n]

in[m]



Algorithm: liveness analysis

for all node n do
in0[n]← ∅
out0[n]← ∅

end for
i = 0
repeat

i ← i + 1
for all node n do

ini [n]← use[n] ∪ (outi−1[n] \ def[n])
outi [n]←

⋃
s∈succ[n] in

i−1[s]
end for

until ∀n, ini [n] = ini−1[n] ∧ outi [n] = outi−1[n]



Notes on the algorithm

Each loop iteration increases in[n] and/or out[n]
Liveness flows backwards along control-flow arcs
The inner loop should visit nodes in reverse flow order as
much as possible
Speedup: compress nodes to basic blocks



Termination

Monotone

ini+1[n] ⊇ ini [n] outi+1[n] ⊇ outi [n]

Bounded

ini [n] ⊆ use[n] ∪ (outi [n] \ def[n])

outi [n] ⊆
⋃

s∈succ[n]

ini [s]



Example analysis, 1st iteration

def[n] use[n] in1[n] out1[n] in2[n] out2[n]
a← 0 {a} ∅ {c} {c, a}

L1 : b ← a + 1 {b} {a} {c, a} {c, b}
c ← c + b {c} {c, b} {c, b} {c, b}
a← b × 2 {a} {b} {c, b} {c, a}
if a < N goto L1 ∅ {a} {c, a} {c}
return c ∅ {c} {c} ∅



Example analysis, 2nd iteration

def[n] use[n] in1[n] out1[n] in2[n] out2[n]
a← 0 {a} ∅ {c} {c, a} {c} {c, a}

L1 : b ← a + 1 {b} {a} {c, a} {c, b} {c, a} {c, b}
c ← c + b {c} {c, b} {c, b} {c, b} {c, b} {c, b}
a← b × 2 {a} {b} {c, b} {c, a} {c, b} {c, a}
if a < N goto L1 ∅ {a} {c, a} {c} {c, a} {c, a}
return c ∅ {c} {c} ∅ {c} ∅

Fixed point reached
maximum number of live variables = 2

2 registers sufficient



Example analysis, 2nd iteration

def[n] use[n] in1[n] out1[n] in2[n] out2[n]
a← 0 {a} ∅ {c} {c, a} {c} {c, a}

L1 : b ← a + 1 {b} {a} {c, a} {c, b} {c, a} {c, b}
c ← c + b {c} {c, b} {c, b} {c, b} {c, b} {c, b}
a← b × 2 {a} {b} {c, b} {c, a} {c, b} {c, a}
if a < N goto L1 ∅ {a} {c, a} {c} {c, a} {c, a}
return c ∅ {c} {c} ∅ {c} ∅

Fixed point reached
maximum number of live variables = 2

2 registers sufficient



Complexity of the algorithm

For input program of size N
≤ N nodes in CFG
⇒ ≤ N variables
⇒ ≤ N elements per in[n] and out[n]
⇒ O(N) time per set operation
for-loop performs constant number of set operations per
node
⇒ O(N2) time for the loop
the repeat loop cannot decrease any set
sizes of all in and out sets ≤ 2N2

⇒ repeat loop terminates after ≤ 2N2 iterations
⇒ overall worst-case complexity O(N4)

in practice only few iterations when ordering is observed



Least fixed points

Technically, the algorithm computes the least fixed point /
least solution of the inequations
Any fixed point/solution is a conservative approximation
that tacitly assumes further uses of variables
The least fixed point only considers manifest uses in the
CFG
It is always safe to assume a variable is live
It is unsafe to assume a variable is dead



Soundness

Live-in at node n
v is live-in at n if there is k ≥ 0 and a path n = n0,n1, . . . ,nk
such that v ∈ use[nk ] and v /∈ def[nj ] for all j < k .

Soundness of live-in analysis
If v is live-in at n, then v ∈ in[n] in any fixed point.

Proof
Suppose v is live-in due to path n = n0,n1, . . . ,nk (k ≥ 0)
v ∈ use[nk ]⇒ v ∈ in[nk ] by definition
Prove by induction on k :
for every path n0,n1, . . . ,nk , if v ∈ in[nk ] and v /∈ def[nj ]
(∀j < k ), then v ∈ in[n0].

k = 0: immediate
k > 0: as v /∈ def[nk−1]⇒ v ∈ in[nk−1], apply IH for nk−1



Soundness

Live-in at node n
v is live-in at n if there is k ≥ 0 and a path n = n0,n1, . . . ,nk
such that v ∈ use[nk ] and v /∈ def[nj ] for all j < k .

Soundness of live-in analysis
If v is live-in at n, then v ∈ in[n] in any fixed point.

Proof
Suppose v is live-in due to path n = n0,n1, . . . ,nk (k ≥ 0)
v ∈ use[nk ]⇒ v ∈ in[nk ] by definition
Prove by induction on k :
for every path n0,n1, . . . ,nk , if v ∈ in[nk ] and v /∈ def[nj ]
(∀j < k ), then v ∈ in[n0].

k = 0: immediate
k > 0: as v /∈ def[nk−1]⇒ v ∈ in[nk−1], apply IH for nk−1



Soundness

Live-in at node n
v is live-in at n if there is k ≥ 0 and a path n = n0,n1, . . . ,nk
such that v ∈ use[nk ] and v /∈ def[nj ] for all j < k .

Soundness of live-in analysis
If v is live-in at n, then v ∈ in[n] in any fixed point.

Proof
Suppose v is live-in due to path n = n0,n1, . . . ,nk (k ≥ 0)
v ∈ use[nk ]⇒ v ∈ in[nk ] by definition
Prove by induction on k :
for every path n0,n1, . . . ,nk , if v ∈ in[nk ] and v /∈ def[nj ]
(∀j < k ), then v ∈ in[n0].

k = 0: immediate
k > 0: as v /∈ def[nk−1]⇒ v ∈ in[nk−1], apply IH for nk−1



Completeness

Completeness of live-in analysis
If v ∈ in[n] in the least fixed point, then v is live-in at n.

Proof
v ∈ in[n] requires that ∃k such that v ∈ ink [n].
We show v ∈ ink [n]⇒ ∃ path n = n0, . . . ,nj for some j < k .

Suppose, for an induction on k , that v ∈ ink+1[n]
According to the algorithm:
v ∈ use[n] or v ∈ outk [n] \ def[n]

v ∈ use[n]: done with j = 0
v /∈ def[n] and ∃s ∈ succ[n] with v ∈ ink [s]
By IH for s there is a path s = s0, . . . , sj for j < k with
v ∈ use[sj ] and v /∈ def[si ] (for all i < j)
Extend path by n to n, s0, . . . , sj .



Completeness

Completeness of live-in analysis
If v ∈ in[n] in the least fixed point, then v is live-in at n.

Proof
v ∈ in[n] requires that ∃k such that v ∈ ink [n].
We show v ∈ ink [n]⇒ ∃ path n = n0, . . . ,nj for some j < k .

Suppose, for an induction on k , that v ∈ ink+1[n]
According to the algorithm:
v ∈ use[n] or v ∈ outk [n] \ def[n]

v ∈ use[n]: done with j = 0
v /∈ def[n] and ∃s ∈ succ[n] with v ∈ ink [s]
By IH for s there is a path s = s0, . . . , sj for j < k with
v ∈ use[sj ] and v /∈ def[si ] (for all i < j)
Extend path by n to n, s0, . . . , sj .



Interference

Suppose that in[n] and out[n] solve the liveness inequations.

Interference graph
The interference graph is an undirected graph with

nodes the variables of the CFG
an edge {v , v ′} if exists node n in the CFG that contains
such that {v , v ′} ⊆ in[n]

Interference graph for example

a

b c



Interference

Suppose that in[n] and out[n] solve the liveness inequations.

Interference graph
The interference graph is an undirected graph with

nodes the variables of the CFG
an edge {v , v ′} if exists node n in the CFG that contains
such that {v , v ′} ⊆ in[n]

Interference graph for example

a

b c



Refined interference

Refined interference graph
The refined interference graph is an undirected graph with

nodes the variables of the CFG
an edge {v ,d} if exists node n which contains a move
instruction d := s such that v ∈ out[n], v ̸= s, and v ̸= d
an edge {v ,d} if exists node n which does not contain a
move instruction such that v ∈ out[n] and d ∈ def[n]



Approach to register allocation

Find a coloring of the interference graph with n colors
where n is the number of available registers
Difficulties

include spilling
efficiency

2-colored interference graph for example

a

b c


	Liveness Analysis

